JPS63150504A - Water treatment equipment - Google Patents

Water treatment equipment

Info

Publication number
JPS63150504A
JPS63150504A JP29486886A JP29486886A JPS63150504A JP S63150504 A JPS63150504 A JP S63150504A JP 29486886 A JP29486886 A JP 29486886A JP 29486886 A JP29486886 A JP 29486886A JP S63150504 A JPS63150504 A JP S63150504A
Authority
JP
Japan
Prior art keywords
water
heater
water supply
low
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29486886A
Other languages
Japanese (ja)
Inventor
神林 剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP29486886A priority Critical patent/JPS63150504A/en
Publication of JPS63150504A publication Critical patent/JPS63150504A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)
  • Treatment Of Water By Ion Exchange (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は汽力発電プラントの水処理装置および水処理方
法に係り、特にプラント構成材料に好適なPH調節を行
なう装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a water treatment device and a water treatment method for a steam power generation plant, and more particularly to a device for adjusting pH suitable for plant constituent materials.

〔従来の技術〕[Conventional technology]

従来、汽力発電プラントにおいては一般に鋼材と鋼材の
両者が用いられており、その両者の腐食・溶出の観点か
ら5系統水のPHをいくらにすべきかの検討がなされて
いる。その一つは岡本廉之輔[武豊火力発電所1号ユニ
ット水処理特性試験結果」、火力発電Vo111.20
.NQ5.p、498〜517 、 May1969に
述べられているように、系統水のpHを高くすると鋼材
からの鉄の溶出量は減少するが、復水器及び低圧給水ヒ
ータに銅合金が使用されているので、逆に鋼の溶出量が
大幅に増加することから、このプラントのIkJpHは
9.4 であるとしている。
Conventionally, both steel and steel materials have been generally used in steam power generation plants, and studies have been made to determine what the pH of the 5-system water should be from the viewpoint of corrosion and elution of both materials. One of them is Rennosuke Okamoto [Results of water treatment characteristics test of Taketoyo Thermal Power Station Unit 1], Thermal Power Generation Vo111.20
.. NQ5. As stated in May 1969, p. 498-517, increasing the pH of system water reduces the amount of iron leached from steel, but since copper alloys are used in the condenser and low-pressure water heater, On the contrary, the IkJpH of this plant is assumed to be 9.4 because the amount of steel eluted increases significantly.

また、日本工業規格(JIS  B8223−1977
)rボイラの給水およびボイラ水の水質」によると、高
圧のボイラを有する火力発電プラントの給水のpH基準
値は8.8〜9.5とし、その中でも高圧給水ヒータの
管材が鋼の場合には高目に保つことが望ましいとしてい
る。
In addition, Japanese Industrial Standards (JIS B8223-1977
According to ``Boiler feed water and boiler water quality,'' the standard pH value of feed water for thermal power plants with high-pressure boilers is 8.8 to 9.5. It is desirable to keep it at a high level.

また、火力発電プラントと同様の構成材料で同様の水質
管理を実施している加圧水型原子力発電プラントの2次
側系統水のPH値も、上述と同様の理由から8.5〜9
.5としている。
Furthermore, for the same reasons as mentioned above, the pH value of the secondary system water of pressurized water nuclear power plants, which use the same constituent materials and implement the same water quality management as thermal power plants, is also 8.5 to 9.
.. It is set at 5.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、鋼材と鋼材が混在している復水・給水
・蒸気の全系統を一つのpH値で管理しているため、両
材料に対する妥協点としてのpH値となり、それらの腐
食・溶出もある程度やむを得ないものとされていた。こ
れらの腐食生成物はボイラ、タービン等に付着して、ボ
イラのオーバーヒート、タービン効率の低下等の不具合
の原因となる。このため、多くの人手と薬品を使用する
付着物の酸洗浄、高圧水を噴射するジェット洗浄等を定
期的に実施しなければならないという問題があった。
In the above conventional technology, the entire condensate, water supply, and steam systems in which steel and steel materials are mixed are managed at one pH value, so the pH value is a compromise for both materials, and their corrosion and elution It was also considered to be unavoidable to some extent. These corrosion products adhere to boilers, turbines, and the like, causing problems such as boiler overheating and reduced turbine efficiency. For this reason, there is a problem in that it is necessary to periodically perform acid cleaning of deposits that requires many hands and chemicals, jet cleaning that uses high-pressure water, and the like.

−本発明の目的は、前記した従来の汽力発電プラントの
問題点を解決し、鋼材の腐食・溶出量が最も多い系統と
、鋼材を含むその他の系統のpH値を別々に管理できる
水処理装置を提供し、それぞれの系統に最適なPH値で
管理する水処理方法を提供することにある。
- The purpose of the present invention is to solve the above-mentioned problems of conventional steam power plants, and to provide a water treatment system that can separately manage the pH values of the system where the amount of corrosion and elution of steel materials is the highest and the other systems that contain steel materials. The objective is to provide a water treatment method that manages the pH value optimal for each system.

〔問題点を解決するための手段〕 第2図は、低圧給水ヒータ及び高圧給水ヒータの管材が
炭素鋼のプラントにおける、系統水のpHとプラント各
点の鉄濃度の関係を示す。この図から、鉄の溶出量が最
も多いのは復水昇圧ポンプ出口から脱気器入口までの間
、即ち低圧給水ヒータ給水側であり、その鉄は脱気器出
口から主蒸気までの間、即ち高圧給水ヒータ給水側及び
ボイラに付着していることがわかる。また、同図から。
[Means for solving the problem] Fig. 2 shows the relationship between the pH of system water and the iron concentration at each point in the plant in a plant where the pipe materials of the low-pressure water heater and the high-pressure water heater are made of carbon steel. From this figure, the largest amount of iron is eluted between the condensate booster pump outlet and the deaerator inlet, that is, on the low-pressure feed water heater water supply side, and the iron elutes between the deaerator outlet and the main steam. That is, it can be seen that it adheres to the high-pressure water supply heater water supply side and the boiler. Also from the same figure.

系統水のPHを9.6以上にすると上記低圧給水ヒータ
給水側からの鉄の溶出量は極めて少なくなることがわか
る。
It can be seen that when the pH of the system water is set to 9.6 or higher, the amount of iron eluted from the water supply side of the low-pressure water supply heater becomes extremely small.

第3図は、復水器が銅合金管のプラントにおける。系統
水のpHと復水ポンプ出口の銅濃度の関係を示す。この
図から、PHが9.5 を越えると銅の溶出が急激に増
加することがわかる。
Figure 3 shows a plant where the condenser is made of copper alloy pipes. The relationship between the pH of system water and the copper concentration at the condensate pump outlet is shown. This figure shows that copper elution increases rapidly when pH exceeds 9.5.

以上のような検討結果から、銅合金管復水器と炭素鋼管
低圧給水ヒータを有するプラントにおいては、低圧給水
ヒータ給水側の系統のpHを9.6以上とし、復水器を
含むその他の系統のpHを9.5以下にすることにより
、プラント全体の鉄と銅の溶出量を最小にすることがで
きることがわかった。
From the above study results, in plants with copper alloy pipe condensers and carbon steel pipe low-pressure water heaters, the pH of the system on the water supply side of the low-pressure water heater should be set to 9.6 or higher, and the pH of other systems including the condenser should be set to 9.6 or higher. It was found that the amount of iron and copper leached from the entire plant can be minimized by adjusting the pH to 9.5 or less.

このような水処理を行なうためには、従来の汽力発電プ
ラントでも設けられている、復水脱塩装置出口、即ち低
圧給水ヒータ入口への薬液注入装置から、アンモニア、
ヒドラジン等のアルカル剤を注入し、低圧給水ヒータ出
口に陽イオン交換塔とそのバイパス系統を新たに設け、
そこでアルカリ剤の一部を除去すればよい。
In order to carry out such water treatment, ammonia, ammonia,
Injecting an alkaline agent such as hydrazine, and installing a new cation exchange tower and its bypass system at the outlet of the low-pressure feed water heater.
Therefore, a portion of the alkaline agent may be removed.

〔作用〕[Effect]

陽イオン交換塔の中には水素型陽イオン交換樹脂が充填
されており、pHを上げるために注入したアルカリ剤で
あるアンモニア、ヒドラジン等を除去する。陽イオン交
換樹脂の耐熱温度は150℃程度であるのに対し、低圧
給水ヒータ出口温度は130℃程度であるので、ここに
陽イオン交換塔を設置してもイオン交換性能上の問題は
ない。
The cation exchange column is filled with a hydrogen-type cation exchange resin, which removes ammonia, hydrazine, etc., which are alkaline agents injected to raise the pH. The heat resistance temperature of the cation exchange resin is about 150°C, whereas the outlet temperature of the low pressure water heater is about 130°C, so there is no problem in terms of ion exchange performance even if a cation exchange tower is installed here.

陽イオン交換塔出口以降のPHはある一定値に保つ必要
があるので、陽イオン交換塔のバイパス系統を設けて給
水の一部をバイパスし、陽イオン交換塔を通った給水と
合流させる6合流後にはpH計または電気伝導率計を設
け、その信号にょリバイパス弁の開度を調節することに
より、合流後のPH値を一定に制御することができる。
Since the pH after the cation exchange tower exit needs to be maintained at a certain value, a bypass system for the cation exchange tower is installed to bypass a portion of the feed water and combine it with the feed water that has passed through the cation exchange tower. Afterward, by providing a pH meter or an electrical conductivity meter and adjusting the opening degree of the bypass valve according to the signal, the pH value after merging can be controlled to be constant.

陽イオン交換塔の樹脂は所定時間使用するとブレーク点
に達するので、その前に硫酸または塩酸により再生を行
なってから再使用する。再生装置は復水脱塩装置の陽イ
オン交換樹脂用のものと兼用することができる。
Since the resin in the cation exchange column reaches a break point after being used for a predetermined period of time, it must be regenerated with sulfuric acid or hydrochloric acid before reuse. The regenerator can also be used for the cation exchange resin in the condensate desalination device.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

、 第1図において、系統水は次のように流れる。, In Figure 1, the system water flows as follows.

銅合金管製復水器2→復水配管3→復水ポンプ4→復水
脱塩装置5→復水昇圧ポンプ6→炭素Si管製低圧給水
ヒータ7→水素型陽イオン交換塔2゜及びそのバイパス
配管2トバイパス弁22→脱圧器8→給水配管9→給水
ポンプ10→高圧給水ヒータ11→ボイラの節炭器12
→ボイラの水壁13→主蒸気配管14→タービン1→復
水器2゜この流れの中で系統水はボイラの節炭器12及
びボイラの水壁13で蒸気に変えられ、タービン1に流
入して仕事をする。タービン1に入った蒸気の一部は油
気配管15A及び15Bを経由して高圧給水ヒータ11
及び低圧給水ヒータ7に導かれ、給水を加熱して凝縮水
(ドレン)となり、給水ヒータドレン配管16A及び1
6B・低圧給水ヒータドレンポンプ17を通って給水中
に混合される。
Copper alloy pipe condenser 2 → condensate piping 3 → condensate pump 4 → condensate desalination device 5 → condensate boost pump 6 → carbon Si pipe low pressure feed water heater 7 → hydrogen type cation exchange tower 2° and The bypass pipe 2 and bypass valve 22 → depressurizer 8 → water supply pipe 9 → water supply pump 10 → high pressure water heater 11 → boiler economizer 12
→ Boiler water wall 13 → Main steam pipe 14 → Turbine 1 → Condenser 2° In this flow, the system water is converted into steam by the boiler economizer 12 and the boiler water wall 13, and then flows into the turbine 1. and work. A part of the steam that has entered the turbine 1 is sent to the high pressure water heater 11 via oil and air pipes 15A and 15B.
and the low-pressure water supply heater 7, the water supply is heated and becomes condensed water (drain), and the water supply heater drain piping 16A and 1
6B. Mixed into the water supply through the low pressure water heater drain pump 17.

第1図の例によれば、各機器及び配管を防食するため、
薬液注入装置18を用いて、復水脱塩装置5の後流の給
水中にアルカリ剤を注入する。アルカリ剤としてはアン
モニア、ヒドラジン等の揮発性薬品を用いる。アルカリ
剤注入後の給水pHを一定値に保つため・復水昇圧ポン
プ6の後流にPH計または電気伝導率計19Aを設け、
その信号により薬液注入装置18の注入ポンプを自動制
御している。このようにして注入したアルカル剤により
、低圧給水ヒータ7の給水のpHを9.6以上に保つこ
とによって、この系統の鋼材の腐食・溶出を抑制するこ
とができる。
According to the example in Figure 1, in order to prevent corrosion of each equipment and piping,
Using the chemical injection device 18, an alkaline agent is injected into the water supply downstream of the condensate desalination device 5. As the alkali agent, a volatile chemical such as ammonia or hydrazine is used. In order to maintain the pH of the feed water at a constant value after injection of the alkaline agent, a PH meter or electrical conductivity meter 19A is installed downstream of the condensate boost pump 6.
The injection pump of the chemical liquid injection device 18 is automatically controlled based on the signal. By keeping the pH of the water supplied to the low-pressure water supply heater 7 at 9.6 or higher using the alkali agent injected in this manner, corrosion and elution of steel materials in this system can be suppressed.

第1図において、低圧給水ヒータ7を流出した給水は、
一部が陽イオン交換塔20に通水されて給水中のアンモ
ニアが除去され、残りがバイパス配管21及びバイパス
弁22を通り、その後これらは合流する。合流後にpH
計または電気伝導率計19Bを設け、その信号によって
バイパス弁22の開度を調節し、合流後のPHを9.5
以下の一定値に保つことができる。その後、脱気器8゜
高圧給水ヒータ11.ボイラの節炭器12.ボイラの水
壁13.タービン1等を通過する間にpHはほとんど変
わらず、復水器2へ流入する。
In FIG. 1, the water supply that has flowed out of the low-pressure water supply heater 7 is
A portion of the water is passed through the cation exchange column 20 to remove ammonia in the feed water, and the remainder passes through the bypass pipe 21 and the bypass valve 22, and then these are combined. pH after confluence
A meter or electrical conductivity meter 19B is provided, and the opening degree of the bypass valve 22 is adjusted according to the signal, and the pH after merging is adjusted to 9.5.
It can be kept at the following constant value. After that, a deaerator 8 degrees high pressure water heater 11. Boiler economizer 12. Boiler water wall13. While passing through the turbine 1 etc., the pH hardly changes and the water flows into the condenser 2.

第4図は、上記本発明の一実施例において、低圧給水ヒ
ータ出口給水のpHと、ボイラの節炭入口給水のPHと
、陽イオン交換塔の通水率の関係を示したものである。
FIG. 4 shows the relationship between the pH of the low-pressure feedwater heater outlet feedwater, the boiler coal-saving inlet feedwater pH, and the water passage rate of the cation exchange tower in one embodiment of the present invention.

これにより、低圧給水ヒータ給水側のPH値と節炭器入
口給水のpH値の設定値を決めれば、陽イオン交換塔の
通水率が求まり、陽イオン交換塔の設計を行なうことが
できる。
Accordingly, by determining the set values of the pH value on the water supply side of the low-pressure water supply heater and the pH value of the feed water at the inlet of the energy saver, the water flow rate of the cation exchange tower can be determined, and the cation exchange tower can be designed.

たとえば、低圧給水ヒータ給水側のPH値を9,7゜節
炭器入口給水のpHを9.4で設計する場合、陽イオン
交換塔の通水率は67%で設計することになる。
For example, if the pH value of the water supply side of the low-pressure water supply heater is designed to be 9.7° and the pH value of the feed water at the inlet of the economizer is designed to be 9.4, the water flow rate of the cation exchange tower is designed to be 67%.

以上述べた実施例は超臨界圧火力発電プラントに対する
ものであるが、亜臨界火力発電プラント及び加圧水型源
・予力発電プラント2次系に対しても、復水器が銅合金
管で低圧給水ヒータが炭素鋼管を含む場合には、本発明
を適用することができる。
The embodiments described above are for supercritical pressure thermal power plants, but they can also be applied to subcritical thermal power plants and pressurized water type source/pre-power generation plant secondary systems, in which the condenser is a copper alloy pipe used to supply low-pressure water. The present invention can be applied when the heater includes a carbon steel pipe.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、銅合金管復水器と炭素鋼管を含む低圧
給水ヒータを有する汽力発電プラントの機器及び配管の
防食が達成でき、系統水中の金属不純物が約半分以下に
減少できるので、(1)腐食生成物除去のため酸洗浄間
隔が大幅に延長する、(2)排水処理費の削減、(3)
高圧給水ヒータのジェット洗浄が不要になる、(4)ス
ケールの付着祈出がなくなるので性能及び効率も大きく
向上する、という効果を有する。
According to the present invention, it is possible to achieve corrosion protection for the equipment and piping of a steam power plant that has a low-pressure water heater including a copper alloy tube condenser and a carbon steel tube, and metal impurities in the system water can be reduced to about half or less. 1) Significantly longer acid cleaning intervals to remove corrosion products, (2) Reduced wastewater treatment costs, (3)
It has the following effects: jet cleaning of the high-pressure water heater becomes unnecessary; and (4) performance and efficiency are greatly improved because scale adhesion is eliminated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す火力発電プラントの系
統図、第2図は低圧給水ヒータ及び高圧給水ヒータが炭
素鋼管のプラントにおけるp H値と全鉄変化を示す線
図、第3図は復水器が銅合金管のプラントにおけるPH
値と金銅変化を示す線図、第4図は第1図に示した本発
明の一実施例における給水PH値と陽イオン交換塔通水
率の関係を示す線図である。 1・・・タービン、2・・・復水器、3・・・復水配管
、4・・・復水ポンプ、5・・・復水脱塩装置、6・・
・復水昇圧ポンプ、7・・・低圧給水ヒータ、8・・・
脱気器、9・・・給水配管、10・・・給水ポンプ、1
1・・高圧給水ヒータ、12・・・ボイラの節炭器、1
3・・・ボイラの水壁、14・・・主蒸気配管、15・
・・抽気配管、16・・・給水ヒータドレン配管、17
・・・低圧給水ヒータドレンポンプ、18・・・薬液注
入装置。
Fig. 1 is a system diagram of a thermal power plant showing an embodiment of the present invention; Fig. 2 is a diagram showing changes in pH value and total iron in a plant where the low-pressure feed water heater and high-pressure feed water heater are carbon steel pipes; The figure shows PH in a plant where the condenser is a copper alloy pipe.
FIG. 4 is a diagram showing the relationship between the pH value of the feed water and the water flow rate of the cation exchange tower in one embodiment of the present invention shown in FIG. 1. 1... Turbine, 2... Condenser, 3... Condensate piping, 4... Condensate pump, 5... Condensate desalination device, 6...
・Condensate boost pump, 7...Low pressure water heater, 8...
Deaerator, 9... Water supply piping, 10... Water supply pump, 1
1... High pressure water heater, 12... Boiler economizer, 1
3... Boiler water wall, 14... Main steam piping, 15.
...Bleed air piping, 16...Water supply heater drain piping, 17
...Low pressure water supply heater drain pump, 18...Chemical liquid injection device.

Claims (1)

【特許請求の範囲】[Claims] 1、銅を含む材料で構成された復水器と、炭素鋼を含む
材料で構成された低圧給水ヒータと、低圧給水ヒータの
給水入口への薬液注入装置を備えた汽力発電プラントに
おいて、低圧給水ヒータの給水出口に水素型陽イオン交
換塔及びそのバイパス系統を設けたことを特徴とする水
処理装置。
1. In a steam power generation plant equipped with a condenser made of a material containing copper, a low-pressure feed water heater made of a material containing carbon steel, and a chemical injection device to the water supply inlet of the low-pressure feed water heater, low-pressure water supply A water treatment device characterized in that a hydrogen type cation exchange tower and its bypass system are provided at the water supply outlet of the heater.
JP29486886A 1986-12-12 1986-12-12 Water treatment equipment Pending JPS63150504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29486886A JPS63150504A (en) 1986-12-12 1986-12-12 Water treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29486886A JPS63150504A (en) 1986-12-12 1986-12-12 Water treatment equipment

Publications (1)

Publication Number Publication Date
JPS63150504A true JPS63150504A (en) 1988-06-23

Family

ID=17813288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29486886A Pending JPS63150504A (en) 1986-12-12 1986-12-12 Water treatment equipment

Country Status (1)

Country Link
JP (1) JPS63150504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160162A (en) * 2005-12-12 2007-06-28 Japan Organo Co Ltd Method for operating power plant
JP6342539B1 (en) * 2017-03-27 2018-06-13 三菱日立パワーシステムズ株式会社 Power plant and operation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160162A (en) * 2005-12-12 2007-06-28 Japan Organo Co Ltd Method for operating power plant
JP6342539B1 (en) * 2017-03-27 2018-06-13 三菱日立パワーシステムズ株式会社 Power plant and operation method thereof
JP2018162739A (en) * 2017-03-27 2018-10-18 三菱日立パワーシステムズ株式会社 Power generation plant and method for operating the same

Similar Documents

Publication Publication Date Title
JP5651580B2 (en) Water quality management method and system for power plant
JP3667525B2 (en) Steam generator-attached nuclear power generation turbine facility
JPS63150504A (en) Water treatment equipment
JPH11236689A (en) Water treating apparatus for power generating plant and water treatment
US4216057A (en) Purifying plant for water to be vaporized in a steam generator of a nuclear reactor
JP2543905B2 (en) Nuclear power plant turbine system
JP7053929B1 (en) Water supply device and water supply method
JP2003097801A (en) Water treating device and water treating method for power generating plant
JPH0221312B2 (en)
JPH0254435B2 (en)
JP2007064501A (en) Steaming method for boiler plant, boiler plant, and steaming device for boiler plant
JPS60101204A (en) Cleanup method in thermal power plant
Tyapkov A comprehensive approach to selecting the water chemistry of the secondary coolant circuit in the projects of nuclear power stations equipped with VVER-1200 reactors
JPH11304993A (en) Turbine equipment for power generation
JPS61256104A (en) Water treatment method of composite generating plant
JPH02223701A (en) Exhaust heat recovery boiler
JP4598996B2 (en) Water purification equipment and nuclear power generation equipment
JPH0631815B2 (en) Nuclear power plant water supply system
JP3199851B2 (en) Water quality adjustment device
JP2006153381A (en) Drum boiler, and exhaust heat recovery boiler with drum boiler
JPH01118799A (en) Method for controlling iron concentration in feed water of nuclear power plant
JPS61138808A (en) Anticorrosive device for thermal power plant
JPS6138307A (en) Controller for quality of feedwater of transformation operating unit
JPS59112104A (en) Feedwater heater in heat power plant
JPH0663607B2 (en) Turbine plant with feedwater heater drain injection device