JP4442764B2 - Drum boiler and exhaust heat recovery boiler equipped with drum boiler - Google Patents

Drum boiler and exhaust heat recovery boiler equipped with drum boiler Download PDF

Info

Publication number
JP4442764B2
JP4442764B2 JP2004346843A JP2004346843A JP4442764B2 JP 4442764 B2 JP4442764 B2 JP 4442764B2 JP 2004346843 A JP2004346843 A JP 2004346843A JP 2004346843 A JP2004346843 A JP 2004346843A JP 4442764 B2 JP4442764 B2 JP 4442764B2
Authority
JP
Japan
Prior art keywords
drum
boiler
water
oxygen concentration
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004346843A
Other languages
Japanese (ja)
Other versions
JP2006153381A (en
Inventor
展雄 下野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2004346843A priority Critical patent/JP4442764B2/en
Publication of JP2006153381A publication Critical patent/JP2006153381A/en
Application granted granted Critical
Publication of JP4442764B2 publication Critical patent/JP4442764B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

本発明は、ドラムタイプのボイラに酸素処理法(OT)を採用する場合に酸素の過注入によるドラム廻り蒸発器での孔食の発生の防止及び、酸素注入量の不足によりプレボイラ及び節炭器の腐食を防止するのに好適なドラムボイラ用酸素注入装置を備えたドラムボイラおよびドラムボイラを備えた排熱回収ボイラに関するものである。   In the present invention, when an oxygen treatment method (OT) is adopted for a drum-type boiler, the pre-boiler and the economizer are prevented by preventing the occurrence of pitting corrosion in the drum-around evaporator due to over-injection of oxygen and insufficient oxygen injection amount. The present invention relates to a drum boiler equipped with a drum boiler oxygen injection apparatus suitable for preventing corrosion of the boiler and an exhaust heat recovery boiler equipped with the drum boiler.

ボイラの水処理方法として給水中の酸素濃度を極力少なくして給水をアルカリ性に保ち、マグネタイト皮膜を形成させて防食を図る揮発性物質処理法(AVT)の代わりに、給水に適度に酸素を注入してヘマタイト皮膜を形成させて防食を図る酸素処理法(OT)が採用されており良好な結果を得ている。   As a boiler water treatment method, oxygen is appropriately injected into the water supply instead of the volatile substance treatment method (AVT) which keeps the water supply alkaline by reducing the oxygen concentration in the water supply as much as possible and forms a magnetite film to prevent corrosion. Thus, an oxygen treatment method (OT) for preventing corrosion by forming a hematite film has been adopted, and good results have been obtained.

前記酸素処理法を採用するには、水の純度が非常に大切であり、水の純度が悪い状態で酸素処理法を採用すると、チューブ又は配管に孔食を発生する。従って、ボイラ水の純度を表す指標としてカチオンパス電気伝導率で水質を監視しており、カチオンパス電気伝導率が規定値以下の場合にのみボイラの水処理法として酸素処理法(OT)を採用できる。   In order to employ the oxygen treatment method, the purity of water is very important. When the oxygen treatment method is employed in a state where the purity of the water is poor, pitting corrosion occurs in the tube or the pipe. Therefore, water quality is monitored by the cation path conductivity as an indicator of boiler water purity, and the oxygen treatment method (OT) is adopted as the boiler water treatment method only when the cation path conductivity is below the specified value. it can.

ドラムボイラでは、ドラムを中心とする蒸発器系統で蒸発による濃縮が起っており、不純物濃度が高い状態であるため、この状態の水に一定量以上の酸素が混入すると孔食を発生する可能性がある。   In drum boilers, concentration by evaporation occurs in the evaporator system centering on the drum, and the impurity concentration is high, so if a certain amount of oxygen enters the water in this state, pitting corrosion may occur. There is sex.

従来の技術では、貫流ボイラに酸素処理法を採用する場合に節炭器入口でのボイラ水の溶存酸素濃度が50〜150μgO/L(「O」は元素、「μgO/L」はppbと等価)になるように酸素を注入するようにしていたのに対し、ドラムタイプのボイラに酸素処理法を採用する場合に、節炭器入口でボイラ水の溶存酸素濃度が30〜50μgO/Lになるように酸素注入量を制限するだけでドラム入口の溶存酸素濃度を直接サンプリングして酸素注入量を制御する方法はとられていなかった。
貫流ボイラに比べドラムボイラの場合、節炭器入口の酸素濃度を下げているのは、ドラム廻りの蒸発器で孔食が発生するのを防止するためである。
In the conventional technology, when the oxygen treatment method is adopted for the once-through boiler, the dissolved oxygen concentration of the boiler water at the inlet of the economizer is 50 to 150 μg O / L (“O” is an element, “μg O / L” is equivalent to ppb) In contrast, when the oxygen treatment method is adopted for the drum type boiler, the dissolved oxygen concentration in the boiler water becomes 30 to 50 μg O / L at the economizer entrance. Thus, there has been no method for controlling the oxygen injection amount by directly sampling the dissolved oxygen concentration at the drum inlet only by limiting the oxygen injection amount.
In the case of a drum boiler as compared with a once-through boiler, the oxygen concentration at the entrance of the economizer is lowered in order to prevent pitting corrosion from occurring in the evaporator around the drum.

一方、多少塩化物等の不純物が入っていても酸素濃度が40〜50μgO/L以下であれば孔食は発生しないことが分かっている。
また、酸素処理法を有効に働かせるためのボイラ水中の溶存酸素濃度は最低でも20μgO/L必要があり、望ましくは極力ドラム入口で溶存酸素濃度の上限である40〜50μgO/Lを超えない範囲で、その濃度を上げる必要がある。
特開昭53−74603号公報 特開平9−170702号公報 特表2001−514368号公報
On the other hand, it is known that pitting corrosion does not occur if the oxygen concentration is 40 to 50 μg O / L or less even if impurities such as chloride are contained.
Further, the dissolved oxygen concentration in the boiler water for effective use of the oxygen treatment method needs to be at least 20 μg O / L, and preferably within a range not exceeding 40-50 μg O / L which is the upper limit of the dissolved oxygen concentration at the drum inlet. It is necessary to increase its concentration.
JP-A-53-74603 JP-A-9-170702 JP-T-2001-514368

ドラムタイプのボイラにおけるプレボイラ系統及び節炭器に対して酸素処理法を有効に働かせるためにはプレボイラ系統及び節炭器のボイラ水の溶存酸素濃度を極力高く保ち、かつドラムの入口では確実に40〜50μgO/Lにすることが重要である。しかし、プレボイラ系統及び節炭器の壁面に形成される保護皮膜の状態により酸素の消費量が変わるため、酸素注入量の制御が非常に難しいという問題があった。   In order to make the oxygen treatment method work effectively for the pre-boiler system and the economizer in the drum type boiler, the dissolved oxygen concentration in the boiler water of the pre-boiler system and the economizer is kept as high as possible and surely 40 at the inlet of the drum. It is important to make it ˜50 μg O / L. However, the oxygen consumption varies depending on the state of the protective coating formed on the preboiler system and the wall of the economizer, so there is a problem that it is very difficult to control the oxygen injection amount.

本発明の課題は、プレボイラ系統及び節炭器の溶存酸素濃度を許容される範囲で極力高く保って防食を図り、ドラム廻り蒸発器に孔食を発生しないようにするドラムボイラ又はドラムボイラを備えた排熱回収ボイラを提供することである。   An object of the present invention is to provide a drum boiler or a drum boiler that keeps the dissolved oxygen concentration of the pre-boiler system and the economizer as high as possible within an allowable range so as to prevent corrosion and prevent pitting corrosion in the evaporator around the drum. To provide a waste heat recovery boiler.

上記本発明の課題は、ドラムへの給水を直接サンプリングして、このサンプリング水の溶存酸素濃度がドラム水で許容される最大の溶存酸素濃度となるようにプレボイラ系統に酸素を注入することにより達成される。   The object of the present invention is achieved by directly sampling the water supply to the drum and injecting oxygen into the pre-boiler system so that the dissolved oxygen concentration of the sampling water is the maximum dissolved oxygen concentration allowed in the drum water. Is done.

請求項1記載の発明は、給水管によりプレボイラ系統及び節炭器を経由してドラムに順次給水し、ドラムの下部に設置された蒸発器で得られた汽水混合流体を上昇管によりドラムに供給し、汽水分離された後の水をドラム降水管と蒸発器供水管を経由して再び蒸発器に供給する構成を備えたドラムボイラにおいて、プレボイラ系統への給水管に酸素を注入する酸素注入手段を設け、さらに節炭器とドラムを連絡する連絡管に溶存酸素濃度を計測する手段を設け、該溶存酸素濃度計測手段で計測された溶存酸素濃度に応じて、プレボイラ系統への給水管への酸素注入手段からの酸素注入量を加減する制御手段を設けたドラムボイラである。 In the first aspect of the present invention, water is sequentially supplied to the drum via a pre-boiler system and a economizer by a water supply pipe, and a brackish water mixed fluid obtained by an evaporator installed at the lower part of the drum is supplied to the drum by a riser pipe. The oxygen injection means for injecting oxygen into the water supply pipe to the pre-boiler system in the drum boiler having a structure for supplying the water after the brackish water separation to the evaporator again via the drum precipitation pipe and the evaporator water supply pipe And a means for measuring the dissolved oxygen concentration in the communication pipe connecting the economizer and the drum, and depending on the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means, the supply pipe to the pre-boiler system It is a drum boiler provided with control means for adjusting the amount of oxygen injection from the oxygen injection means.

請求項2記載の発明は、給水管によりプレボイラ系統及び節炭器を経由してドラムに順次給水し、ドラムの下部に設置された蒸発器で得られた汽水混合流体を上昇管によりドラムに供給し、汽水分離された後の水をドラム降水管と蒸発器供水管を経由して再び蒸発器に供給する構成を備えたドラムボイラにおいて、プレボイラ系統への給水管に酸素を注入する酸素注入手段を設け、また節炭器とドラムを連絡する連絡管に溶存酸素濃度を計測する手段を設け、さらにドラム内のカチオンパス電気伝導率を測定する電気伝導率測定手段を設け、該電気伝導率測定手段で測定された電気伝導率と溶存酸素濃度計測手段で計測された溶存酸素濃度から許容酸素濃度を演算する演算器を設け、該演算器で演算された許容酸素濃度内となるように前記酸素注入手段からのプレボイラ系統への酸素注入量を加減する制御手段を設けたドラムボイラである。 According to the second aspect of the present invention, water is sequentially supplied to the drum via the pre-boiler system and the economizer by the water supply pipe, and the brackish water mixed fluid obtained by the evaporator installed at the lower part of the drum is supplied to the drum by the riser pipe. The oxygen injection means for injecting oxygen into the water supply pipe to the pre-boiler system in the drum boiler having a structure for supplying the water after the brackish water separation to the evaporator again via the drum precipitation pipe and the evaporator water supply pipe And a means for measuring the dissolved oxygen concentration in the connecting pipe connecting the economizer and the drum, and an electric conductivity measuring means for measuring the cation path electric conductivity in the drum. An arithmetic unit for calculating an allowable oxygen concentration from the electrical conductivity measured by the means and the dissolved oxygen concentration measured by the means for measuring the dissolved oxygen concentration, and the acid so as to be within the allowable oxygen concentration calculated by the arithmetic unit. Control means for adjusting the oxygen injection amount to Pureboira lineage from the injection means is a drum boiler provided.

請求項3記載の発明は、給水管によりプレボイラ系統及び節炭器を経由してドラムに順次給水し、ドラムの下部に設置された蒸発器で得られた汽水混合流体を上昇管によりドラムに供給し、汽水分離された後の水をドラム降水管と蒸発器供水管を経由して再び蒸発器に供給する構成を備えたドラムボイラにおいて、プレボイラ系統への給水管に酸素を注入する酸素注入手段を設け、またドラム降水管内の溶存酸素濃度を計測する溶存酸素濃度計測手段を設け、該溶存酸素濃度計測手段で測定された溶存酸素濃度に応じて、プレボイラへの給水管への酸素注入手段からの酸素注入量を加減する制御手段を設けたドラムボイラである。   The invention according to claim 3 is that water is supplied to the drum sequentially through the preboiler system and the economizer by the water supply pipe, and the brackish water mixed fluid obtained from the evaporator installed at the lower part of the drum is supplied to the drum through the riser pipe. The oxygen injection means for injecting oxygen into the water supply pipe to the pre-boiler system in the drum boiler having a structure for supplying the water after the brackish water separation to the evaporator again via the drum precipitation pipe and the evaporator water supply pipe And a dissolved oxygen concentration measuring means for measuring the dissolved oxygen concentration in the drum downcomer, and according to the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means, from the oxygen injection means to the water supply pipe to the pre-boiler It is a drum boiler provided with a control means for adjusting the amount of oxygen injection.

請求項4記載の発明は、給水管によりプレボイラ系統及び節炭器を経由してドラムに順次給水し、ドラムの下部に設置された蒸発器で得られた汽水混合流体を上昇管によりドラムに供給し、汽水分離された後の水をドラム降水管と蒸発器供水管を経由して再び蒸発器に供給する構成を備えたドラムボイラにおいて、プレボイラ系統への給水管に酸素を注入する酸素注入手段を設け、またドラム降水管内の溶存酸素濃度を計測する溶存酸素濃度計測手段を設け、さらにドラム降水管内のカチオンパス電気伝導率を測定する電気伝導率測定手段を設け、該電気伝導率測定手段で測定された電気伝導率と溶存酸素濃度計測手段で測定された溶存酸素濃度から許容酸素濃度を演算する演算器を設け、該演算器で演算された許容酸素濃度内となるように前記酸素注入手段からのプレボイラ系統への酸素注入量を加減する制御手段を設けたドラムボイラである。   In the invention according to claim 4, water is sequentially supplied to the drum via the pre-boiler system and the economizer by the water supply pipe, and the brackish water mixed fluid obtained by the evaporator installed in the lower part of the drum is supplied to the drum by the riser pipe. The oxygen injection means for injecting oxygen into the water supply pipe to the pre-boiler system in the drum boiler having a structure for supplying the water after the brackish water separation to the evaporator again via the drum precipitation pipe and the evaporator water supply pipe And a dissolved oxygen concentration measuring means for measuring the dissolved oxygen concentration in the drum downcomer, and an electrical conductivity measuring means for measuring the cation path electrical conductivity in the drum downcomer. An arithmetic unit is provided for calculating the allowable oxygen concentration from the measured electrical conductivity and the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means, so that it is within the allowable oxygen concentration calculated by the arithmetic unit. Serial is a drum boiler provided with control means for adjusting the oxygen injection amount to Pureboira line from the oxygen injection means.

請求項5記載の発明は、高圧および/または中圧系統の熱交換器と低圧系統の熱交換器を備え、前記高圧および/または中圧系統の熱交換器は貫流ボイラで構成し、前記低圧系統の熱交換器はドラムボイラで構成した複圧式または三重圧式の排熱回収ボイラであって、低圧系統の熱交換器のドラムボイラが請求項1ないし4のいずれかに記載のドラムボイラである排熱回収ボイラである。   The invention according to claim 5 includes a high-pressure and / or medium-pressure system heat exchanger and a low-pressure system heat exchanger, wherein the high-pressure and / or medium-pressure system heat exchanger is configured by a once-through boiler, and The system heat exchanger is a double-pressure or triple-pressure type exhaust heat recovery boiler constituted by a drum boiler, and the drum boiler of the low-pressure system heat exchanger is the drum boiler according to any one of claims 1 to 4. It is an exhaust heat recovery boiler.

請求項6記載の発明は、高圧系統、中圧系統および低圧系統の各熱交換器を備え、前記高圧系統の熱交換器は貫流ボイラで構成し、前記低圧系統および中圧系統の熱交換器はドラムボイラで構成した複圧式または三重圧式の排熱回収ボイラであって、低圧系統および中圧系統の熱交換器のドラムボイラが請求項1ないし4のいずれかに記載のドラムボイラである排熱回収ボイラである。   The invention according to claim 6 includes heat exchangers of a high pressure system, a medium pressure system, and a low pressure system, the heat exchanger of the high pressure system is configured by a once-through boiler, and the heat exchanger of the low pressure system and the medium pressure system Is a double-pressure or triple-pressure exhaust heat recovery boiler composed of a drum boiler, wherein the drum boiler of the heat exchanger of the low pressure system and the intermediate pressure system is the drum boiler according to any one of claims 1 to 4. It is a heat recovery boiler.

なお、プレボイラ系統とは一般に復水器(図示せず)〜給水ヒータまでの間の系統を指す。以下に説明する本実施例では復水器から給水タンク1までの系統は図示を省略しているので、給水タンク1〜給水ヒータ5の間の系統を指す。   The pre-boiler system generally refers to a system from a condenser (not shown) to a water heater. In the present embodiment described below, the system from the condenser to the water supply tank 1 is not shown, and thus refers to the system between the water supply tank 1 and the water supply heater 5.

(作用)
本発明の請求項1〜6記載の発明によれば、ドラムに給水される水の溶存酸素濃度が高いとドラム廻りの蒸発器で孔食が発生するおそれがあり、この孔食をおそれるあまり、プレボイラ系統への酸素注入量を低く抑えるとプレボイラ系統及び節炭器の防食が十分図れないといった問題を生ずる。そこでドラムへの給水を直接サンプリングしてドラム水として許容とされる最大溶存酸素量となるように溶存酸素濃度をコントロールすることにより、プレボイラ及び節炭器に対して酸素処理法を成立させるために必要な溶存酸素が確実に保たれるので、ドラム廻り蒸発器での孔食の発生及びプレボイラ及び節炭器も酸素不足による腐食を発生することがない。
(Function)
According to the inventions of claims 1 to 6 of the present invention, if the dissolved oxygen concentration of water supplied to the drum is high, there is a risk of pitting corrosion occurring in the evaporator around the drum, and there is much fear of this pitting corrosion. If the amount of oxygen injected into the pre-boiler system is kept low, there will be a problem that the pre-boiler system and the economizer cannot be adequately protected. Therefore, in order to establish an oxygen treatment method for the pre-boiler and the economizer by directly sampling the water supply to the drum and controlling the dissolved oxygen concentration so that the maximum dissolved oxygen amount allowed as drum water is obtained. Since the necessary dissolved oxygen is reliably maintained, the occurrence of pitting corrosion in the evaporator around the drum and the corrosion of the preboiler and the economizer due to lack of oxygen do not occur.

請求項2、4記載の発明では、このときドラム水のカチオンパス電気伝導率を考慮に入れてドラム入口の溶存酸素濃度が許容される最高の酸素濃度となるように制御することで、最適な溶存酸素のコントロールが可能となる。   In the inventions according to claims 2 and 4, the optimum is achieved by controlling the dissolved oxygen concentration at the drum inlet to the maximum allowable oxygen concentration taking into account the cation path electrical conductivity of the drum water at this time. Control of dissolved oxygen becomes possible.

請求項1記載の発明によれば、節炭器とドラムを連絡する連絡管内の水の溶存酸素濃度を測定することにより、プレボイラ系統及び節炭器の溶存酸素濃度をドラム廻り蒸発器で孔食を発生させない範囲で高く設定できるので、プレボイラ系統と節炭器とドラム廻り蒸発器を常に最適な防食効果を発揮するように溶存酸素濃度を調節することが可能となる。 According to the first aspect of the present invention, the dissolved oxygen concentration of the water in the connecting pipe connecting the economizer and the drum is measured, so that the dissolved oxygen concentration of the preboiler system and the economizer is pitted by the evaporator around the drum. Therefore, it is possible to adjust the dissolved oxygen concentration so that the pre-boiler system, the economizer and the drum-circulating evaporator can always exhibit the optimum anticorrosion effect.

請求項2記載の発明によれば、節炭器とドラムを連絡する連絡管内の水の溶存酸素濃度を測定し、ドラム水のカチオンパス電気伝導率を考慮に入れてドラム入口の溶存酸素濃度が許容される最高の酸素濃度となるように制御することにより、最適な溶存酸素のコントロールが可能となる。
請求項3記載の発明によれば、直接ドラム水の酸素濃度を測定することによりドラム入口の溶存酸素濃度がドラム廻りの蒸発器等に孔食を発生させないように許容される最高限度に保つことができ、プレボイラ系統と節炭器とドラム廻り蒸発器を常に最適な防食効果を発揮するように溶存酸素濃度を調節することが可能となる。
According to the second aspect of the present invention, the dissolved oxygen concentration of the water in the connecting pipe connecting the economizer and the drum is measured, and the dissolved oxygen concentration at the drum inlet is taken into consideration of the cation path electrical conductivity of the drum water. by controlling such that the allowable maximum oxygen concentrations, that Do is possible to control the optimal dissolved oxygen.
According to the third aspect of the present invention, by directly measuring the oxygen concentration of the drum water, the dissolved oxygen concentration at the drum inlet is kept at the maximum allowable level so as not to cause pitting corrosion in the evaporator around the drum. Therefore, it is possible to adjust the dissolved oxygen concentration so that the pre-boiler system, the economizer, and the drum-around evaporator always exhibit the optimum anticorrosion effect.

請求項4記載の発明によれば、ドラム水のカチオンパス電気伝導率を考慮に入れて、かつ直接ドラム水の酸素濃度を測定することによりドラム入口の溶存酸素濃度がドラム廻りの蒸発器等に孔食を発生させないように許容される最高限度に保つことができ、プレボイラ系統と節炭器とドラム廻り蒸発器を常に最適な防食効果を発揮するように溶残酸素濃度を調節することが可能となる。。   According to the fourth aspect of the invention, the dissolved oxygen concentration at the drum inlet is transferred to the evaporator around the drum by directly taking into account the cation path conductivity of the drum water and directly measuring the oxygen concentration of the drum water. It is possible to keep the maximum allowable level so as not to cause pitting corrosion, and it is possible to adjust the residual oxygen concentration so that the pre-boiler system, the economizer, and the drum-around evaporator always exhibit the optimum anti-corrosion effect. It becomes. .

請求項5及び請求項6記載の発明によれば、中圧および/または低圧系統のドラム内の給水の溶存酸素濃度が規定値となるようにし、中圧および/または低圧系統の熱交換器(節炭器)の溶存酸素濃度を低圧系統のドラム廻りの熱交換器(蒸発器)で孔食を発生させない範囲で溶存酸素濃度を高く設定でき、プレボイラ系統と節炭器とドラム廻り蒸発器を常に最適な防食効果を発揮する溶存酸素濃度に調節することが可能となる。   According to the invention of claim 5 and claim 6, the dissolved oxygen concentration of the feed water in the drums of the intermediate pressure and / or low pressure system is set to the specified value, and the heat exchanger ( The dissolved oxygen concentration of the economizer can be set high so that pitting corrosion does not occur in the heat exchanger (evaporator) around the drum of the low pressure system, and the preboiler system, economizer and drum evaporator are installed. It is possible to adjust the dissolved oxygen concentration to always exhibit the optimum anticorrosion effect.

本発明の実施例を図面と共に説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本実施例のドラムボイラ用酸素注入装置を備えたプレボイラ系統とボイラ節炭器及びボイラドラム蒸発器廻りの全体系統の構成図を示す。
給水タンク1から出た水は給水タンク降水管2を通り、ボイラ給水ポンプ4に送られる。ボイラ給水ポンプ4により昇圧された水は給水管3を経由して給水ヒータ5に送られ、給水ヒータ5を出た水は節炭器6に送られる。節炭器6を出た水は節炭器ドラム連絡管7を通りドラム8へ供給される。
FIG. 1 shows a configuration diagram of a pre-boiler system including a drum boiler oxygen injection device of the present embodiment, an entire system around a boiler economizer and a boiler drum evaporator.
The water discharged from the water supply tank 1 passes through the water supply tank downcomer 2 and is sent to the boiler water supply pump 4. The water boosted by the boiler feed pump 4 is sent to the feed water heater 5 through the feed water pipe 3, and the water exiting the feed water heater 5 is sent to the economizer 6. The water exiting the economizer 6 is supplied to the drum 8 through the economizer drum connecting pipe 7.

ドラム8内に入った水はドラム降水管9から蒸発器供水管10に送られ、蒸発器供水管10から蒸発器11へ供給される。蒸発器11で熱を受けた水は気水混合流体となり、上昇管12を通りドラム8へ戻る。気水混合流体はドラム8内で水と蒸気に分離されて、蒸気は飽和蒸気管13を通り、図示しない過熱器等へ供給される。   The water that has entered the drum 8 is sent from the drum downpipe 9 to the evaporator water supply pipe 10 and supplied from the evaporator water supply pipe 10 to the evaporator 11. The water that has received heat in the evaporator 11 becomes an air-water mixed fluid and returns to the drum 8 through the riser 12. The gas-water mixed fluid is separated into water and steam in the drum 8, and the steam passes through the saturated steam pipe 13 and is supplied to a superheater (not shown) or the like.

給水タンク降水管2を流れる水には酸素発生装置14から酸素が注入される。酸素発生装置14で発生した酸素は酸素注入管15により給水タンク降水管2へ注入される。
給水タンク降水管2内の水に対する酸素注入量の制御は酸素注入管15に設置してある酸素コントロール弁16により行われるが、酸素コントロール弁16の制御は次の動作により行われる。
Oxygen is injected into the water flowing through the water supply tank downcomer 2 from the oxygen generator 14. Oxygen generated by the oxygen generator 14 is injected into the water supply tank downcomer 2 through the oxygen injection pipe 15.
Control of the amount of oxygen injected into the water in the water tank precipitation pipe 2 is performed by the oxygen control valve 16 installed in the oxygen injection pipe 15, and the control of the oxygen control valve 16 is performed by the following operation.

節炭器ドラム連絡管7より抜き出された水はドラム入口サンプリング配管17により溶存酸素計18に送られる。溶存酸素計18の信号は制御ケーブル19で演算器23に送られ、演算器23で得られた制御信号が制御ケーブル19から酸素コントロール弁16に送られ、ドラム給水の溶存酸素濃度が規定値となるように酸素コントロール弁16の開度が設定される。   The water extracted from the economizer drum connecting pipe 7 is sent to the dissolved oxygen meter 18 through the drum inlet sampling pipe 17. The signal of the dissolved oxygen meter 18 is sent to the calculator 23 by the control cable 19, and the control signal obtained by the calculator 23 is sent from the control cable 19 to the oxygen control valve 16, so that the dissolved oxygen concentration of the drum feed water becomes the specified value. Thus, the opening degree of the oxygen control valve 16 is set.

上記のドラムボイラ用酸素注入装置を採用することにより、プレボイラ系統及び節炭器6の溶存酸素濃度をドラム8廻り蒸発器11で孔食を発生させない範囲で高く設定できるので、常に最適な防食効果を発揮するように溶存酸素濃度を調節することが可能となる。   By adopting the above drum boiler oxygen injection device, the dissolved oxygen concentration of the pre-boiler system and the economizer 6 can be set high within a range where no pitting corrosion occurs in the evaporator 11 around the drum 8, so that the optimum anticorrosion effect is always achieved. It is possible to adjust the dissolved oxygen concentration so as to exhibit the above.

図2は、図1に示す実施例と比べて、更にプレボイラ系統及び節炭器の溶存酸素濃度を限界値まで高く設定できるようにしたものである。図2に示す各構成部材で、図1に示すそれと同じものは同一番号を付して、その説明を省略する。
図2に示す実施例が図1に示す実施例と相違する所は、ドラム8内の水のカチオンパス電気伝導率で溶存酸素許容値を計算して、その値で溶存酸素注入量をコントロールするようにした点である。
FIG. 2 shows that the dissolved oxygen concentration of the pre-boiler system and the economizer can be set higher to the limit value as compared with the embodiment shown in FIG. 2 that are the same as those shown in FIG. 1 are given the same reference numerals, and descriptions thereof are omitted.
The embodiment shown in FIG. 2 is different from the embodiment shown in FIG. 1 in that the dissolved oxygen allowable value is calculated by the cation path electrical conductivity of water in the drum 8 and the dissolved oxygen injection amount is controlled by the calculated value. This is the point.

図2ではドラム8のドラム水をドラム水サンプリング管20から抜き出してカチオンパス電気伝導率計21に供給する。カチオンパス電気伝導率計21では、ドラム水のカチオンパス電気伝導率が電気信号に変換される。カチオンパス電気伝導率計21で得られたカチオンパス電気伝導率の信号は信号ケーブル22により許容酸素濃度演算器23に送られる。   In FIG. 2, the drum water of the drum 8 is extracted from the drum water sampling pipe 20 and supplied to the cation path conductivity meter 21. In the cation path conductivity meter 21, the cation path conductivity of the drum water is converted into an electric signal. The signal of the cation path conductivity obtained by the cation path conductivity meter 21 is sent to the allowable oxygen concentration calculator 23 via the signal cable 22.

ところで、ドラム水の許容酸素濃度とカチオンパス電気伝導率には図3に示す関係がある。この関係が許容酸素濃度演算器23に組込まれる。
ドラム水のカチオンパス電気伝導率を考慮して許容酸素濃度演算器23で算出された溶存酸素濃度が許容酸素濃度となるようにドラム入口の溶存酸素濃度との突合わせが行われ、許容酸素濃度限界となるような信号が信号ケーブル19により送られ、酸素コントロール弁16を調整することにより、最適な溶存酸素のコントロールが可能となる。
Incidentally, there is a relationship shown in FIG. 3 between the allowable oxygen concentration of the drum water and the cation path electrical conductivity. This relationship is incorporated into the allowable oxygen concentration calculator 23.
In consideration of the cation path electrical conductivity of the drum water, the dissolved oxygen concentration calculated by the allowable oxygen concentration calculator 23 is matched with the dissolved oxygen concentration at the drum inlet so that the allowable oxygen concentration becomes the allowable oxygen concentration. By sending a signal to the limit through the signal cable 19 and adjusting the oxygen control valve 16, optimal control of dissolved oxygen becomes possible.

次に具体的な制御設定値について説明する。
腐食加速する代表的な不純物としては塩素イオンがあるが、溶存酸素濃度をパラメータとして孔食を発生しない塩素イオン濃度の限界値を実験により求めた。実験条件としては 温度160℃、pH8.5、流速は0.18mm/s、材質は炭素鋼である。
Next, specific control set values will be described.
Chlorine ions are typical impurities that accelerate corrosion, but the limit value of the chlorine ion concentration at which pitting corrosion does not occur was determined by experiment using dissolved oxygen concentration as a parameter. As experimental conditions, the temperature is 160 ° C., the pH is 8.5, the flow rate is 0.18 mm / s, and the material is carbon steel.

実験により求めた孔食発生しない溶存酸素濃度と塩素イオン濃度の限界値を下記に示す。   The limit values of dissolved oxygen concentration and chloride ion concentration at which pitting corrosion does not occur are shown below.

孔食を発生しない限界値
溶存酸素濃度 40μgO/Lの場合の塩素イオン濃度 120μgCl/L
溶存酸素濃度100μgO/Lの場合の塩素イオン濃度 12μgCl/L
塩素イオン濃度120μgCl/Lをカチオンパス電気伝導率に換算すると0.154 mS/m、塩素イオン濃度12μgCl/Lをカチオンパス電気伝導率に換算すると0.016mS/mとなる。
Limit value that does not cause pitting corrosion
Chlorine ion concentration when the dissolved oxygen concentration is 40 μg O / L 120 μg Cl / L
Chlorine ion concentration when the dissolved oxygen concentration is 100 μg O / L 12 μg Cl / L
When the chlorine ion concentration of 120 μg Cl / L is converted to the cation path conductivity, it is 0.154 mS / m, and when the chlorine ion concentration of 12 μg Cl / L is converted to the cation path conductivity, it is 0.016 mS / m.

上記の実験結果から図3の具体的な関数を式で表すと次の通りとなる。
Y=107−435X
ここでYは溶存酸素濃度、Xはカチオンパス電気伝導率である。
From the above experimental results, the specific function of FIG. 3 is expressed as follows.
Y = 107-435X
Here, Y is the dissolved oxygen concentration, and X is the cation path electrical conductivity.

上記の関数式を許容酸素濃度演算器23に組込むことにより容易に制御に必要な信号を作ることができる。   By incorporating the above function formula into the allowable oxygen concentration calculator 23, a signal necessary for control can be easily created.

図4は給水中の溶存酸素濃度の測定点をドラム降水管9とした他の実施例である。
本実施例は、直接ドラム水の酸素濃度を測定することにより注入酸素濃度が規定値を超えないようにしたものである。ドラム降水管サンプリング配管24により溶存酸素計18にドラム水が送られる。ドラム降水管9の酸素濃度は規定値を超えないように制御ケーブル19により酸素コントロール弁16を制御することにより、ドラム水の酸素濃度が規定を超えてドラム廻りの蒸発器11等に孔食が発生するのを防止できる。
FIG. 4 shows another embodiment in which the measurement point of the dissolved oxygen concentration in the feed water is a drum downcomer 9.
In this embodiment, the oxygen concentration of the injected water is not directly exceeded by directly measuring the oxygen concentration of the drum water. Drum water is sent to the dissolved oxygen meter 18 through the drum downcomer sampling pipe 24. By controlling the oxygen control valve 16 with the control cable 19 so that the oxygen concentration in the drum downcomer tube 9 does not exceed the specified value, the oxygen concentration in the drum water exceeds the specified value and pitting corrosion occurs in the evaporator 11 and the like around the drum. It can be prevented from occurring.

図5は図4の実施例に、さらにドラム降水管9のカチオンパス電気伝導率をカチオンパス電気伝導率計21で計測する構成を追加して、ドラム廻りの蒸発器11等に孔食が発生する限界まで酸素濃度を高め、プレボイラ系統及び節炭器6の防食をより確実に行うものである。   FIG. 5 shows a pitting corrosion in the evaporator 11 and the like around the drum by adding a configuration for measuring the cation path conductivity of the drum downcomer 9 with the cation path conductivity meter 21 to the embodiment of FIG. Therefore, the oxygen concentration is increased to the limit to prevent the corrosion of the pre-boiler system and the economizer 6.

本発明の酸素処理法(OT)による防食法は貫流型HRSG(排熱回収ボイラ)に適用した場合に特に有効である。
ガスタービン排ガスを熱源とするコンバインドプラントで採用されるHRSGは、プラント効率を上げるために、HRSGの中を2〜3種類の蒸気圧力に分ける2重圧又は3重圧方式が採用される場合が多い。例えば、ドラムタイプのボイラの場合にはドラムが2台又は3台設置される。貫流型HRSGの場合は、貫流型ボイラにすることが起動特性等から有効である中圧及び高圧部分には貫流方式を採用するが、低圧部分にはドラム型ボイラが採用されることが多い。場合によっては中圧及び低圧部分にドラム型ボイラが採用されることもある。
The anticorrosion method by the oxygen treatment method (OT) of the present invention is particularly effective when applied to a once-through HRSG (exhaust heat recovery boiler).
In order to increase plant efficiency, HRSG employed in a combined plant using gas turbine exhaust gas as a heat source often employs a double pressure or triple pressure system in which HRSG is divided into two or three types of steam pressure. For example, in the case of a drum type boiler, two or three drums are installed. In the case of a once-through type HRSG, a once-through type boiler is adopted for the low-pressure part, although a once-through type is adopted for the medium-pressure and high-pressure parts where it is effective from the start-up characteristics and the like. In some cases, drum-type boilers may be employed for the intermediate and low pressure portions.

典型的な貫流型HRSGの全体系統図を図6に示す。
復水器25から回収される復水は復水管26を通り、復水ポンプ27により低圧節炭器28に送られる。低圧節炭器28を出た水の一部は低圧給水管29を経由して低圧ドラム31に送られる。低圧ドラム31に入った水は低圧ドラム降水管32から低圧蒸発器供水管33に送られ、低圧蒸発器供水管33から低圧蒸発器34へ供給される。低圧蒸発器34で熱を受けた水は気水混合流体となり、低圧蒸気上昇管35を通り低圧ドラム31へ戻る。低圧蒸発器34で気水混合流体となった水は低圧ドラム31で水と蒸気に分離されて、蒸気は低圧過熱器36で過熱された後、低圧主蒸気管37を通り、図示しない低圧蒸気利用機器等へ供給される。
An overall system diagram of a typical once-through HRSG is shown in FIG.
Condensate recovered from the condenser 25 passes through a condenser pipe 26 and is sent to a low-pressure economizer 28 by a condensate pump 27. A part of the water exiting the low pressure economizer 28 is sent to the low pressure drum 31 via the low pressure water supply pipe 29. The water that has entered the low-pressure drum 31 is sent from the low-pressure drum precipitation pipe 32 to the low-pressure evaporator water supply pipe 33 and supplied from the low-pressure evaporator water supply pipe 33 to the low-pressure evaporator 34. The water that has received heat in the low-pressure evaporator 34 becomes a gas-water mixed fluid, returns to the low-pressure drum 31 through the low-pressure steam riser 35. The water that has become the gas-water mixed fluid in the low-pressure evaporator 34 is separated into water and steam by the low-pressure drum 31, and the steam is superheated by the low-pressure superheater 36, and then passes through the low-pressure main steam pipe 37. Supplied to equipment used.

また、低圧節炭器28を出た水の一部は低圧給水管29から分岐した中圧・高圧用給水ポンプ入口配管38を経由して中圧・高圧用給水ポンプ39に送られる。中圧・高圧用給水ポンプ39からは中圧主給水管40と高圧主給水管46にそれぞれ加圧された状態で給水される。   Further, a part of the water exiting the low-pressure economizer 28 is sent to the medium-pressure / high-pressure feed pump 39 via the medium-pressure / high-pressure feed pump inlet pipe 38 branched from the low-pressure feed pipe 29. Water is supplied from the intermediate-pressure / high-pressure water supply pump 39 to the medium-pressure main water supply pipe 40 and the high-pressure main water supply pipe 46 in a pressurized state.

まず、中圧主給水管40に入った水は中圧給水弁41を経て中圧節炭器42、中圧蒸発器43及び中圧過熱器44に順次送られる。中圧過熱器44で十分過熱された中圧蒸気は中圧主蒸気管45から図示しない中圧蒸気利用機器等へ供給される。   First, the water that has entered the medium-pressure main water supply pipe 40 is sequentially sent to the medium-pressure economizer 42, the medium-pressure evaporator 43, and the medium-pressure superheater 44 through the medium-pressure feed valve 41. The medium pressure steam sufficiently superheated by the medium pressure superheater 44 is supplied from a medium pressure main steam pipe 45 to a medium pressure steam utilization device (not shown).

また、高圧主給水管46に入った水は高圧給水弁47を経て高圧節炭器48、高圧蒸発器49及び高圧過熱器50に順次送られる。高圧過熱器50で十分過熱された高圧蒸気は高圧主蒸気管51から図示しない高圧蒸気利用機器等へ供給される。   Further, the water entering the high-pressure main water supply pipe 46 is sequentially sent to the high-pressure economizer 48, the high-pressure evaporator 49 and the high-pressure superheater 50 through the high-pressure water supply valve 47. The high-pressure steam sufficiently heated by the high-pressure superheater 50 is supplied from the high-pressure main steam pipe 51 to an unillustrated high-pressure steam utilization device or the like.

上記構成からなるHSGRにおいて、復水管26を流れる水に酸素発生装置14から酸素が注入される。酸素発生装置14で発生した酸素は酸素注入管15により復水管26へ注入される。酸素注入量の制御は酸素注入管15に設置してある酸素コントロール弁16により行われる。低圧給水管29より抜き出されたドラム入口サンプリング配管17内の水の溶存酸素濃度を溶存酸素計18で計測し、この酸素濃度信号により演算器23で必要な酸素量が算出され、これを制御ケーブル19から受けて酸素コントロール弁16の制御が行われる。こうして低圧ドラム31内の給水の溶存酸素濃度が規定値となるようにし、低圧節炭器28の溶存酸素濃度を低圧ドラム31廻りの低圧蒸発器34で孔食を発生させない範囲で溶存酸素濃度を高く設定できるので、常に最適な防食効果を発揮するように溶存酸素濃度を調節することが可能となる。   In the HSGR configured as described above, oxygen is injected from the oxygen generator 14 into the water flowing through the condensate pipe 26. Oxygen generated in the oxygen generator 14 is injected into the condensate pipe 26 through the oxygen injection pipe 15. The oxygen injection amount is controlled by an oxygen control valve 16 installed in the oxygen injection pipe 15. The dissolved oxygen concentration of the water in the drum inlet sampling pipe 17 extracted from the low-pressure water supply pipe 29 is measured by the dissolved oxygen meter 18, and a necessary oxygen amount is calculated by the calculator 23 from this oxygen concentration signal, and this is controlled. In response to the cable 19, the oxygen control valve 16 is controlled. Thus, the dissolved oxygen concentration of the feed water in the low-pressure drum 31 is set to a specified value, and the dissolved oxygen concentration in the low-pressure economizer 28 is set within a range in which pitting corrosion is not generated in the low-pressure evaporator 34 around the low-pressure drum 31. Since it can be set high, it is possible to adjust the dissolved oxygen concentration so as to always exhibit the optimum anticorrosion effect.

酸素処理法(OT)は特に貫流型ボイラで有効であり、本実施例は、酸素処理法を採用したいが低圧系統のドラムボイラの腐食が問題となる可能性があり採用できなかった貫流及びドラム型ボイラ混在型HRSGにも有効である。   The oxygen treatment method (OT) is particularly effective in a once-through boiler, and in this embodiment, it is desired to adopt the oxygen treatment method, but there is a possibility that the corrosion of the drum boiler of the low-pressure system may be a problem, and the once-through and drum that could not be adopted. This is also effective for mixed boiler HRSG.

本発明によりプレボイラ系統及び節炭器の溶存酸素濃度をドラム廻りの蒸発器で孔食を発生しない限界まで高めることができるため、最適な防食効果を発揮することができると同時に酸素過注入によるドラム廻り蒸発器系統の孔食の発生を防止できる。   According to the present invention, the dissolved oxygen concentration in the preboiler system and the economizer can be increased to the limit at which pitting corrosion does not occur in the evaporator around the drum, so that an optimum anticorrosion effect can be exhibited and at the same time a drum by oxygen over-injection The occurrence of pitting corrosion in the surrounding evaporator system can be prevented.

本発明の実施例1によるドラムボイラ用酸素注入装置を使用した場合の全体系統図である。It is a whole system diagram at the time of using the oxygen injection apparatus for drum boilers by Example 1 of the present invention. 本発明の実施例2によるドラムボイラ用酸素注入装置を使用した場合の全体系統図である。It is a whole system diagram at the time of using the oxygen injection apparatus for drum boilers by Example 2 of this invention. ドラム水のチオンパス電気伝導率と許容酸素濃度の関係を示した説明図である。It is explanatory drawing which showed the relationship between the thione path electrical conductivity of drum water, and allowable oxygen concentration. 本発明の実施例3によるドラムボイラ用酸素注入装置を使用した場合の全体系統図である。It is a whole system diagram at the time of using the oxygen injection apparatus for drum boilers by Example 3 of this invention. 本発明の実施例4によるドラムボイラ用酸素注入装置を使用した場合の全体系統図である。It is a whole system diagram at the time of using the oxygen injection apparatus for drum boilers by Example 4 of this invention. 本発明の実施例5による貫流型及びドラム型兼用HRSGの系統におけるドラムボイラ用酸素注入装置を使用した場合の全体系統図である。It is a whole system diagram at the time of using the oxygen injection apparatus for drum boilers in the system of the once-through type and drum type combined use HRSG by Example 5 of this invention.

符号の説明Explanation of symbols

1 給水タンク 2 給水タンク降水管
3 給水管 4 ボイラ給水ポンプ
5 給水ヒータ 6 節炭器
7 節炭器ドラム連絡管 8 ドラム
9 ドラム降水管 10 蒸発器供水管
11 蒸発器 12 上昇管
13 飽和蒸気管 14 酸素発生装置
15 酸素注入管 16 酸素コントロール弁
17 ドラム入口水サンプリング配管
18 溶存酸素計 19 制御ケーブル
20 ドラム水サンプリング管 21 カチオンパス電気伝導率計
22 信号ケーブル 23 許容酸素濃度演算器
24 ドラム降水管サンプリング配管
25 復水器 26 復水管
27 復水ポンプ 28 低圧節炭器
29 低圧給水管 30 低圧ドラム給水調節弁
31 低圧ドラム 32 低圧ドラム降水管
33 低圧蒸発器供水管 34 低圧蒸発器
35 低圧蒸発器上昇管 36 低圧過熱器
37 低圧主蒸気管 38 中圧・高圧用給水ポンプ入口配管
39 中圧・高圧用給水ポンプ 40 中圧主給水管
41 中圧給水調節弁 42 中圧節炭器
43 中圧蒸発器 44 中圧過熱器
45 中圧主蒸気管 46 高圧主給水管
47 高圧給水調節弁 48 高圧節炭器
49 高圧蒸発器 50 高圧過熱器
51 高圧主蒸気管
DESCRIPTION OF SYMBOLS 1 Water supply tank 2 Water supply tank precipitation pipe 3 Water supply pipe 4 Boiler water supply pump 5 Water supply heater 6 Carbon economizer 7 Carbon economizer drum connecting pipe 8 Drum 9 Drum precipitation pipe 10 Evaporator water supply pipe 11 Evaporator 12 Rise pipe 13 Saturated steam pipe DESCRIPTION OF SYMBOLS 14 Oxygen generator 15 Oxygen injection pipe 16 Oxygen control valve 17 Drum inlet water sampling pipe 18 Dissolved oxygen meter 19 Control cable 20 Drum water sampling pipe 21 Cation path electric conductivity meter 22 Signal cable 23 Allowable oxygen concentration calculator 24 Drum precipitation pipe Sampling pipe 25 Condenser 26 Condensate pipe 27 Condensate pump 28 Low-pressure economizer 29 Low-pressure feed water 30 Low-pressure drum feed water control valve 31 Low-pressure drum 32 Low-pressure drum precipitation pipe 33 Low-pressure evaporator water supply pipe 34 Low-pressure evaporator 35 Low-pressure evaporator Rising pipe 36 Low pressure superheater 37 Low pressure main steam pipe 38 Medium and high pressure supply Pump inlet piping 39 Medium pressure / high pressure water supply pump 40 Medium pressure main water supply pipe 41 Medium pressure water supply control valve 42 Medium pressure economizer 43 Medium pressure evaporator 44 Medium pressure superheater 45 Medium pressure main steam pipe 46 High pressure main water supply pipe 47 High-pressure water supply control valve 48 High-pressure economizer 49 High-pressure evaporator 50 High-pressure superheater 51 High-pressure main steam pipe

Claims (6)

給水管によりプレボイラ系統及び節炭器を経由してドラムに順次給水し、ドラムの下部に設置された蒸発器で得られた汽水混合流体を上昇管によりドラムに供給し、汽水分離された後の水をドラム降水管と蒸発器供水管を経由して再び蒸発器に供給する構成を備えたドラムボイラにおいて、
プレボイラ系統への給水管に酸素を注入する酸素注入手段を設け、さらに節炭器とドラムを連絡する連絡管に溶存酸素濃度を計測する手段を設け、該溶存酸素濃度計測手段で計測された溶存酸素濃度に応じて、プレボイラ系統への給水管への酸素注入手段からの酸素注入量を加減する制御手段を設けたことを特徴とするドラムボイラ。
Water is supplied to the drum sequentially through the pre-boiler system and the economizer through the water supply pipe, and the brackish water mixed fluid obtained from the evaporator installed at the bottom of the drum is supplied to the drum through the riser pipe, after the brackish water is separated In a drum boiler having a configuration in which water is supplied to the evaporator again via the drum precipitation pipe and the evaporator water supply pipe,
An oxygen injection means for injecting oxygen into the water supply pipe to the pre-boiler system is provided, and a means for measuring the dissolved oxygen concentration is provided in the connecting pipe connecting the economizer and the drum, and the dissolved oxygen concentration measuring means is measured. A drum boiler characterized by comprising a control means for adjusting the amount of oxygen injected from the oxygen injection means into the water supply pipe to the pre-boiler system according to the oxygen concentration.
給水管によりプレボイラ系統及び節炭器を経由してドラムに順次給水し、ドラムの下部に設置された蒸発器で得られた汽水混合流体を上昇管によりドラムに供給し、汽水分離された後の水をドラム降水管と蒸発器供水管を経由して再び蒸発器に供給する構成を備えたドラムボイラにおいて、
プレボイラ系統への給水管に酸素を注入する酸素注入手段を設け、また節炭器とドラムを連絡する連絡管に溶存酸素濃度を計測する手段を設け、さらにドラム内のカチオンパス電気伝導率を測定する電気伝導率測定手段を設け、該電気伝導率測定手段で測定された電気伝導率と溶存酸素濃度計測手段で計測された溶存酸素濃度から許容酸素濃度を演算する演算器を設け、該演算器で演算された許容酸素濃度内となるように前記酸素注入手段からのプレボイラ系統への酸素注入量を加減する制御手段を設けたことを特徴とするドラムボイラ。
Water is supplied to the drum sequentially through the pre-boiler system and the economizer through the water supply pipe, and the brackish water mixed fluid obtained from the evaporator installed at the bottom of the drum is supplied to the drum through the riser pipe, after the brackish water is separated In a drum boiler having a configuration in which water is supplied to the evaporator again via the drum precipitation pipe and the evaporator water supply pipe,
Oxygen injection means for injecting oxygen into the water supply pipe to the pre-boiler system is provided, and a means for measuring the dissolved oxygen concentration is provided in the connecting pipe connecting the economizer and the drum, and the cation path conductivity in the drum is measured. An electrical conductivity measuring means, and an arithmetic unit for calculating an allowable oxygen concentration from the electrical conductivity measured by the electrical conductivity measuring means and the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means. A drum boiler comprising a control means for adjusting the amount of oxygen injected from the oxygen injection means into the pre-boiler system so as to be within the allowable oxygen concentration calculated in step (1).
給水管によりプレボイラ系統及び節炭器を経由してドラムに順次給水し、ドラムの下部に設置された蒸発器で得られた汽水混合流体を上昇管によりドラムに供給し、汽水分離された後の水をドラム降水管と蒸発器供水管を経由して再び蒸発器に供給する構成を備えたドラムボイラにおいて、
プレボイラ系統への給水管に酸素を注入する酸素注入手段を設け、またドラム降水管内の溶存酸素濃度を計測する溶存酸素濃度計測手段を設け、該溶存酸素濃度計測手段で測定された溶存酸素濃度に応じて、プレボイラへの給水管への酸素注入手段からの酸素注入量を加減する制御手段を設けたことを特徴とするドラムボイラ。
Water is supplied to the drum sequentially through the pre-boiler system and the economizer through the water supply pipe, and the brackish water mixed fluid obtained from the evaporator installed at the bottom of the drum is supplied to the drum through the riser pipe, after the brackish water is separated In a drum boiler having a configuration in which water is supplied to the evaporator again via the drum precipitation pipe and the evaporator water supply pipe,
An oxygen injection means for injecting oxygen into the water supply pipe to the pre-boiler system is provided, and a dissolved oxygen concentration measuring means for measuring the dissolved oxygen concentration in the drum downcomer is provided, and the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means is adjusted. Accordingly, a drum boiler comprising a control means for adjusting the amount of oxygen injected from the oxygen injection means to the water supply pipe to the pre-boiler.
給水管によりプレボイラ系統及び節炭器を経由してドラムに順次給水し、ドラムの下部に設置された蒸発器で得られた汽水混合流体を上昇管によりドラムに供給し、汽水分離された後の水をドラム降水管と蒸発器供水管を経由して再び蒸発器に供給する構成を備えたドラムボイラにおいて、
プレボイラ系統への給水管に酸素を注入する酸素注入手段を設け、またドラム降水管内の溶存酸素濃度を計測する溶存酸素濃度計測手段を設け、さらにドラム降水管内のカチオンパス電気伝導率を測定する電気伝導率測定手段を設け、該電気伝導率測定手段で測定された電気伝導率と溶存酸素濃度計測手段で測定された溶存酸素濃度から許容酸素濃度を演算する演算器を設け、該演算器で演算された許容酸素濃度内となるように前記酸素注入手段からのプレボイラ系統への酸素注入量を加減する制御手段を設けたことを特徴とするドラムボイラ。
Water is supplied to the drum sequentially through the pre-boiler system and the economizer through the water supply pipe, and the brackish water mixed fluid obtained from the evaporator installed at the bottom of the drum is supplied to the drum through the riser pipe, after the brackish water is separated In a drum boiler having a configuration in which water is supplied to the evaporator again via the drum precipitation pipe and the evaporator water supply pipe,
An oxygen injection means for injecting oxygen into the water supply pipe to the pre-boiler system, a dissolved oxygen concentration measurement means for measuring the dissolved oxygen concentration in the drum downcomer, and an electric current for measuring the cation path electrical conductivity in the drum downcomer Conductivity measuring means is provided, and an arithmetic unit is provided for calculating the allowable oxygen concentration from the electrical conductivity measured by the electrical conductivity measuring means and the dissolved oxygen concentration measured by the dissolved oxygen concentration measuring means, and the arithmetic unit calculates A drum boiler comprising a control means for adjusting an oxygen injection amount from the oxygen injection means to the pre-boiler system so as to be within the allowable oxygen concentration.
高圧および/または中圧系統の熱交換器と低圧系統の熱交換器を備え、前記高圧および/または中圧系統の熱交換器は貫流ボイラで構成し、前記低圧系統の熱交換器はドラムボイラで構成した複圧式または三重圧式の排熱回収ボイラであって、
低圧系統の熱交換器のドラムボイラが請求項1ないし4のいずれかに記載のドラムボイラであることを特徴とする排熱回収ボイラ。
A high-pressure and / or medium-pressure system heat exchanger and a low-pressure system heat exchanger are provided, the high-pressure and / or medium-pressure system heat exchanger is constituted by a once-through boiler, and the low-pressure system heat exchanger is a drum boiler. A double-pressure or triple-pressure exhaust heat recovery boiler composed of
An exhaust heat recovery boiler, wherein the drum boiler of the low pressure system heat exchanger is the drum boiler according to any one of claims 1 to 4.
高圧系統、中圧系統および低圧系統の各熱交換器を備え、前記高圧系統の熱交換器は貫流ボイラで構成し、前記低圧系統および中圧系統の熱交換器はドラムボイラで構成した複圧式または三重圧式の排熱回収ボイラであって、
低圧系統および中圧系統の熱交換器のドラムボイラが請求項1ないし4のいずれかに記載のドラムボイラであることを特徴とする排熱回収ボイラ。
A high-pressure system, a medium-pressure system, and a low-pressure system heat exchanger, the heat exchanger of the high-pressure system is configured with a once-through boiler, and the heat exchanger of the low-pressure system and the intermediate-pressure system is configured with a drum boiler Or a triple pressure exhaust heat recovery boiler,
The exhaust heat recovery boiler according to any one of claims 1 to 4, wherein the drum boiler of the heat exchanger of the low pressure system and the intermediate pressure system is the drum boiler according to any one of claims 1 to 4.
JP2004346843A 2004-11-30 2004-11-30 Drum boiler and exhaust heat recovery boiler equipped with drum boiler Active JP4442764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346843A JP4442764B2 (en) 2004-11-30 2004-11-30 Drum boiler and exhaust heat recovery boiler equipped with drum boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346843A JP4442764B2 (en) 2004-11-30 2004-11-30 Drum boiler and exhaust heat recovery boiler equipped with drum boiler

Publications (2)

Publication Number Publication Date
JP2006153381A JP2006153381A (en) 2006-06-15
JP4442764B2 true JP4442764B2 (en) 2010-03-31

Family

ID=36631894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346843A Active JP4442764B2 (en) 2004-11-30 2004-11-30 Drum boiler and exhaust heat recovery boiler equipped with drum boiler

Country Status (1)

Country Link
JP (1) JP4442764B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4745990B2 (en) * 2007-01-31 2011-08-10 三菱重工業株式会社 Turbine equipment and initial switching method for oxygen treatment of turbine equipment
JP2011094849A (en) * 2009-10-28 2011-05-12 Babcock Hitachi Kk Thermal power generation plant and operation method for the same
CN105737181A (en) * 2016-03-25 2016-07-06 浙江欣远竹制品有限公司 Boiler smoke bag-type dedusting temperature control system and smoke exhausting temperature control and waste heat utilization method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5374603A (en) * 1976-12-16 1978-07-03 Rika Denki Kougiyou Kk Automatic controlling device for quality of water for boiler
JPH03221702A (en) * 1990-01-29 1991-09-30 Toshiba Corp Duplex type heat exchanger for waste heat recovery
DE19544224B4 (en) * 1995-11-28 2004-10-14 Alstom Chemical operation of a water / steam cycle
JPH09299943A (en) * 1996-05-20 1997-11-25 Mitsubishi Heavy Ind Ltd Oxygen treatment of drum type boiler feed water
DE19736885A1 (en) * 1997-08-25 1999-03-04 Siemens Ag Steam generator, in particular waste heat steam generator and method for operating this steam generator
JP2002081614A (en) * 2000-09-07 2002-03-22 Babcock Hitachi Kk Device and method for injecting oxygen into boiler
JP4288018B2 (en) * 2001-03-29 2009-07-01 三菱重工業株式会社 Water quality evaluation method and water quality management system
JP4043328B2 (en) * 2002-09-18 2008-02-06 三菱重工業株式会社 Power plant and power generation method
JP2004045023A (en) * 2003-07-31 2004-02-12 Miura Co Ltd Concentrated blow control device of boiler

Also Published As

Publication number Publication date
JP2006153381A (en) 2006-06-15

Similar Documents

Publication Publication Date Title
US9758880B2 (en) Method and system for controlling water chemistry in power generation plant
JP4918517B2 (en) Turbine equipment water quality monitoring method
JP2006274427A (en) Water treating agent and water treatment method
TWI641798B (en) Method and device for preventing corrosion in hot water systems
JP5000909B2 (en) Operation method of boiler equipment
JP4442764B2 (en) Drum boiler and exhaust heat recovery boiler equipped with drum boiler
CN112323073A (en) Anticorrosion and antiscaling integrated control system and control method for thermal equipment of power plant
KR20200053546A (en) Leakage detection device and method for seawater in water supply system and steam turbine plant
JP4288018B2 (en) Water quality evaluation method and water quality management system
JP2008055336A (en) Operation method of permeation flux in membrane filtration device
JP4305440B2 (en) Anticorrosive for reducing erosion and corrosion and method for reducing the same
Panigrahi et al. Boiler Water Treatment
CN213538106U (en) Anticorrosive scale control integration control system of power plant thermodynamic equipment
JP5632786B2 (en) Waste heat recovery boiler
JP6686591B2 (en) Drain collection system
JP2007263385A (en) Boiler water supply processing device, boiler device, and operation method of boiler water supply processing device
JP6021739B2 (en) Boiler water supply system
JPH11236689A (en) Water treating apparatus for power generating plant and water treatment
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
JPH10185108A (en) Corrosion preventing method for water surface measuring apparatus or water level regulating apparatus for boiler
JP5330730B2 (en) Plant piping equipment
JP2005296944A (en) Water quality improving system
JP2002257302A (en) Feeding method of corrosion inhibitor
JP2003097801A (en) Water treating device and water treating method for power generating plant
KR20180119373A (en) Apparatus for preventing corrosion of power generation facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100106

R150 Certificate of patent or registration of utility model

Ref document number: 4442764

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350