JPS61138808A - Anticorrosive device for thermal power plant - Google Patents

Anticorrosive device for thermal power plant

Info

Publication number
JPS61138808A
JPS61138808A JP26075284A JP26075284A JPS61138808A JP S61138808 A JPS61138808 A JP S61138808A JP 26075284 A JP26075284 A JP 26075284A JP 26075284 A JP26075284 A JP 26075284A JP S61138808 A JPS61138808 A JP S61138808A
Authority
JP
Japan
Prior art keywords
feed water
heater
water
thermal power
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26075284A
Other languages
Japanese (ja)
Inventor
Tadashi Takashima
正 高島
Yoshikuni Oshima
大島 義邦
Takeshi Kanbayashi
神林 剛
Mamoru Suzuki
鈴木 衛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26075284A priority Critical patent/JPS61138808A/en
Publication of JPS61138808A publication Critical patent/JPS61138808A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups
    • F22D11/006Arrangements of feedwater cleaning with a boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/40Use of two or more feed-water heaters in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To aim at the promotion of longevity in service life and improvements in efficiency, by injecting drain water out of a high pressure feed water heater into a deaerator, while feeding this drain water and the upstream side of a low pressure feed water heater with a water treater and thereby making a pH-value of the drain water higher than that of the feed water. CONSTITUTION:A water treater is injected in feed water at the upstream side of a low pressure feed water heater 8A from a water treater injector 20. In addition, a second water treater is injected into a drain pipe line 18C of a high pressure feed water heater 13C from a water treater injection pipe line 21. Thus, a pH-value in drain water is made higher than that in feed water flowing in each of high pressure feed water heaters 13A-13C. On the other hand, the pH-value in the feed water further goes down as being heated yet higher in temperature at a boiler 15, whereby at a condenser 2, it comes to such a degree of the pH-value that a copper system material is usable for a pipe group. Therefore, reduction in a corrosive product generated out of a heating pipe of the feed water heater or a drain pipe line is well promotable.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、火力発電プラントに保シ、特にプラント内の
機器、配管等に発生する腐蝕生成物を低減するものに関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to protection for a thermal power plant, and particularly to something that reduces corrosion products generated in equipment, piping, etc. within the plant.

〔発明の背景〕[Background of the invention]

近年の火力発電プラントは発電効率向上のため蒸気条件
が高温高圧化した超臨界火力発電プラント(蒸気条件5
38 C,246に4/cm” )やそれ以上の火力発
電プラントの開発が進められてきた。
Thermal power plants in recent years are supercritical thermal power plants (steam condition 5) where the steam conditions are high temperature and high pressure to improve power generation efficiency.
Progress has been made in the development of thermal power plants with a capacity of 38 C, 246 to 4/cm" or higher.

このようなプラントにおいて、プラントの機器や配管等
に付層する腐蝕生成物にプラントの運用上大きな阻害と
なっておシ、その原因は鉄、銅、クローム、ニッケル等
の使用材によるものである。
In such plants, corrosion products that adhere to plant equipment, piping, etc. are a major hindrance to plant operation, and this is due to the materials used, such as iron, copper, chrome, and nickel. .

またその腐蝕iは給復水のpHK左右される。In addition, the corrosion i depends on the pH of the feed and condensate water.

七の対策として従来は、%開昭58−127089号公
報に記載されている装置のように1低圧給水加熱器の上
流側に水質処理剤を注入することによシpHt−制御し
て腐蝕の防止をはかつてきた。しかしながら、火力発1
しプラントの給復水中での腐蝕生成物の発生状況は、実
プラントの水質調査結果や実データを基に検討した結果
、腐蝕生成物は給復水から一様罠発生するのではなく、
給水加熱器の加熱管やドレン配管からの発生量が多いの
が現状である。第2図によって従来の装置を説明すると
低圧給水加熱器8の上流側に注入装[20から水質処理
剤を投入しているが低圧給水加熱器8、脱気器9、高圧
給水加熱器13において給水と接する金属部材からの腐
蝕生成物のiを低減しようとしているが高圧給水加熱器
13の加熱蒸気側すなわちドレン系で腐蝕生成物が生ず
るのを防止することはできない。なぜならば給水中に注
入され九水質処理剤に高圧給水加熱器13、ボイラ15
等で高温化され食分解してしまい、タービン1からの抽
気蒸気を抽気配管19から高圧給水加熱器13に注入し
ても、この抽気蒸気中に含まれる水質処理剤はきわめて
少量でめり高圧給水加熱器のドレン水のpHを高くする
ことはできず、高圧給水加熱器13の加熱管や、ドレン
配管18から発生する腐蝕生成物を低減することはでき
ない。もしこの方法で高圧給水加熱器のドレン水を高い
p I4にするためには多量の水質処理剤を低圧給水加
熱器8の上流側に投入しなければならず、また復水器2
を流れる復水も高いpHになるため、Feの濃度を低減
することはできるが、逆に高いpHでは復水器2の管群
から銅やニッケルの溶出量が増加し、復水器の管群に銅
系の材料を使用することができないという欠点が生じて
くる。
Conventionally, as a countermeasure against the problem 7, pH was controlled by injecting a water quality treatment agent into the upstream side of the low-pressure feed water heater, as in the device described in Japanese Patent Publication No. 127089/1989. Prevention has already been achieved. However, firepower 1
The occurrence of corrosion products in the feed and condensate water of plants was studied based on water quality survey results and actual data from actual plants.
Currently, a large amount of gas is generated from the heating pipes and drain piping of feed water heaters. To explain the conventional system with reference to FIG. Although attempts are made to reduce the amount of corrosion products i from metal members that come into contact with the water supply, it is not possible to prevent corrosion products from being generated on the heated steam side of the high-pressure feed water heater 13, that is, in the drain system. This is because the water quality treatment agent is injected into the water supply into the high-pressure feedwater heater 13 and boiler 15.
Even if the extracted steam from the turbine 1 is injected into the high-pressure feed water heater 13 from the extracted piping 19, the water quality treatment agent contained in this extracted steam is extremely small and the water quality treatment agent is decomposed at high pressure. It is not possible to increase the pH of the drain water of the feed water heater, and it is not possible to reduce the corrosion products generated from the heating tube of the high pressure feed water heater 13 or the drain pipe 18. If using this method, in order to make the drain water of the high-pressure feedwater heater have a high pI4, a large amount of water treatment agent must be introduced upstream of the low-pressure feedwater heater 8, and the condenser 2
Since the condensate flowing through the condensate also has a high pH, it is possible to reduce the Fe concentration, but conversely, at a high pH, the amount of copper and nickel leached from the condenser 2 tube group increases, and the condenser tube group A disadvantage arises in that copper-based materials cannot be used in the group.

〔発明の目的〕[Purpose of the invention]

本発明は、火力発電プラントの機器や配管等に発生する
腐蝕生成物の低減を復水器の管群に銅系の材料を使用す
る範囲でできる装置を提供することを目的としている。
SUMMARY OF THE INVENTION An object of the present invention is to provide a device that can reduce corrosion products generated in equipment, piping, etc. of a thermal power plant, while using a copper-based material for a condenser tube group.

〔発明の概要〕[Summary of the invention]

本発明の特徴としているところは、タービンから流出す
る蒸気を復水する復水器と、この復水を送出するポンプ
と、この復水を加熱する低圧給水加熱器、高圧給水加熱
器と、この高圧給水加熱器から流出した給水を蒸発させ
、前記タービンに蒸気を供給するボイラと、前記タービ
ンからの抽出蒸気を前記高圧給水加熱器に供給する手段
を備えた火力発電プラントにおいて、前記高圧給水加熱
器のドレン水を前記低圧給水加熱器と前記高圧給水加熱
器との間に設けた脱気器に注入するための手段と、前記
低圧給水加熱器の上流側へ第1の水質処理剤を供給する
手段と、前記ドレン系へ鯖2の水質処理剤を供給する手
段を備え、前記ドレン水のpHは前記低圧給水加熱器を
流れる給水よりも高い値となるようにしたことにある。
The features of the present invention include a condenser that condenses steam flowing out of a turbine, a pump that sends out this condensate, a low-pressure feed water heater that heats this condensate, a high-pressure feed water heater that A thermal power plant comprising: a boiler that evaporates feedwater flowing out of a high-pressure feedwater heater and supplies steam to the turbine; and a means for supplying extracted steam from the turbine to the high-pressure feedwater heater. means for injecting drain water of the container into a deaerator provided between the low pressure feed water heater and the high pressure feed water heater, and supplying a first water quality treatment agent to the upstream side of the low pressure feed water heater. and a means for supplying a mackerel 2 water quality treatment agent to the drain system, so that the pH of the drain water is higher than that of the feed water flowing through the low-pressure feed water heater.

〔発明の実施例〕 以下本発明の実施例を第1図によp説明する。[Embodiments of the invention] Embodiments of the present invention will be described below with reference to FIG.

第1図は火力発電プラントの系統図で、タービン1から
排出した蒸気は復水器2によって復水され復水器ホット
ウェル3、復水配管4t″経て、復水ポンプ5によって
復水は復水脱塩装置6に送られさらに復水昇圧ポンプ7
で加圧され7’C@を水は低圧給水加熱器8人〜8Dで
加熱され、加熱された給水に貯水タック10を備えた脱
気器9を紗て給水配管12を通°シ、給水ポンプ12に
よって高圧給水加熱器13A・〜13Cに入シ、この高
圧給水加熱器から流出した給水は節炭器14を経て、ボ
イラ15で蒸気となυ、蒸気配管16を通ってタービン
1に至る閉ループを構成している。
Figure 1 is a system diagram of a thermal power plant. Steam discharged from a turbine 1 is condensed in a condenser 2, passes through a condenser hot well 3, condensate piping 4t'', and is condensed by a condensate pump 5. The water is sent to the water desalination device 6 and further condensate pressure boost pump 7
The water is pressurized at 7'C@ and heated by low-pressure water heaters 8 to 8D, and the heated water is passed through a deaerator 9 equipped with a water storage tack 10 and passed through the water supply piping 12 to supply water. The pump 12 enters the high-pressure feed water heaters 13A to 13C, and the feed water flowing out from the high-pressure feed water heaters passes through the energy saver 14, becomes steam in the boiler 15, and reaches the turbine 1 through the steam pipe 16. It forms a closed loop.

手段でメジ、さらに低圧給水加熱器のドレン系17A〜
17D1高圧給水加熱器のドレン系117A〜17Dを
備え、高圧給水加熱器のドレン水を脱気器9へ回収して
いる。また水質処理剤は注入装置20から低圧給水加熱
器8人の上流側の給水中と水質処理剤注入配管21t−
経て高圧給水加熱器のドレン水中に注入される。本実施
例では高圧給水加熱器は3つの加熱器13A〜13Ct
−直列に接続したものから構成されており水質処理剤は
最もボイラ側に位置する加熱器13Cのドレン配管18
CK注入される。他の例として、水質処理剤は高圧給水
加熱器130の胴体内に直接注入してもよい。
In addition, the drain system 17A of the low pressure water heater
Drain systems 117A to 17D of the 17D1 high-pressure feedwater heater are provided, and drain water of the high-pressure feedwater heater is recovered to the deaerator 9. In addition, the water treatment agent is supplied from the injection device 20 to the water supply upstream of the eight low-pressure feed water heaters and to the water treatment agent injection pipe 21t-.
The water is then injected into the drain water of the high-pressure feed water heater. In this embodiment, the high-pressure feed water heater includes three heaters 13A to 13Ct.
- The water treatment agent is connected in series, and the water treatment agent is the drain pipe 18 of the heater 13C located closest to the boiler.
CK is injected. As another example, the water treatment agent may be injected directly into the body of the high pressure feed water heater 130.

低圧給水加熱器の上流側に注入する第1の水質処理剤の
量と高圧給水加熱器のドレン系に注入する第2の水質処
理剤のih高圧給水加熱器のドレン水のpHの値が低圧
給水加熱器の給水のpHよシも高い値となるようKp4
!Iしている。換言すると、低圧給水加熱器8人の上流
側の給水に水質処理剤を注入し、給水は脱気器9に入り
、高圧給水加熱器のドレン水と混ざる。この際、低圧給
水加熱器側からの流iltは高圧給水加熱器のドレ゛ン
からの流量よシも多いため、高圧給水加熱器のドレシ水
のpHが高くても、高圧給水加熱器13A〜13Cを流
れる給水のpHI4高圧給水加熱器のドレン水のpHよ
シも低い値にすることができ、ボイラ、タービンで高温
化され、水質処理剤は分解され、pHの値は更に下がり
、復水器2では、管群に銅系の材料が使用し得る程度の
pH値になる。
The amount of the first water treatment agent injected into the upstream side of the low-pressure feed water heater and the second water treatment agent injected into the drain system of the high-pressure feed water heater are both at low pressure. Kp4 so that the pH of the feed water of the feed water heater is also a high value.
! I'm doing it. In other words, the water treatment agent is injected into the water supply upstream of the eight low-pressure feedwater heaters, and the feedwater enters the deaerator 9 and mixes with the drain water of the high-pressure feedwater heater. At this time, since the flow from the low pressure feed water heater side is larger than the flow rate from the drain of the high pressure feed water heater, even if the pH of the drain water of the high pressure feed water heater is high, the flow from the high pressure feed water heater 13A to The pH of the feed water flowing through 13C can be lowered to a lower value than the pH of the drain water of the high-pressure feed water heater.The temperature is raised in the boiler and turbine, the water treatment agent is decomposed, the pH value further decreases, and the pH value of the drain water of the high-pressure feed water heater can be lowered. In vessel 2, the pH value is such that copper-based materials can be used for the tube group.

またタービンからの抽出蒸気はpHが低く、高圧給水加
熱器の加熱管やドレン配管18A〜18Cから腐蝕生成
物が発生するため、第2の水質処理剤を高圧給水加熱器
のドレン水中に投入し、高いpHにして腐蝕生成物の発
生を防いでいる。第2の水質処理剤の投入箇所は高温側
つまシポイラに近い側の高圧給水加熱器13Cのドレン
配管18Cが適している。ドレン管18Cのドレンは、
高圧給水加熱器13B、13Aへ順次流下するので、こ
れら高圧給水加熱器内での腐蝕生成物量を少くすること
ができる。また水質処理剤としてはNH40H、N2 
Hz等を注入している。
In addition, the pH of the steam extracted from the turbine is low, and corrosion products are generated from the heating pipes and drain pipes 18A to 18C of the high-pressure feedwater heater, so a second water treatment agent is injected into the drain water of the high-pressure feedwater heater. , the pH is high to prevent corrosion products from forming. The drain pipe 18C of the high-pressure feed water heater 13C on the side closer to the high-temperature side spoiler is suitable as the injection point for the second water treatment agent. The drain of drain pipe 18C is
Since it flows sequentially to the high-pressure feedwater heaters 13B and 13A, the amount of corrosion products in these high-pressure feedwater heaters can be reduced. Also, as water treatment agents, NH40H, N2
Hz etc. are injected.

このように構成したことによって、復水のpHを低く、
高圧給水加熱器のドレン水のpHを相対的に高くするこ
とができ、復水器の管群に銅系の材料が使用することの
でき、かつ高圧給水加熱器の加熱管やドレン配管から発
生する腐蝕生成物を低減することができる。
With this configuration, the pH of condensate can be lowered,
The pH of the drain water of the high-pressure feed water heater can be made relatively high, copper-based materials can be used for the condenser tube group, and the water generated from the heating pipes and drain piping of the high-pressure feed water heater can be made relatively high. corrosion products can be reduced.

更は、Feの発生it−低減する手段として一般にステ
ンレスの材料(例えば5US304 )を用いることが
知られてお9、給水加熱器の加熱管管すべてステンレス
の材料にすればpeの発生を低減することができるが、
高圧給水加熱器の加熱管をステンレス製とすることは、
作用内圧が高いため加熱管の加熱管の肉厚を厚くしなけ
ればならず、技術的にも経済的にも問題が生ずる。本発
明の実施例では、作用内圧が低い低圧給水加熱器にステ
ンレスを用いること忙よって、低圧給水加熱器の加熱管
から発生するpeの量の低減taかった。
Furthermore, it is known that stainless steel materials (for example, 5US304) are generally used as a means to reduce the generation of Fe9, and if all the heating tubes of the feed water heater are made of stainless steel, the generation of PE can be reduced. You can, but
Making the heating tube of the high-pressure water heater made of stainless steel means
Since the working internal pressure is high, the wall thickness of the heating tube must be increased, which poses technical and economical problems. In the embodiment of the present invention, by using stainless steel for the low-pressure feed water heater, which has a low working internal pressure, it was possible to reduce the amount of PE generated from the heating tube of the low-pressure feed water heater.

第3図(a)H従来の装置を用いた場合の火力発電プラ
ントにおけるFeの濃度変化図であり、第3図(b)は
復水器の管群に銅系の材料を用い、低圧給水加熱器には
ステンレス(8U8304 )、高圧給水加熱器には炭
素鋼(8TB35)11−用い、本発明を用いた場合の
Feの濃度変化図である。
Figure 3 (a) shows a change in Fe concentration in a thermal power plant using a conventional device, and Figure 3 (b) shows a diagram of changes in Fe concentration in a thermal power plant using a conventional device. It is a graph of Fe concentration change when the present invention is used, using stainless steel (8U8304) for the heater and carbon steel (8TB35) 11- for the high-pressure feed water heater.

第3図(b)から本発明によればpeの濃度を節炭器入
口でs、zppb  にすることかできた。
As can be seen from FIG. 3(b), according to the present invention, the concentration of pe could be reduced to s, zppb at the inlet of the economizer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、火力発電プラントにおいて、復水器の
管群に銅系の材料を使用できる範囲で、給水加熱器の加
熱管及びドレン配管から発生する腐蝕生成物の低減をは
かることができ、プラント機器の長寿命化がはかれ、発
電プラントの効率を高めることができる。
According to the present invention, in a thermal power plant, it is possible to reduce corrosion products generated from the heating pipes and drain pipes of the feed water heater, within the range where copper-based materials can be used for the pipe group of the condenser. , the lifespan of plant equipment can be extended, and the efficiency of power generation plants can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図に本発明の実施例を示す。第2図に従来の装置、
−3図(a)に従来例によるFeの濃度変化図、第3図
(b)は本発明の実施例によるF6の濃度変化図を示す
。 1・・・タービン、2・・・復水器、8八〜8D・・・
低圧給水加熱器、9・・・脱気器、13A〜13C・・
・高圧給水加熱器、15・・・ボイラ、18A〜18C
・・・高圧給水加熱器ドレン系、20・・・水質処理剤
注入装置。
FIG. 1 shows an embodiment of the present invention. Figure 2 shows the conventional device.
FIG. 3(a) shows a change in concentration of Fe according to a conventional example, and FIG. 3(b) shows a change in concentration of F6 according to an embodiment of the present invention. 1...Turbine, 2...Condenser, 88~8D...
Low pressure feed water heater, 9... deaerator, 13A-13C...
・High pressure water heater, 15...boiler, 18A to 18C
...High pressure water heater drain system, 20...Water quality treatment agent injection device.

Claims (1)

【特許請求の範囲】 1、タービンから流出する蒸気を復水する復水器と、こ
の復水を送出するポンプと、この復水を加熱する低圧給
水加熱器、高圧給水加熱器と、この高圧給水加熱器で予
熱された給水を蒸発させ、前記タービンに蒸気を供給す
るボイラと、前記タービンからの抽出蒸気を前記給水加
熱器に供給する手段を備えた火力発電プラントにおいて
、前記高圧給水加熱器のドレン水を前記低圧給水加熱器
と前記高圧給水加熱器との間に注入するための手段と、
前記低圧給水加熱器の上流側へ第1の水質処理剤を供給
する手段と、前記ドレン系へ第2の水質処理剤を供給す
る手段を備え、前記ドレン水のpHは前記低圧給水加熱
器を流れる給水のpHよりも高い値となるようにしたこ
とを特徴とする火力発電プラントの腐蝕防止装置。 2、特許請求の範囲第1項において、前記高圧給水加熱
器は複数個の加熱器を直列に接続したものからなり、前
記第2の水質処理剤を供給する手段は、前記ボイラ側に
位置する加熱器のドレン系配管に接続したことを特徴と
する火力発電プラント。 3、特許請求の範囲第2項において、前記第2の水質処
理剤を供給する手段は、前記ボイラ側に位置する加熱器
の胴体側に接続したことを特徴とする火力発電プラント
の腐蝕防止装置。 4、特許請求の範囲第1項において、第1及び第2の前
記水質処理剤にアンモニアを用いたことを特徴とする火
力発電プラントの腐蝕防止装置。 5、特許請求の範囲第1項において、前記低圧給水加熱
器の加熱管はステンレス、前記高圧給水加熱器の加熱管
は炭素鋼、前記復水器の管群は銅又はチタンから構成さ
れていることを特徴とする火力発電プラントの腐蝕防止
装置。 6、特許請求の範囲第1項から第5項における火力発電
プラントは、蒸気条件が(538℃、246Kg/cm
^2)の超臨界圧火力発電プラントあるいは蒸気条件が
さらに高温高圧化した火力発電プラントであることを特
徴とする火力発電プラントの腐蝕防止装置。
[Claims] 1. A condenser that condenses steam flowing out of a turbine, a pump that sends out this condensate, a low-pressure feedwater heater that heats this condensate, a high-pressure feedwater heater, and this high-pressure A thermal power plant comprising: a boiler that evaporates feedwater preheated by a feedwater heater and supplies steam to the turbine; and a means for supplying steam extracted from the turbine to the feedwater heater, wherein the high-pressure feedwater heater means for injecting drain water between the low pressure feed water heater and the high pressure feed water heater;
A means for supplying a first water treatment agent to the upstream side of the low pressure feed water heater, and a means for supplying a second water treatment agent to the drain system, the pH of the drain water being controlled by the low pressure feed water heater. A corrosion prevention device for a thermal power plant, characterized in that the pH value is higher than that of flowing feed water. 2. In claim 1, the high-pressure feedwater heater is composed of a plurality of heaters connected in series, and the means for supplying the second water treatment agent is located on the boiler side. A thermal power generation plant characterized by being connected to the drain system piping of the heater. 3. The corrosion prevention device for a thermal power plant according to claim 2, wherein the means for supplying the second water treatment agent is connected to the body side of the heater located on the boiler side. . 4. The corrosion prevention device for a thermal power plant according to claim 1, characterized in that ammonia is used as the first and second water treatment agents. 5. In claim 1, the heating tubes of the low-pressure feed water heater are made of stainless steel, the heating tubes of the high-pressure feed water heater are made of carbon steel, and the tube group of the condenser is made of copper or titanium. A corrosion prevention device for a thermal power plant, which is characterized by: 6. The thermal power plant according to claims 1 to 5 has steam conditions of (538°C, 246 kg/cm
^2) A corrosion prevention device for a thermal power plant, characterized in that it is a supercritical pressure thermal power plant or a thermal power plant in which steam conditions are further increased in temperature and pressure.
JP26075284A 1984-12-12 1984-12-12 Anticorrosive device for thermal power plant Pending JPS61138808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26075284A JPS61138808A (en) 1984-12-12 1984-12-12 Anticorrosive device for thermal power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26075284A JPS61138808A (en) 1984-12-12 1984-12-12 Anticorrosive device for thermal power plant

Publications (1)

Publication Number Publication Date
JPS61138808A true JPS61138808A (en) 1986-06-26

Family

ID=17352241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26075284A Pending JPS61138808A (en) 1984-12-12 1984-12-12 Anticorrosive device for thermal power plant

Country Status (1)

Country Link
JP (1) JPS61138808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090360A (en) * 2011-11-02 2013-05-08 李建锋 Energy recovery method of thermal power plant heat regenerative system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090360A (en) * 2011-11-02 2013-05-08 李建锋 Energy recovery method of thermal power plant heat regenerative system

Similar Documents

Publication Publication Date Title
CN110713220B (en) Dosing system and method for deoxidizer hydrazine in high-temperature gas cooled reactor nuclear power plant secondary loop system
CN104529015B (en) A kind of coal unit boiler draining system method for anticorrosion treatment
CN104747409A (en) System and method for recycling waste heat of air compressor and heating etching chemical liquid by using waste heat
CN111256104A (en) Purification system and method for high-temperature gas cooled reactor nuclear power unit thermal equipment during starting period
CN206018578U (en) A add medicine and sampling system for combined cycle generating set multi-pressure exhaust-heat boiler
CN106765039B (en) A kind of SCR inlet flue gas water side temperature raising system and method
JPS61138808A (en) Anticorrosive device for thermal power plant
JP2009097735A (en) Feed-water warming system and exhaust heat recovering boiler
JP4305440B2 (en) Anticorrosive for reducing erosion and corrosion and method for reducing the same
KR100815540B1 (en) Heat pump heating system for a sea water and a function water
CN204062990U (en) A kind of boiler steam-water circulation system
JPH11236689A (en) Water treating apparatus for power generating plant and water treatment
JP4745990B2 (en) Turbine equipment and initial switching method for oxygen treatment of turbine equipment
JPH07119918A (en) Drain recovering apparatus
JP2003097801A (en) Water treating device and water treating method for power generating plant
CN106560641B (en) Tube parts, nitric oxide decomposer, electricity generation system
RU2045702C1 (en) Method of enhancing operational reliability of power-generating unit
JPS63150504A (en) Water treatment equipment
CN109612318A (en) A kind of waste-heat recovery device
CN213630388U (en) Boiler feed water preheating and deoxidizing system in comprehensive energy system
JPH02223701A (en) Exhaust heat recovery boiler
CN214619470U (en) Steam cascade utilization system
CN215592659U (en) System for heating concentrated wastewater by using waste heat of flue gas
JPH09209710A (en) Corrosion suppressing device for thermal power generating equipment
JP2659484B2 (en) Water treatment apparatus in combined plant and water treatment method in combined plant