JPS60201295A - Reducer for radiation dose - Google Patents

Reducer for radiation dose

Info

Publication number
JPS60201295A
JPS60201295A JP59057744A JP5774484A JPS60201295A JP S60201295 A JPS60201295 A JP S60201295A JP 59057744 A JP59057744 A JP 59057744A JP 5774484 A JP5774484 A JP 5774484A JP S60201295 A JPS60201295 A JP S60201295A
Authority
JP
Japan
Prior art keywords
zinc solution
zinc
pipe
solution injection
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59057744A
Other languages
Japanese (ja)
Inventor
森川 義武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59057744A priority Critical patent/JPS60201295A/en
Publication of JPS60201295A publication Critical patent/JPS60201295A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子炉−次系配管の放射線m率を低減する放射
線量低減装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a radiation dose reduction device for reducing the radiation m rate of a sub-reactor system piping.

〔発明の技術的背景〕[Technical background of the invention]

一般に、沸騰水形原子力発電プラントの一次冷却水系は
7j41図に示すように構成されている。同図において
1は沸騰水形原子炉(以下、BWRという)であり、こ
のBWRlには炉内で発生した蒸気を取出す主蒸気系2
と、炉内に一次冷却水を供給する給水系4とが接続され
ている。上記主蒸気系2は復水系3を介して給水系3と
接続され、BWRl内より取出した蒸気を復水系3で凝
縮した後、給水系4を通じてBWRlへ戻すようになっ
ている。また、上記BWR1には再循環系5が接続され
、BWRl内の炉心(図示せず)に冷却水を強制循環さ
ゼるようになっている。そして、この再循環系5と給水
系4との間には再循環系5に流入した冷却水の一部を浄
化する浄化系6が接続されている。
Generally, the primary cooling water system of a boiling water nuclear power plant is configured as shown in Figure 7j41. In the figure, 1 is a boiling water reactor (hereinafter referred to as BWR), and this BWR1 includes a main steam system 2 that takes out steam generated in the reactor.
and a water supply system 4 that supplies primary cooling water into the furnace. The main steam system 2 is connected to a water supply system 3 via a condensate system 3, and after condensing steam extracted from the BWRl, it is returned to the BWRl through a water supply system 4. Further, a recirculation system 5 is connected to the BWR 1, so that cooling water is forcibly circulated to the core (not shown) within the BWR 1. A purification system 6 that purifies a portion of the cooling water that has flowed into the recirculation system 5 is connected between the recirculation system 5 and the water supply system 4 .

上記の構成において、BWRlで発生した蒸気は主蒸気
系2の主蒸気配管7を通って高圧タービン8へ送られ、
さらに湿分分離器9で余剰湿分が除去されたのち低圧タ
ービン10へ送られる。ぞして、これら高圧及び低圧タ
ービン8.10を駆動して発電t111を発電さぜる。
In the above configuration, the steam generated in the BWRl is sent to the high pressure turbine 8 through the main steam pipe 7 of the main steam system 2,
Further, excess moisture is removed by a moisture separator 9 and then sent to a low pressure turbine 10. Then, these high-pressure and low-pressure turbines 8.10 are driven to generate power t111.

一方、低圧タービン10を駆動した蒸気は復水系3に流
入し、復水器12で凝縮されると共に脱気されて復水器
12内のホットウェル(図示せず)に貯溜する。このボ
ットウェルに溜った復水は低圧復水ポンプ13により復
水配管14を通って復水ろ過器15および復水脱塩器1
6でろ過・脱塩された後、高圧復水ポンプ17により昇
圧され、給水系4の低圧給水加熱器18へ送られる。そ
して、低圧給水加熱器18に送られた給水は給水ポンプ
19により高圧給水加熱器20へ送られ、この高圧給水
加熱器20で加熱された後、給水配管21を通ってBW
R1内へ供給される。このようにしてBWR1、内に流
入した冷却水は再循環系5に流入し、その一部は浄化系
6へ分流する。そして、再循環系5に流入した冷却水は
再循環ポンプ22により再循環配管23を通ってBWR
I内のジェット・ポンプ(図示せず)に駆動水として圧
送され、また浄化系6に流入した冷却水は浄化装置25
で浄化された後、浄化配管24を通って給水系4に流入
し、再びBWRI内に供給される。
On the other hand, the steam that has driven the low-pressure turbine 10 flows into the condensing system 3, is condensed in the condenser 12, is degassed, and is stored in a hot well (not shown) in the condenser 12. The condensate accumulated in this botwell is passed through a condensate pipe 14 by a low-pressure condensate pump 13 to a condensate filter 15 and a condensate demineralizer 1.
After being filtered and desalted in step 6, the pressure is increased by a high-pressure condensate pump 17, and the water is sent to a low-pressure feedwater heater 18 of the water supply system 4. The feed water sent to the low pressure feed water heater 18 is sent to the high pressure feed water heater 20 by the feed water pump 19, and after being heated by the high pressure feed water heater 20, it passes through the water feed pipe 21 to the BW.
Supplied into R1. The cooling water that has flowed into the BWR 1 in this way flows into the recirculation system 5 , and part of it is diverted to the purification system 6 . The cooling water flowing into the recirculation system 5 is then passed through the recirculation pipe 23 by the recirculation pump 22 to the BWR.
The cooling water that is pumped as driving water to a jet pump (not shown) in I, and also flows into the purification system 6, is sent to the purification device 25.
After being purified, it flows into the water supply system 4 through the purification pipe 24 and is again supplied into the BWRI.

〔背景技術の問題点〕[Problems with background technology]

ところで、このような沸騰水形原子力発電プラン1−等
の一次冷却水中にはコバルト60(Co)やコバルh5
8(”Co)等の放射性物質がイオンとして溶解してい
る。これらの放射性物質は給水系4や復水系3等の配管
等から生成されたFe。
By the way, cobalt-60 (Co) and cobal-h5 are contained in the primary cooling water of such boiling water nuclear power generation plan 1-.
Radioactive substances such as 8 (Co) are dissolved in the form of ions.

Nl、Co等の腐蝕生成物が一次冷却水と共にBWR1
内に流入すると、中性子照射により放射化されてなるも
のである。ところが、これらの放射性物質は高温・高圧
の一次冷却水が流れる再循環系5や浄化系6等に流入し
た場合、これら−次冷却水系の配管内表面には二価の金
属イオンを取込み易いFe3O4の酸化皮膜が形成され
ているために、この酸化皮膜中に取込まれて配管内面に
付着することになる。そして、このようにして配管内面
に放射性物質が付着すると、−次系配管の放射線量率を
上昇させることになり、定期点検等の際に作業員の被曝
線量が増大するおそれがあった。
Corrosion products such as Nl and Co are added to the BWR1 along with the primary cooling water.
When it enters the atmosphere, it is activated by neutron irradiation. However, when these radioactive substances flow into the recirculation system 5, purification system 6, etc. through which high-temperature, high-pressure primary cooling water flows, Fe3O4, which easily incorporates divalent metal ions, is deposited on the inner surface of the pipes of these secondary cooling water systems. Since an oxide film is formed, the oxidants are taken into this oxide film and adhere to the inner surface of the piping. If radioactive substances adhere to the inner surface of the piping in this way, the radiation dose rate of the sub-system piping will increase, and there is a risk that the radiation dose to workers during periodic inspections and the like will increase.

〔発明の目的〕[Purpose of the invention]

本発明は上記の問題を解決するためになされたものであ
り、その目的とするところは一次系配管の放射線量率を
低減でき、定期点検時等における作業員の被曝線量を低
レベルに抑えられる放射線量低減装置を提供することに
ある。
The present invention has been made to solve the above problems, and its purpose is to reduce the radiation dose rate of the primary system piping, and to suppress the radiation dose to workers during periodic inspections, etc. An object of the present invention is to provide a radiation dose reduction device.

〔発明の概要〕[Summary of the invention]

本発明は上記の目的を達成するために、次のような構成
としたことを特徴としている。すなわち、本発明による
放射mth低減装置は原子炉の一次冷却水を脱塩する脱
塩装置の入口配管に接続された亜11i8液注入配管と
、この亜鉛溶液注入配管に亜鉛溶液を注入する亜鉛溶液
注入ポンプと、この亜鉛溶液注入ポンプに亜鉛溶液を供
給する亜鉛溶液生成装置とを具面したものである。
In order to achieve the above object, the present invention is characterized by having the following configuration. That is, the radiation mth reduction device according to the present invention includes a sub-11i8 liquid injection pipe connected to the inlet pipe of the desalination equipment that desalinates the primary cooling water of the nuclear reactor, and a zinc solution injection pipe for injecting the zinc solution into the zinc solution injection pipe. It includes an injection pump and a zinc solution generating device that supplies zinc solution to the zinc solution injection pump.

〔発明の実施例〕[Embodiments of the invention]

以下、第2図及び第3図を参照して本発明の詳細な説明
する。
Hereinafter, the present invention will be explained in detail with reference to FIGS. 2 and 3.

第2図は本発明の一実施例を示す図で、図中101は沸
騰水形原子力発電プラン1〜の復水浄化系に設置されて
いる混床式脱塩器である。この混床式脱塩器101は入
口配管102を介して復水母管103に接続され、また
出口配管104を介して復水母管105に接続されてい
る。この混床式脱塩器101の機能としては復水器(図
示せず)J、(+−77% ’j+ ’へtn 4 ?
−10v林1凸りlj T lfl 索fil 悴10
3より分岐し、不純物を脱塩除去したのち出口配管10
4にてストレーナ106を経由して復水母管105へ戻
すようになっている。なお、この混床式脱塩器101に
は陰イオン交換樹脂のみが装荷されている。
FIG. 2 is a diagram showing an embodiment of the present invention, in which numeral 101 is a mixed bed desalination device installed in the condensate purification system of boiling water nuclear power generation plans 1 to 1. This mixed bed demineralizer 101 is connected to a condensate main pipe 103 via an inlet pipe 102 and to a condensate main pipe 105 via an outlet pipe 104. The functions of this mixed bed demineralizer 101 include a condenser (not shown) J, (+-77% 'j+' to tn 4 ?
-10v Hayashi 1 convex lj T lfl search fil 悴10
3, and after desalting and removing impurities, the outlet pipe 10
4, the water is returned to the condensate main pipe 105 via a strainer 106. Note that this mixed bed type demineralizer 101 is loaded with only anion exchange resin.

また、上記入口配管102には亜鉛溶液注入配管107
が接続されている。この亜鉛溶液注入配管107は開閉
弁108を介して亜鉛浴′a注入ポンプ109と接続さ
れ、この亜鉛溶液注入ポンプ109からの亜鉛溶液(例
えばZnSO4溶液)を入口配管102に注入するよう
になっている。
Further, the inlet pipe 102 includes a zinc solution injection pipe 107.
is connected. This zinc solution injection pipe 107 is connected to a zinc bath 'a injection pump 109 via an on-off valve 108, and the zinc solution (for example, ZnSO4 solution) from this zinc solution injection pump 109 is injected into the inlet pipe 102. There is.

そして、上記亜鉛溶液注入ポンプ109は亜鉛溶液供給
配管110を介して亜鉛溶液生成装@111と接続され
、この亜!i1溶液生成装置111で生成された亜鉛溶
液が供給されるようになっている。
The zinc solution injection pump 109 is connected to the zinc solution generation device @111 via the zinc solution supply piping 110, and this sub-! The zinc solution generated by the i1 solution generation device 111 is supplied.

なお、図中112及び113は入口配管102及び出口
配管104に設けられた切換え弁である。
In addition, 112 and 113 in the figure are switching valves provided in the inlet pipe 102 and the outlet pipe 104.

次に、上記構成による本実施例の作用を説明する。亜鉛
溶液生成装置111で生成された亜鉛溶液は亜鉛溶液注
入ポンプ109により亜鉛溶液注入配管107を通って
入口配管102に注入される。入口配管102に注入さ
れた7:nSO+溶液は復水母管103からの一次冷却
水と共に混床式脱塩器101に流入する。混床式脱塩器
101に流入した亜鉛溶液は一次冷却水と共に脱塩除去
されるが、ここでは陰イオン交換樹脂のみが装荷されて
いるため亜鉛イオンは除去されず、亜鉛イオンは脱塩除
去された一次冷却水と共に出口配管104を通り復水母
管105へ流入する。そして、復水m管105に流入し
た亜鉛イオンは第1図に示す如く給水系4を経由してB
WRI内に流入し、さらに再循環系5および浄化系6へ
と流入する。
Next, the operation of this embodiment with the above configuration will be explained. The zinc solution generated by the zinc solution generating device 111 is injected into the inlet pipe 102 through the zinc solution injection pipe 107 by the zinc solution injection pump 109. The 7:nSO+ solution injected into the inlet pipe 102 flows into the mixed bed demineralizer 101 together with the primary cooling water from the condensate main pipe 103. The zinc solution flowing into the mixed bed demineralizer 101 is desalinated and removed together with the primary cooling water, but since only the anion exchange resin is loaded here, the zinc ions are not removed, and the zinc ions are desalinated and removed. The primary cooling water flows into the condensate main pipe 105 through the outlet pipe 104. The zinc ions flowing into the condensate m-pipe 105 then pass through the water supply system 4 to B as shown in FIG.
It flows into the WRI and further into the recirculation system 5 and the purification system 6.

このようにして再循環系5および浄化系6に流入した亜
鉛イオンは、これら−次冷却水系の配管内を通過する際
に配管内表面に形成されたFe3O4の酸化皮膜と反応
し、亜鉛を取込んだFe2Z1104という形の酸化皮
膜を形成することになる。
The zinc ions that have flowed into the recirculation system 5 and purification system 6 in this way react with the Fe3O4 oxide film formed on the inner surface of the pipes when passing through the pipes of these secondary cooling water systems, removing zinc. This results in the formation of an oxide film in the form of Fe2Z1104.

第3図は酸化皮膜中の亜鉛含有率と一次系配管の放射ね
同率との関係を示したものである。同図に示すように酸
化皮膜中に亜鉛が取込まれている場合は、亜鉛含有率が
増加するほど一次系配管の放射線同率は低減することに
なる。したがって、再循環系5や浄化系6等にコバルト
60(”Co)やコバルト58(”Co)等の放射性物
質が流入しても、配管内表面には亜鉛を取込んだ酸化皮
膜(Fe2 Zn04 )が形成されているので、これ
ら放射性物質が配管内面に付着するのを防止できる。
FIG. 3 shows the relationship between the zinc content in the oxide film and the radiation equivalence rate of the primary system piping. As shown in the figure, when zinc is incorporated into the oxide film, the radiation equivalence rate of the primary system piping decreases as the zinc content increases. Therefore, even if radioactive substances such as cobalt-60 ("Co") and cobalt-58 ("Co) flow into the recirculation system 5, purification system 6, etc., an oxide film (Fe2 Zn04) containing zinc will form on the inner surface of the piping. ), it is possible to prevent these radioactive substances from adhering to the inner surface of the piping.

このように本実施例によれば、混床式脱塩器101の入
口配管102に亜鉛溶液を注入することにより一次系の
配管内表面に亜鉛を取込んだ酸化皮膜が形成され配管内
面に放射性物質が付着するのを防止できるので、−次系
配管の放射線量率を低減でき、定期点検等の際に作業員
の被曝線量を低レベルに抑えることが可能となる。
As described above, according to this embodiment, by injecting the zinc solution into the inlet pipe 102 of the mixed bed desalination device 101, an oxide film incorporating zinc is formed on the inner surface of the primary system pipe, and the inner surface of the pipe becomes radioactive. Since substances can be prevented from adhering, the radiation dose rate of secondary system piping can be reduced, making it possible to suppress the exposure dose of workers to a low level during periodic inspections, etc.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、原子炉
の一次冷却水を脱塩する脱塩装置の入口配管に接続され
た亜鉛溶液注入配管と、この亜鉛溶液注入配管に亜鉛溶
液を注入する亜鉛溶液注入ポンプと、この亜鉛溶液注入
ポンプに亜鉛溶液を供給する亜鉛溶液生成装置とを具備
した構成としたので、−次系配管の放射線量率を低減で
き、定期点検時等における作業員の被@@量を低レベル
に抑えられる故剣線量低減装置を提供できる。
As is clear from the above description, according to the present invention, the zinc solution injection pipe is connected to the inlet pipe of the desalination equipment that desalinates the primary cooling water of the nuclear reactor, and the zinc solution is injected into the zinc solution injection pipe. The structure is equipped with a zinc solution injection pump that supplies zinc solution to the zinc solution injection pump, and a zinc solution generation device that supplies zinc solution to the zinc solution injection pump, so it is possible to reduce the radiation dose rate of secondary system piping and reduce the burden on workers during periodic inspections. It is possible to provide a radiation dose reduction device that can reduce the radiation dose to a low level.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の沸騰水形原子力発電プラントの概略構成
図、第2図は本発明の一実施例を示す放射線a低減装置
の概略構成図、第3図は酸化皮膜中の亜鉛含有率と一次
系配管の放射線量率との関係を示す縮図である。 1・・・BWR,2・・・主蒸気系、3・・・復水系、
4・・・給水系、5・・・再循環系、6・・・浄化系、
101・・・混床式脱塩器、102・・・入口配管、1
03・・・復水母U、104・・・出口配管、107・
・・亜鉛溶液注入配管、109・・・亜鉛溶液注入ポン
プ、110・・・亜鉛溶液生成装置。 出願人代理人 弁理± 19江武彦
Fig. 1 is a schematic diagram of a conventional boiling water nuclear power plant, Fig. 2 is a schematic diagram of a radiation a reduction device showing an embodiment of the present invention, and Fig. 3 is a diagram showing the zinc content in the oxide film. It is a microcosm showing the relationship with the radiation dose rate of primary system piping. 1...BWR, 2...Main steam system, 3...Condensate system,
4...Water supply system, 5...Recirculation system, 6...Purification system,
101...Mixed bed demineralizer, 102...Inlet piping, 1
03... Condensate mother U, 104... Outlet piping, 107.
...Zinc solution injection piping, 109...Zinc solution injection pump, 110...Zinc solution generation device. Applicant's agent Patent attorney ± 19 Etakehiko

Claims (1)

【特許請求の範囲】[Claims] 原子炉の一次冷却水を脱塩する脱塩装置の入口配管に接
続された亜鉛溶液注入配管と、この亜鉛溶液注入配管に
亜鉛溶液を注入する亜鉛溶液注入ポンプと、この亜鉛溶
液注入ポンプに亜鉛溶液を供給する亜鉛溶液生成装置と
を具備したことを特徴どする放射#I量低減装置。
A zinc solution injection pipe connected to the inlet pipe of the desalination equipment that desalinates the primary cooling water of the nuclear reactor, a zinc solution injection pump that injects zinc solution into this zinc solution injection pipe, and a zinc solution injection pump that injects zinc solution into this zinc solution injection pipe. A radiation #I amount reducing device comprising a zinc solution generating device that supplies a solution.
JP59057744A 1984-03-26 1984-03-26 Reducer for radiation dose Pending JPS60201295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59057744A JPS60201295A (en) 1984-03-26 1984-03-26 Reducer for radiation dose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59057744A JPS60201295A (en) 1984-03-26 1984-03-26 Reducer for radiation dose

Publications (1)

Publication Number Publication Date
JPS60201295A true JPS60201295A (en) 1985-10-11

Family

ID=13064410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59057744A Pending JPS60201295A (en) 1984-03-26 1984-03-26 Reducer for radiation dose

Country Status (1)

Country Link
JP (1) JPS60201295A (en)

Similar Documents

Publication Publication Date Title
JPS63103999A (en) Method and device for inhibiting adhesion of radioactive substance
JP2007192745A (en) Method and device for recycling agent forming ferrite coating film
JPH11304992A (en) Turbine equipment for power generation
JPS60201295A (en) Reducer for radiation dose
JPS60201296A (en) Reducer for radiation dose
JP6088173B2 (en) Method for suppressing radionuclide adhesion to components of nuclear power plant
JPS5979193A (en) Cleaning device of feedwater heater
JPH0631815B2 (en) Nuclear power plant water supply system
JP2003315487A (en) Water treating method for removing iron component from water supply for steam generator, water supply for reactor, water supply for boiler, or heater drain water in electric power plant
JPS60152991A (en) Purifier for condensate from steam turbine plant
JPH0422489A (en) Water treatment method of power plant
JPS642237B2 (en)
JPS59112293A (en) Leaked sea water decontaminating device
JPS6053896A (en) Oxygen injection control system
JPS60201298A (en) Nuclear power plant
JPH0479439B2 (en)
JPS58143298A (en) Method of protecting corrosion of feedwater pipe for reactor water
JPS61104298A (en) Radioactivity accumulation reducer for nuclear reactor primary cooling system
JPS61138588A (en) Device for purifying feed water and condensate in atomic power plant
JPS59170796A (en) Condensed water clean-up device
JPH08152496A (en) Nuclear power generation facilities
JPS58101781A (en) Method and device for purification of condensate
JPS6333680B2 (en)
JPH0631817B2 (en) Boiling water nuclear plant
JPS60198493A (en) Method of treating feedwater to nuclear reactor