JPH11236689A - Water treating apparatus for power generating plant and water treatment - Google Patents

Water treating apparatus for power generating plant and water treatment

Info

Publication number
JPH11236689A
JPH11236689A JP10043702A JP4370298A JPH11236689A JP H11236689 A JPH11236689 A JP H11236689A JP 10043702 A JP10043702 A JP 10043702A JP 4370298 A JP4370298 A JP 4370298A JP H11236689 A JPH11236689 A JP H11236689A
Authority
JP
Japan
Prior art keywords
oxygen
feed water
water heater
drain
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10043702A
Other languages
Japanese (ja)
Inventor
Toshio Kanbara
登志夫 神原
Nobuo Shimono
展雄 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP10043702A priority Critical patent/JPH11236689A/en
Publication of JPH11236689A publication Critical patent/JPH11236689A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent corrosion by injecting oxygen to a low pressure and high pressure feed water heater drain line to increase the oxygen concentration in equipments and pipe lines. SOLUTION: In a plant applying an oxygen treating method as the corrosion countermeasure, an oxygen injection pipe line 26 for injecting oxygen to the low pressure feed water heater 8 and the high pressure feed water heater 13, which are installed in a water feed line, is provided and oxygen is injected to the drain line of each feed water heater. Alternatively, steam from a bleeding pipe line 19 is supplied to the inside of the low pressure feed water heater 8 and the high pressure feed water heater 13, which are installed in the water feed line, and the steam is heat-exchanged with a feed water in a water feed pipe line arranged in each feed water heater, the drain of steam is introduced into drain lines 16, 17 and oxygen is injected to a part of a liquid phase in the inside of each feed water heater separated into a gas phase and the liquid phase.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低圧給水加熱器及
び高圧給水加熱器を有する発電プラントの水処理に係わ
り、特に発電プラント系統機器及び配管等の防食を行う
発電プラントの水処理装置及び水処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to water treatment of a power plant having a low-pressure feedwater heater and a high-pressure feedwater heater, and more particularly to a water treatment apparatus and a water treatment system for a power plant that performs corrosion protection of power plant system equipment and piping. Regarding the processing method.

【0002】[0002]

【従来の技術】低圧給水加熱器及び高圧給水加熱器を有
する火力発電プラント、加圧水型原子力発電プラント及
びその他の発電プラントにおいては、給水系統内の酸素
を脱気して、その濃度を10ppb以下にして、適量の
アルカリ薬品(NH4OH、N24)を添加する水処理
を実施して、給水系統の機器及び配管等の内部の腐食を
防止している。
2. Description of the Related Art In a thermal power plant, a pressurized water nuclear power plant and other power plants having a low-pressure feed water heater and a high-pressure feed water heater, oxygen in a feed water system is degassed to reduce its concentration to 10 ppb or less. In addition, water treatment is performed by adding an appropriate amount of an alkaline chemical (NH 4 OH, N 2 H 4 ) to prevent corrosion inside the water supply system equipment and piping.

【0003】しかしながら、これらの発電プラントは長
年の使用により構成材料である鉄鋼材及び銅合金から溶
出した腐食生成物がボイラ14、蒸気発生器21、ター
ビン1及び高圧給水加熱器13等に付着、析出して各機
器のオーバーヒート、熱交換率の低下及びタービン出力
の低下等の種々の原因となるので定期的に腐食生成物を
除去している。
However, in these power plants, corrosion products eluted from steel and copper alloys as constituent materials have adhered to the boiler 14, the steam generator 21, the turbine 1, the high-pressure feed water heater 13 and the like due to long-term use. The corrosion products are periodically removed because they precipitate and cause various causes such as overheating of each device, a decrease in the heat exchange rate, and a decrease in the turbine output.

【0004】一方、沸騰水型原子力発電プラントの運転
経験から給水系統の給水中の酸素濃度はむしろ多い方が
腐食が少ないことが分かった。また、米国特許第566
5725号明細書によれば、沸騰水型原子力発電プラン
トの場合、酸素濃度を50〜30000ppb範囲で、
特に100〜300ppbの酸素量を含ませると、従来
の酸素濃度10ppb以下の場合より腐食量は1/10
以下になると報告されている。
On the other hand, it has been found from the operating experience of a boiling water nuclear power plant that the higher the oxygen concentration in the feedwater of the water supply system, the less the corrosion. Also, U.S. Pat.
According to 5725, in the case of a boiling water nuclear power plant, the oxygen concentration is in the range of 50 to 30,000 ppb,
In particular, when an oxygen amount of 100 to 300 ppb is included, the amount of corrosion is 1/10 compared to the conventional case where the oxygen concentration is 10 ppb or less.
It has been reported that:

【0005】また、特開昭58−207378号公報に
よれば、沸騰水型原子力発電プラントでは、復水昇圧ポ
ンプ7及び脱気器貯水槽10と脱気器貯水槽の下流に酸
素を注入すれば、給水系統の機器や配管の防食が達成で
きると報告されている。
According to JP-A-58-207378, in a boiling water nuclear power plant, oxygen is injected into the condensing booster pump 7, the deaerator storage tank 10, and the downstream of the deaerator storage tank. For example, it is reported that corrosion protection of equipment and piping in the water supply system can be achieved.

【0006】火力プラントの再開動作においては、酸素
処理法には、完全な中性水を添加する中性水処理と、系
統材料の炭素鋼の腐食抑制とともに復水器や低圧給水加
熱器に使用されている銅合金を含めた腐食抑制の観点か
ら、給水のpHを8.0〜9.0に高め、同時に酸素を
注入する複合水処理と、が有る。
[0006] In the restarting operation of the thermal power plant, the oxygen treatment method includes a neutral water treatment in which complete neutral water is added and a condenser and a low-pressure feed water heater together with the suppression of corrosion of carbon steel as a system material. From the viewpoint of suppressing corrosion including the copper alloy used, there is a complex water treatment in which the pH of feedwater is increased to 8.0 to 9.0 and oxygen is simultaneously injected.

【0007】酸素処理法の中の中性水処理については、
原子力発電プラント(BWR)に対し採用されており、
日本国内でも多数の実績を有している。酸素処理法の貫
流ボイラへの適用は、ドイツ、ソ連、韓国等において既
に実施されており、ボイラの差圧上昇防止にも良好な結
果が得られている。また、国内でも確認試験を行い良好
な結果が得られたため、現在適用を拡げているところで
ある。
[0007] Regarding the neutral water treatment in the oxygen treatment method,
It has been adopted for nuclear power plants (BWR),
He has many achievements in Japan. The application of the oxygen treatment method to once-through boilers has already been implemented in Germany, the Soviet Union, South Korea, etc., and good results have been obtained in preventing the rise in the differential pressure of the boiler. In addition, confirmation tests have been conducted in Japan, and good results have been obtained.

【0008】しかし、プラント起動時及び通常運転時、
低圧給水加熱器8及び高圧給水加熱器13では、不溶存
ガスによる伝熱阻害が発生するのを防止するために、常
時空気抜き弁を開して、前記不溶存ガスをベントしてい
る(抜いている)。
However, at the time of plant startup and normal operation,
In the low-pressure feed water heater 8 and the high-pressure feed water heater 13, in order to prevent the occurrence of heat transfer obstruction due to the insoluble gas, the air vent valve is always opened to vent the insoluble gas. There).

【0009】この時、凝縮ドレンと蒸気中の気液分配の
関係から、ドレン中には殆ど酸素が入らないため、ドレ
ン系統の酸素濃度が下がり、ドレン系統内の機器の腐食
に対して十分な効果を発揮するまでに至らなかった。
At this time, almost no oxygen enters the drain due to the relationship between the condensed drain and the vapor-liquid distribution in the steam, so that the oxygen concentration in the drain system is reduced and the corrosion of the equipment in the drain system is sufficient. It did not reach the effect.

【0010】図4に、酸素の気液分配平衡定数を示す
(「日立評論」、阿部外、昭和38年3月、に記載され
ている)。これによると、例えば、250°の蒸気温度
では分配平衡定数(蒸気中のO2/水分中のO2)は1.
0E+03であるが、熱交換した後の温度が略80°に
低下したときには、その分配平衡定数が1.0E+05
と大きくなる。このことは水になれば水分中のO2が少
なくなることを表す。即ち、図1に示す給水加熱器8,
13からのドレン管16,17の水分には、抽気配管中
の蒸気に比べて、酸素濃度が低下することを意味してい
る。
FIG. 4 shows a gas-liquid distribution equilibrium constant of oxygen (described in "Hitachi Review," Abe et al., March 1963). According to this, for example, at a steam temperature of 250 °, the distribution equilibrium constant (O 2 in steam / O 2 in moisture) is 1.
0E + 03, but when the temperature after the heat exchange falls to approximately 80 °, the distribution equilibrium constant becomes 1.0E + 05.
It becomes big. This means that O2 in water decreases when it becomes water. That is, the feed water heater 8 shown in FIG.
The water content of the drain pipes 16 and 17 from 13 means that the oxygen concentration is lower than the steam in the extraction pipe.

【0011】[0011]

【発明が解決しようとする課題】従来技術は、低圧給水
加熱器及び高圧給水加熱器起動後、給水加熱器の内部で
のドレン系統の給水の酸素濃度が低下し、腐食が発生す
ることに対して配慮されておらず、機器、配管の防食に
対して問題があった。
The prior art is based on the problem that after the low pressure feed water heater and the high pressure feed water heater are started, the oxygen concentration of the feed water of the drain system in the feed water heater is reduced, and corrosion occurs. And there was a problem with the corrosion prevention of equipment and piping.

【0012】本発明の目的は、低圧給水加熱器ドレン系
統及び高圧給水加熱器ドレン系統へ酸素を注入すること
で、機器配管の酸素濃度を高め腐食を防止するものであ
る。
An object of the present invention is to inject oxygen into a low-pressure feedwater heater drain system and a high-pressure feedwater heater drain system to increase the oxygen concentration in equipment piping and prevent corrosion.

【0013】[0013]

【課題を解決するための手段】前記課題を解決するため
に、本発明は主として次のような構成を採用する。
In order to solve the above problems, the present invention mainly employs the following configuration.

【0014】プラントの防食対策として酸素処理法を採
用しているプラントにおいて、給水系統に設置されてい
る低圧給水加熱器および高圧給水加熱器へ酸素を注入す
る酸素注入配管を設け、各給水加熱器のドレン系統に酸
素を注入する発電プラントの水処理装置。
In a plant that adopts an oxygen treatment method as a measure for preventing corrosion of the plant, an oxygen injection pipe for injecting oxygen into a low-pressure feedwater heater and a high-pressure feedwater heater installed in a water supply system is provided. A water treatment system for a power plant that injects oxygen into the drain system.

【0015】また、プラントの防食対策として酸素処理
法を採用しているプラントにおいて、給水系統に設置さ
れている低圧給水加熱器および高圧給水加熱器の内部に
抽気配管からの蒸気を供給し、前記蒸気を各給水加熱器
内に配設された給水配管内の給水と熱交換し、前記蒸気
のドレンをドレン系統に導き、気相と水相に分離された
各給水加熱器内部の水相の部分に酸素を注入する発電プ
ラントの水処理方法。
Further, in a plant employing an oxygen treatment method as a measure for preventing corrosion of the plant, steam from a bleed pipe is supplied to the inside of a low-pressure feed water heater and a high-pressure feed water heater installed in a water supply system. The steam exchanges heat with the feedwater in a feedwater pipe provided in each feedwater heater, and the drain of the steam is led to a drain system, and the water phase inside each feedwater heater separated into a gas phase and an aqueous phase is separated. A water treatment method for a power plant in which oxygen is injected into a part.

【0016】[0016]

【発明の実施の形態】本発明の一実施形態を図1の火力
プラント系統図において説明する。図1において、1は
タービン、2は復水器、3は復水ホットウエル、4は復
水配管、5は復水ポンプ、6は復水脱塩装置、7は復水
昇圧ポンプ、8は低圧給水加熱器、9は脱気器脱気室、
10は脱気器貯水槽、11は給水配管、12は給水ポン
プ、13は高圧給水加熱器、14はボイラ、15は蒸気
配管、16は低圧給水加熱器ドレン管、17は高圧給水
加熱器ドレン管、18はドレンポンプ、19は抽気配
管、20は酸素注入装置、26は低圧給水加熱器ドレン
管酸素注入装置、をそれぞれ表す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to a thermal power plant system diagram of FIG. In FIG. 1, 1 is a turbine, 2 is a condenser, 3 is a condensed hot well, 4 is a condensate pipe, 5 is a condensate pump, 6 is a condensate desalination device, 7 is a condensate booster pump, and 8 is a condensate booster pump. Low pressure feed water heater, 9 is a deaerator deaeration chamber,
10 is a deaerator water tank, 11 is a water supply pipe, 12 is a water supply pump, 13 is a high pressure water heater, 14 is a boiler, 15 is a steam pipe, 16 is a low pressure water heater drain pipe, and 17 is a high pressure water heater drain. A pipe, 18 is a drain pump, 19 is a bleeding pipe, 20 is an oxygen injector, and 26 is a low pressure feed water heater drain pipe oxygen injector.

【0017】図1の工程について説明すると、給水は復
水器2、復水ホットウエル3、復水配管4、復水ポンプ
5、復水脱塩装置6、復水昇圧ポンプ7、低圧給水加熱
器8、脱気器脱気室9、脱気器貯水槽10、給水配管1
1、給水ポンプ12、高圧給水加熱器13、ボイラ14
に入り、ここで蒸気に変換された後、蒸気配管15を通
りタービン1に流入して仕事をして再び復水器2に戻
る。
Referring to the process of FIG. 1, water is supplied by a condenser 2, a condensate hot well 3, a condensate pipe 4, a condensate pump 5, a condensate desalination device 6, a condensate booster pump 7, a low pressure feed water heating Vessel 8, deaerator deaeration chamber 9, deaerator water tank 10, water supply pipe 1
1, feed water pump 12, high pressure feed water heater 13, boiler 14
After being converted into steam, the steam flows into the turbine 1 through the steam pipe 15 to perform work, and returns to the condenser 2 again.

【0018】図2は加圧水型原子力発電プラント系統図
である。図2において、1〜13及び15〜20は図1
と同様であり、21は蒸気発生器、22は原子炉、23
は一次冷却材配管、24は一次冷却材ポンプ、25は加
圧器25、をそれぞれ表す。
FIG. 2 is a system diagram of a pressurized water nuclear power plant. 2, 1 to 13 and 15 to 20 correspond to FIG.
21 is a steam generator, 22 is a nuclear reactor, 23
Represents a primary coolant pipe, 24 represents a primary coolant pump, and 25 represents a pressurizer 25.

【0019】図2の工程について説明すると、図1と同
じ工程を通り、高圧給水加熱器13を経た給水は蒸気発
生器21に入り、ここで原子炉22で加熱された後、蒸
気配管15を通りタービン1に流入して仕事をして再び
復水器2に戻る。
Referring to the process of FIG. 2, the feed water passing through the high-pressure feed water heater 13 enters the steam generator 21 through the same process as that of FIG. Then, it flows into the turbine 1 to perform work and returns to the condenser 2 again.

【0020】図1及び図2において、起動時、通常運転
時とも、低圧給水加熱器ドレン管16及び高圧給水加熱
器ドレン管17へ酸素注入装置26a及び26bを設け
て、酸素ガスまたは過酸化水素を注入することによって
ドレン系統の機器や配管の腐食をすることができる。
In FIGS. 1 and 2, oxygen injection devices 26a and 26b are provided for the low pressure feed water heater drain pipe 16 and the high pressure feed water heater drain pipe 17 at the time of start-up and normal operation, respectively. Injection can cause corrosion of drain system equipment and piping.

【0021】図3に、低圧給水加熱器8と高圧給水加熱
器13の具体的構造を示し、加熱器8,13内に給水配
管11が配置されている。タービンで使用された蒸気が
抽気配管19に供給され、供給された蒸気が給水配管内
の水と熱交換されて、水となってドレン配管に導かれ
る。加熱器8,13の内部は抽気配管からの蒸気が気相
と液相に分かれる。酸素注入配管26a,26bは加熱
器8,13に接続され、特に、加熱器内部の液相に酸素
が注入されるようになっていて、ドレンに酸素が効率的
に注入されることとなる。
FIG. 3 shows a specific structure of the low-pressure feedwater heater 8 and the high-pressure feedwater heater 13, and a feedwater pipe 11 is arranged in the heaters 8 and 13. The steam used in the turbine is supplied to the extraction pipe 19, and the supplied steam exchanges heat with water in the water supply pipe to be converted to water and guided to the drain pipe. Inside of the heaters 8 and 13, the vapor from the bleeding pipe is divided into a gas phase and a liquid phase. The oxygen injection pipes 26a and 26b are connected to the heaters 8 and 13, and in particular, oxygen is injected into a liquid phase inside the heater, so that oxygen is efficiently injected into the drain.

【0022】本発明の実施形態によれば、低圧給水加熱
器及び高圧給水加熱器を有する発電プラント(火力、加
圧水型原子力及び高速増殖炉プラント)の低圧給水加熱
器ドレン管及び高圧給水加熱器ドレン管の防食が達成で
きると共に、系統水中のFe濃度が大幅減少できるの
で、腐食生成物除去のための酸洗間隔の延長、排水処理
費の削減、復水脱塩樹脂再生及び補修費の削減、起動時
ドレンの金属成分濃度の早期安定、等の効果がある。
According to an embodiment of the present invention, the drain pipe and the high pressure feed water drain of the low pressure feed water heater of a power plant (thermal, pressurized water nuclear and fast breeder reactor plants) having a low pressure feed water heater and a high pressure feed water heater are provided. Since the corrosion prevention of the pipe can be achieved and the Fe concentration in the system water can be greatly reduced, the pickling interval for removing corrosion products has been extended, the wastewater treatment cost has been reduced, the condensate desalination resin regeneration and repair costs have been reduced, There are effects such as early stabilization of the metal component concentration of the drain at the time of startup.

【0023】[0023]

【発明の効果】従来の技術は、低圧給水加熱器起動後、
給水加熱器内で給水の酸素濃度が低下し、腐食が発生す
ることに対して配慮されておらず、機器、配管の防食に
対して問題があった。
According to the prior art, after starting the low-pressure feed water heater,
No consideration was given to the fact that the oxygen concentration of the feedwater was reduced in the feedwater heater and corrosion occurred, and there was a problem with the corrosion prevention of equipment and piping.

【0024】本発明は、低圧および高圧給水加熱器ドレ
ン系統へ酸素を注入することで、機器配管の酸素濃度を
高め腐食を防止する効果を奏するものである。
The present invention has the effect of increasing the oxygen concentration in the equipment piping and preventing corrosion by injecting oxygen into the low pressure and high pressure feed water heater drain systems.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施形態に係る、火力プラントの給水
加熱器のドレン系統への酸素注入を示す図である。
FIG. 1 is a diagram illustrating oxygen injection into a drain system of a feedwater heater of a thermal power plant according to an embodiment of the present invention.

【図2】本発明の実施形態に係る、加圧水型原子力発電
プラントの給水加熱器のドレン系統への酸素注入を示す
図である。
FIG. 2 is a diagram showing oxygen injection into a drain system of a feedwater heater of a pressurized water nuclear power plant according to an embodiment of the present invention.

【図3】給水加熱器への酸素注入を示す具体的構造を示
す図である。
FIG. 3 is a diagram showing a specific structure showing injection of oxygen into a feed water heater.

【図4】酸素の気液分配平衡定数と温度の関係を示す図
である。
FIG. 4 is a diagram showing the relationship between the gas-liquid distribution equilibrium constant of oxygen and temperature.

【符号の説明】[Explanation of symbols]

1 タービン 2 復水器 3 復水ホットウエル 4 復水配管 5 復水ポンプ 6 復水脱塩装置 7 復水昇圧ポンプ 8 低圧給水加熱器 8C 低圧給水加熱器空気抜き弁 9 脱気器脱気室 10 脱気器貯水槽 11 給水配管 12 給水ポンプ 13 高圧給水加熱器 14 ボイラ 15 蒸気配管 16 低圧給水加熱器ドレン管 17 高圧給水加熱器ドレン管 18 ドレンポンプ 19 抽気配管 20 酸素注入装置 21 蒸気発生器 22 原子炉 23 一次冷却材配管 24 一次冷却材ポンプ 25 加圧器 26 低圧給水加熱器ドレン管酸素注入装置 DESCRIPTION OF SYMBOLS 1 Turbine 2 Condenser 3 Condensed water hot well 4 Condensed water pipe 5 Condensed water pump 6 Condensed water desalination device 7 Condensed water booster pump 8 Low pressure feed water heater 8C Low pressure feed water heater air release valve 9 Deaerator deaeration chamber 10 Deaerator water tank 11 Water supply pipe 12 Water supply pump 13 High pressure feed water heater 14 Boiler 15 Steam pipe 16 Low pressure feed water heater drain pipe 17 High pressure feed water heater drain pipe 18 Drain pump 19 Extraction pipe 20 Oxygen injector 22 Steam generator 22 Reactor 23 Primary coolant piping 24 Primary coolant pump 25 Pressurizer 26 Low-pressure feedwater heater Drain tube Oxygen injector

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 プラントの防食対策として酸素処理法を
採用しているプラントにおいて、 給水系統に設置されている低圧給水加熱器および高圧給
水加熱器へ酸素を注入する酸素注入配管を設け、 各給水加熱器のドレン系統に酸素を注入することを特徴
とする発電プラントの水処理装置。
An oxygen injection pipe for injecting oxygen into a low-pressure feedwater heater and a high-pressure feedwater heater installed in a water supply system is provided in a plant employing an oxygen treatment method as a corrosion prevention measure for the plant. A water treatment apparatus for a power plant, wherein oxygen is injected into a drain system of a heater.
【請求項2】 プラントの防食対策として酸素処理法を
採用しているプラントにおいて、 給水系統に設置されている低圧給水加熱器および高圧給
水加熱器の内部に抽気配管からの蒸気を供給し、前記蒸
気を各給水加熱器内に配設された給水配管内の給水と熱
交換し、前記蒸気のドレンをドレン系統に導き、 気相と液相に分離された各給水加熱器内部の液相の部分
に酸素を注入することを特徴とする発電プラントの水処
理方法。
2. A plant employing an oxygen treatment method as a corrosion prevention measure for a plant, wherein steam from a bleeding pipe is supplied into a low-pressure feedwater heater and a high-pressure feedwater heater installed in a water supply system, The steam exchanges heat with the feedwater in a feedwater pipe provided in each feedwater heater, guides the drain of the steam to a drain system, and converts the liquid phase inside each feedwater heater separated into a gas phase and a liquid phase. A water treatment method for a power plant, comprising injecting oxygen into a part.
JP10043702A 1998-02-25 1998-02-25 Water treating apparatus for power generating plant and water treatment Pending JPH11236689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10043702A JPH11236689A (en) 1998-02-25 1998-02-25 Water treating apparatus for power generating plant and water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10043702A JPH11236689A (en) 1998-02-25 1998-02-25 Water treating apparatus for power generating plant and water treatment

Publications (1)

Publication Number Publication Date
JPH11236689A true JPH11236689A (en) 1999-08-31

Family

ID=12671160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10043702A Pending JPH11236689A (en) 1998-02-25 1998-02-25 Water treating apparatus for power generating plant and water treatment

Country Status (1)

Country Link
JP (1) JPH11236689A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007512437A (en) * 2003-11-20 2007-05-17 ナルコ カンパニー Method for inhibiting corrosion in hot water systems
US7828983B2 (en) 2001-11-29 2010-11-09 Transform Solar Pty Ltd Semiconductor texturing process
CN101886804A (en) * 2010-05-26 2010-11-17 中国电力工程顾问集团华北电力设计院工程有限公司 All-backheating drainage system of heat supply network heater for supercritical concurrent boiler thermal power plant
CN102070214A (en) * 2010-11-29 2011-05-25 西安热工研究院有限公司 Oxygenation treatment method for water vapor system of thermal power plant
JP2014071076A (en) * 2012-10-01 2014-04-21 Japan Atom Power Co Ltd:The Piping wastage suppression system of secondary cooling system of pwr power generation station and method of the same
US8859038B2 (en) 2010-09-15 2014-10-14 Kabushiki Kaisha Toshiba Method for monitoring corrosion protection in power plant
US9583668B2 (en) 2000-11-29 2017-02-28 The Australian National University Semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9583668B2 (en) 2000-11-29 2017-02-28 The Australian National University Semiconductor device
US7828983B2 (en) 2001-11-29 2010-11-09 Transform Solar Pty Ltd Semiconductor texturing process
JP2007512437A (en) * 2003-11-20 2007-05-17 ナルコ カンパニー Method for inhibiting corrosion in hot water systems
CN101886804A (en) * 2010-05-26 2010-11-17 中国电力工程顾问集团华北电力设计院工程有限公司 All-backheating drainage system of heat supply network heater for supercritical concurrent boiler thermal power plant
US8859038B2 (en) 2010-09-15 2014-10-14 Kabushiki Kaisha Toshiba Method for monitoring corrosion protection in power plant
CN102070214A (en) * 2010-11-29 2011-05-25 西安热工研究院有限公司 Oxygenation treatment method for water vapor system of thermal power plant
WO2012071923A1 (en) * 2010-11-29 2012-06-07 西安热工研究院有限公司 Method for processing water and steam system oxygenation in thermal power plant
JP2014071076A (en) * 2012-10-01 2014-04-21 Japan Atom Power Co Ltd:The Piping wastage suppression system of secondary cooling system of pwr power generation station and method of the same

Similar Documents

Publication Publication Date Title
US9758880B2 (en) Method and system for controlling water chemistry in power generation plant
CN106122929B (en) A add medicine and sampling system for combined cycle generating set multi-pressure exhaust-heat boiler
CN204962711U (en) Supercritical unit or super supercritical unit do not have oxygen -eliminating device heat regenerative system
CN111256104A (en) Purification system and method for high-temperature gas cooled reactor nuclear power unit thermal equipment during starting period
JPH11236689A (en) Water treating apparatus for power generating plant and water treatment
JP2007224820A (en) Turbine facilities, heat recovery steam generator and water treatment method
JPH11304992A (en) Turbine equipment for power generation
JP2003097801A (en) Water treating device and water treating method for power generating plant
JP4745990B2 (en) Turbine equipment and initial switching method for oxygen treatment of turbine equipment
JPH0979504A (en) Cleaning method for exhaust heat recovery boiler
US4236968A (en) Device for removing heat of decomposition in a steam power plant heated by nuclear energy
JPH0254435B2 (en)
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
KR20180119373A (en) Apparatus for preventing corrosion of power generation facility
JPS63150504A (en) Water treatment equipment
JP7232702B2 (en) Pressurized water nuclear plant and method of operating pressurized water nuclear plant
Petrova Implementation of water chemistry in fossil power plants with drum boilers and in combined cycle/HRSG plants
JPH02157503A (en) Process of feed water treatment for steam power plant
JPH11304993A (en) Turbine equipment for power generation
JPH0743093B2 (en) Boiler feedwater treatment method
JP2002055193A (en) Feed water system for neuclear power plant and its clad reducing method
RU2073916C1 (en) System for boron fast inserting to first circuit of nuclear water-moderated water-cooled energy plant
JPS6190788A (en) Water treatment in power plant and its apparatus
RU2213293C2 (en) Apparatus for producing of high-pressure superheated water
JPH0776786A (en) Corrosion prevention method for once-through type boiler

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060207