JP2006274427A - Water treating agent and water treatment method - Google Patents

Water treating agent and water treatment method Download PDF

Info

Publication number
JP2006274427A
JP2006274427A JP2005099551A JP2005099551A JP2006274427A JP 2006274427 A JP2006274427 A JP 2006274427A JP 2005099551 A JP2005099551 A JP 2005099551A JP 2005099551 A JP2005099551 A JP 2005099551A JP 2006274427 A JP2006274427 A JP 2006274427A
Authority
JP
Japan
Prior art keywords
water
boiler
heat transfer
treatment agent
transfer surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005099551A
Other languages
Japanese (ja)
Inventor
Junichi Nakajima
純一 中島
Takanari Kume
隆成 久米
Yasuo Nogami
康雄 野上
Isamu Mekada
勇 米加田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP2005099551A priority Critical patent/JP2006274427A/en
Priority to KR1020077022065A priority patent/KR20070116022A/en
Priority to PCT/JP2006/306064 priority patent/WO2006109546A1/en
Priority to US11/885,150 priority patent/US20080257831A1/en
Priority to CNA200680010488XA priority patent/CN101151400A/en
Priority to CA002603426A priority patent/CA2603426A1/en
Priority to TW095110218A priority patent/TW200640804A/en
Publication of JP2006274427A publication Critical patent/JP2006274427A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F14/00Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes
    • C23F14/02Inhibiting incrustation in apparatus for heating liquids for physical or chemical purposes by chemical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/0005Details for water heaters
    • F24H9/0042Cleaning arrangements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Hydrology & Water Resources (AREA)
  • Materials Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water treating agent capable of preventing full surface corrosion and local corrosion of a heat transfer surface of a boiler tube and obtaining excellent heat transfer characteristics and a water treatment method using the water treating agent. <P>SOLUTION: The water treating agent is constituted by using water as a principal component and compounding a film forming agent forming a film on the heat transfer surface of the boiler tube, a deoxidant, an anti-scaling agent and a pH modifier with the water. The corrosion prevention and scale inhibition of the heat transfer surface of the boiler tube are performed with good balance by injecting the water treating agent into boiler feedwater. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水処理剤および水処理方法に係り、特にボイラ水管の伝熱面の全面腐食と局部腐食を防止するとともに、優れた伝熱特性を得ることができる水処理剤およびこの水処理剤を用いる水処理方法に関する。   The present invention relates to a water treatment agent and a water treatment method, and in particular, a water treatment agent capable of preventing overall corrosion and local corrosion of a heat transfer surface of a boiler water pipe and obtaining excellent heat transfer characteristics, and the water treatment agent. The present invention relates to a water treatment method using

ボイラは、加熱用、発電用などのエネルギー供給設備として幅広く使用され、蒸気を生成する装置である。ボイラで蒸気を発生させる水管の内側表面部(ボイラ水管の伝熱面)は高温高圧の環境にあり、この伝熱面にはボイラへ供給された水(ボイラ給水)に含まれているカルシウムなどの成分がスケールとして付着(スケーリング)したり、ボイラ給水によって腐食したりする。スケールが伝熱面に付着すると、このスケールによって熱の伝達が妨げられ、ボイラ効率等の伝熱特性が低下する。また、伝熱面が腐食すると、この腐食によってボイラ水管が破損し、このボイラ水管の破損によってはボイラの運転を停止する場合がある。   A boiler is a device that generates steam by being widely used as an energy supply facility for heating and power generation. The inner surface of the water pipe that generates steam in the boiler (the heat transfer surface of the boiler water pipe) is in a high-temperature and high-pressure environment, and this heat transfer surface contains calcium contained in the water supplied to the boiler (boiler feed water). These components adhere as a scale (scaling) or corrode by boiler feed water. When the scale adheres to the heat transfer surface, heat transfer is hindered by the scale, and heat transfer characteristics such as boiler efficiency are deteriorated. Further, when the heat transfer surface is corroded, the boiler water pipe is damaged by this corrosion, and the boiler operation may be stopped depending on the damage of the boiler water pipe.

そこで、従来は、このボイラ水管の伝熱面におけるスケーリングや腐食を防止(抑制)するために、スケール抑制剤、pH調整剤などの薬剤が水処理剤としてボイラ給水に添加されていた。しかし、従来の水処理剤は、ボイラ水管の伝熱面のスケーリング防止や腐食の防止のために個別的に用いられており、ボイラ水管の伝熱面のスケーリング防止と腐食防止とを同時にバランスよく行うことがむずかしかった。すなわち、伝熱面のスケーリング防止を目的に水処理剤をボイラ給水に添加すると、伝熱面のスケーリングを防止することができても水管の伝熱面の腐食を防止することが充分ではなかった。一方、伝熱面の腐食防止を目的に水処理剤をボイラ給水に添加すると、伝熱面の腐食を防止することができても、伝熱面のスケーリングを防止することが充分ではなかった。   Therefore, conventionally, in order to prevent (suppress) scaling and corrosion on the heat transfer surface of the boiler water pipe, agents such as a scale inhibitor and a pH adjuster have been added to the boiler feed water as a water treatment agent. However, conventional water treatment agents are used individually to prevent scaling and corrosion of the heat transfer surface of the boiler water pipe, and at the same time balance scaling prevention and corrosion prevention of the heat transfer surface of the boiler water pipe. It was difficult to do. That is, when a water treatment agent is added to boiler feed water for the purpose of preventing scaling of the heat transfer surface, it is not sufficient to prevent corrosion of the heat transfer surface of the water pipe even if the heat transfer surface can be prevented from scaling. . On the other hand, when a water treatment agent is added to boiler feed water for the purpose of preventing corrosion of the heat transfer surface, it is not sufficient to prevent scaling of the heat transfer surface even though corrosion of the heat transfer surface can be prevented.

そのため、伝熱面のスケーリング防止と腐食防止を同時にバランスよく行うことができる水処理剤として、水分の影響により生じる伝熱面の腐食およびスケールの生成を抑制するために、シリカとpH調整剤と、スケール抑制剤とを含んでいるもので構成されている水処理剤が提案されている(たとえば、特許文献1参照)。
特開2003−159597号公報(第2頁)
For this reason, silica and a pH adjuster are used as a water treatment agent capable of simultaneously performing scaling prevention and corrosion prevention of the heat transfer surface in a well-balanced manner in order to suppress corrosion of the heat transfer surface and scale formation caused by the influence of moisture. A water treatment agent comprising a scale inhibitor is proposed (for example, see Patent Document 1).
Japanese Patent Laying-Open No. 2003-159597 (2nd page)

特許文献1に記載の水処理剤は、ボイラ水管の伝熱面の腐食を防止するために、シリカ成分とpH調整剤によって、伝熱面に腐食防止用のシリカ層と鉄水酸化物層(たとえば、オキシ水酸化鉄)を形成している。しかし、伝熱面に形成されたシリカ層と鉄水酸化物層の厚さが不充分であると、防食作用が発揮されないため、伝熱面に腐食が生じてしまう場合がある。そして、この腐食生成物によって伝熱面が被覆されると、腐食生成物の熱伝導率が小さいため、ボイラの伝熱特性が悪くなるという問題がある。また、このシリカ層と鉄水酸化物層が伝熱面全体を略均一に被覆することができない場合には、伝熱面に局部腐食(孔食)を生じてしまうことがある。伝熱面が局部腐食されると、ボイラ水管を貫通する孔があく場合があり、この孔からボイラの炉内へ水漏れが生じるという問題がある。   In order to prevent corrosion of the heat transfer surface of the boiler water pipe, the water treatment agent described in Patent Document 1 uses a silica component and a pH adjuster to form a silica layer and an iron hydroxide layer (for preventing corrosion on the heat transfer surface). For example, iron oxyhydroxide) is formed. However, if the thickness of the silica layer and the iron hydroxide layer formed on the heat transfer surface is insufficient, the anticorrosive action is not exhibited, and thus the heat transfer surface may be corroded. When the heat transfer surface is covered with the corrosion product, the heat conductivity of the corrosion product is small, so that there is a problem that the heat transfer characteristic of the boiler is deteriorated. Further, when the silica layer and the iron hydroxide layer cannot cover the entire heat transfer surface substantially uniformly, local corrosion (pitting corrosion) may occur on the heat transfer surface. If the heat transfer surface is locally corroded, a hole penetrating the boiler water pipe may be formed, and there is a problem that water leaks from the hole into the boiler furnace.

本発明の目的は、ボイラ水管の伝熱面の全面腐食と局部腐食を防止するとともに、優れた伝熱特性を得ることができる水処理剤およびこの水処理剤を用いる水処理方法を提供することにある。   An object of the present invention is to provide a water treatment agent capable of preventing overall corrosion and local corrosion of a heat transfer surface of a boiler water pipe and obtaining excellent heat transfer characteristics, and a water treatment method using the water treatment agent. It is in.

本発明は、前記課題を解決するためになされたもので,請求項1の発明は、水を主成分とし、ボイラ水管の伝熱面に皮膜を形成する皮膜形成剤と、脱酸素剤と、スケール抑制剤と、pH調整剤とが前記水に配合されていることを特徴としている。この構成により、ボイラ水管の伝熱面に腐食を抑制できる皮膜が皮膜形成剤により形成され、ボイラ給水中の溶存酸素は脱酸素剤により除去され、さらにボイラ水管の伝熱面のスケーリングはスケール抑制剤で防止され、ボイラ給水のpHはpH調整される。   The present invention has been made to solve the above problems, and the invention of claim 1 is based on water, and a film forming agent that forms a film on the heat transfer surface of a boiler water pipe, an oxygen scavenger, A scale inhibitor and a pH adjuster are blended in the water. With this configuration, a film capable of suppressing corrosion is formed on the heat transfer surface of the boiler water pipe by the film forming agent, dissolved oxygen in the boiler feed water is removed by the oxygen scavenger, and scaling of the heat transfer surface of the boiler water pipe is scaled down. The pH of the boiler feed water is adjusted by the agent.

請求項2の発明は、請求項1に記載の皮膜形成剤が、シリカ、ケイ酸ナトリウム、ケイ酸カリウム、オルトケイ酸塩、ポリケイ酸塩のうちの少なくとも1種又は2種以上からなることを特徴としている。この構成により、ボイラ水管の伝熱面に腐食を抑制できる皮膜がシリカ、ケイ酸ナトリウム、ケイ酸カリウム、オルトケイ酸塩、ポリケイ酸塩のうちの少なくとも1種又は2種以上から形成される。   The invention of claim 2 is characterized in that the film forming agent of claim 1 is composed of at least one or more of silica, sodium silicate, potassium silicate, orthosilicate, and polysilicate. It is said. With this configuration, a film capable of suppressing corrosion on the heat transfer surface of the boiler water pipe is formed from at least one or more of silica, sodium silicate, potassium silicate, orthosilicate, and polysilicate.

請求項3の発明は、請求項1又は2に記載の脱酸素剤が、ビタミンCおよびその塩、タンニン、糖類型脱酸素剤、エリソルビン酸およびその塩、亜硫酸塩のうちの少なくとも1種又は2種以上からなることを特徴としている。ここで、脱酸素剤にビタミンCおよびその塩などが用いられるのは、強い還元力によりボイラ給水に溶存している酸素を除去することができ、ヒドラジンのような毒性もないからである。溶存酸素が除去されたボイラ給水はボイラ水管の伝熱面に対し、腐食作用が小さくなる。この構成により、ボイラ給水中の溶存酸素はビタミンCおよびその塩、タンニン、糖類型脱酸素剤、エリソルビン酸およびその塩、亜硫酸塩のうちの少なくとも1種又は2種以上からなる脱酸素剤により除去される。   In the invention of claim 3, the oxygen absorber according to claim 1 or 2 is vitamin C and a salt thereof, tannin, a sugar-type oxygen absorber, erythorbic acid and a salt thereof, or a sulfite. It is characterized by comprising more than seeds. Here, the reason why vitamin C and its salt are used as an oxygen scavenger is that oxygen dissolved in boiler feed water can be removed by a strong reducing power and there is no toxicity like hydrazine. Boiler feed water from which dissolved oxygen has been removed has less corrosive action on the heat transfer surface of the boiler water pipe. With this configuration, dissolved oxygen in boiler feedwater is removed by an oxygen scavenger consisting of at least one or more of vitamin C and its salts, tannins, sugar-type oxygen absorbers, erythorbic acid and its salts, and sulfites. Is done.

請求項4の発明は、請求項1,2又は3に記載のスケール抑制剤が、クエン酸、エチレンジアミン四酢酸およびその塩、ポリアクリル酸およびその塩、ポリマレイン酸およびその塩のうちの少なくとも1種又は2種以上からなることを特徴としている。ここで、スケール抑制剤が用いられるのは、ボイラ水管の伝熱面に対しスケールが付着する(スケーリング)のを防ぐことができるからである。すなわち、このスケール抑制剤にクエン酸、エチレンジアミン四酢酸およびその塩が用いられた場合には、ボイラ給水に含まれているカルシウムイオンやマグネシウムイオンは、このスケール抑制剤によってキレート化され、ボイラ水管の伝熱面に対しスケールとして付着することができなくなる。また、このスケール抑制剤にポリアクリル酸、ポリマレイン酸などが用いられた場合には、カルシウムイオンやマグネシウムイオンによって形成されたスケールの結晶核の成長が妨げられ、ボイラ水管の伝熱面に対しスケールとして付着することができなくなる。この構成により、ボイラ水管の伝熱面のスケーリングはクエン酸、エチレンジアミン四酢酸およびその塩、ポリアクリル酸およびその塩、ポリマレイン酸およびその塩のうちの少なくとも1種又は2種以上からなるスケール抑制剤で防止される。   The invention according to claim 4 is the scale inhibitor according to claim 1, 2 or 3, wherein the scale inhibitor is at least one of citric acid, ethylenediaminetetraacetic acid and its salt, polyacrylic acid and its salt, polymaleic acid and its salt Or it consists of 2 or more types. Here, the scale inhibitor is used because it is possible to prevent the scale from adhering to the heat transfer surface of the boiler water pipe (scaling). That is, when citric acid, ethylenediaminetetraacetic acid and salts thereof are used as the scale inhibitor, calcium ions and magnesium ions contained in the boiler feed water are chelated by the scale inhibitor, It becomes impossible to adhere as a scale to the heat transfer surface. In addition, when polyacrylic acid, polymaleic acid, or the like is used as the scale inhibitor, the growth of scale crystal nuclei formed by calcium ions or magnesium ions is hindered, and the scale is reduced against the heat transfer surface of the boiler water tube. Can not adhere as. With this configuration, the scale of the heat transfer surface of the boiler water pipe is scale inhibitor composed of at least one or more of citric acid, ethylenediaminetetraacetic acid and its salt, polyacrylic acid and its salt, polymaleic acid and its salt Is prevented.

さらに、請求項5の発明は、請求項1,2,3又は4に記載のpH調整剤は、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物のうちの少なくとも1種又は2種以上からなることを特徴としている。ここで、このpH調整剤が用いられるのは、ボイラ水管の伝熱面の腐食を防止するために、ボイラ給水のpHをアルカリ側へ調整するためである。この構成により、ボイラ給水のpHは水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物のうちの少なくとも1種又は2種以上からなるpH調整剤によりpH調整される。   Further, the invention according to claim 5 is the pH regulator according to claim 1, 2, 3 or 4, wherein at least one or two of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are used. It is characterized by the above. Here, this pH adjuster is used to adjust the pH of the boiler feed water to the alkali side in order to prevent corrosion of the heat transfer surface of the boiler water pipe. With this configuration, the pH of boiler feed water is adjusted by a pH adjuster composed of at least one or two or more of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide.

また、請求項6の発明は、請求項1,2,3,4又は5に記載の水処理剤を所定の濃度に調整する工程と、給水タンクに溶解しているシリカ濃度と溶存酸素量を検出する工程と、前記給水タンクへ供給される前記水処理剤の量を制御する工程とからなることを特徴としている。この構成により、ボイラ給水中のシリカ濃度や溶存酸素量に変動が生じた場合、ボイラ水管の伝熱面に皮膜を形成する皮膜形成剤と、脱酸素剤と、スケール抑制剤と、pH調整剤とが配合され、所定の濃度に調整された水処理剤について、給水タンクへ供給する量を前記変動に対応して制御することができる。   Further, the invention of claim 6 is a process of adjusting the water treatment agent according to claim 1, 2, 3, 4 or 5 to a predetermined concentration, and the concentration of silica dissolved in the water supply tank and the amount of dissolved oxygen. It comprises a step of detecting and a step of controlling the amount of the water treatment agent supplied to the water supply tank. With this configuration, when fluctuation occurs in the silica concentration or dissolved oxygen amount in the boiler feed water, a film forming agent that forms a film on the heat transfer surface of the boiler water pipe, an oxygen scavenger, a scale inhibitor, and a pH adjuster As for the water treatment agent adjusted to a predetermined concentration, the amount supplied to the water supply tank can be controlled in accordance with the fluctuation.

請求項1に記載の発明によれば、ボイラ水管の伝熱面の全面腐食と局部腐食を防止するとともに、優れた伝熱特性を得ることができる。
請求項2に記載の発明によれば、ボイラ水管の伝熱面に腐食を抑制できる皮膜が皮膜形成剤であるシリカなどにより形成されるため、ボイラ水管の伝熱面の全面腐食と局部腐食をより一層防止するとともに、優れた伝熱特性を得ることができる。
According to the first aspect of the present invention, it is possible to prevent the overall corrosion and local corrosion of the heat transfer surface of the boiler water pipe and to obtain excellent heat transfer characteristics.
According to the second aspect of the present invention, since the coating capable of suppressing corrosion is formed on the heat transfer surface of the boiler water tube by silica or the like as a film forming agent, the entire surface corrosion and local corrosion of the heat transfer surface of the boiler water tube are prevented. While preventing further, the outstanding heat-transfer characteristic can be acquired.

請求項3に記載の発明によれば、ボイラ給水中の溶存酸素はビタミンCなどの毒性のない脱酸素剤により除去されるため、ボイラ水管の伝熱面の全面腐食と局部腐食をさらに一層防止するとともに、優れた伝熱特性を得ることができる。
請求項4に記載の発明によれば、ボイラ水管の伝熱面のスケーリングはスケール抑制剤であるエチレンジアミン四酢酸およびその塩などにより防止されるため、ボイラ水管の伝熱面の全面腐食と局部腐食を防止するとともに、より一層優れた伝熱特性を得ることができる。
According to the invention described in claim 3, since dissolved oxygen in the boiler feed water is removed by a non-toxic oxygen scavenger such as vitamin C, further corrosion and local corrosion of the heat transfer surface of the boiler water pipe are further prevented. In addition, excellent heat transfer characteristics can be obtained.
According to the invention described in claim 4, since the scaling of the heat transfer surface of the boiler water pipe is prevented by ethylenediaminetetraacetic acid and its salt which are scale inhibitors, the overall corrosion and local corrosion of the heat transfer surface of the boiler water pipe In addition, it is possible to obtain more excellent heat transfer characteristics.

さらに、請求項5に記載の発明によれば、ボイラ給水のpHは水酸化ナトリウムなどのpH調整剤によりpH調整されるので、ボイラ水管の伝熱面の全面腐食と局部腐食を防止するとともに、優れた伝熱特性を得ることができる。
また、請求項6に記載の発明によれば、ボイラ給水中のシリカ濃度や溶存酸素量に変動が生じた場合でも、水処理剤を所定の濃度に調整し、この濃度調整された水処理剤の給水タンクへの供給量を前記変動に対応して制御することにより、ボイラ水管の伝熱面における全面腐食と局部腐食を防止するとともに、優れた伝熱特性を得ることができる。
Furthermore, according to the invention described in claim 5, since the pH of the boiler feed water is adjusted by a pH adjusting agent such as sodium hydroxide, it prevents overall corrosion and local corrosion of the heat transfer surface of the boiler water pipe, Excellent heat transfer characteristics can be obtained.
Further, according to the invention described in claim 6, even when the silica concentration or the dissolved oxygen amount in the boiler feed water varies, the water treatment agent is adjusted to a predetermined concentration, and this concentration-adjusted water treatment agent is obtained. By controlling the amount of water supplied to the water supply tank in response to the fluctuation, it is possible to prevent overall corrosion and local corrosion on the heat transfer surface of the boiler water pipe and to obtain excellent heat transfer characteristics.

発明を実施するための形態BEST MODE FOR CARRYING OUT THE INVENTION

本発明は、水を主成分とし、ボイラ水管の伝熱面に皮膜を形成する皮膜形成剤と、脱酸素剤と、スケール抑制剤と、pH調整剤とを前記水に配合する構成とすることによって実現される。   The present invention comprises water as a main component, and a film forming agent that forms a film on the heat transfer surface of the boiler water pipe, an oxygen scavenger, a scale inhibitor, and a pH adjuster are blended in the water. It is realized by.

この水処理剤の皮膜形成剤には、シリカ(無水ケイ酸)、ケイ酸ナトリウム、ケイ酸カリウム、オルトケイ酸塩、ポリケイ酸塩などの公知のものが少なくとも1種又は2種以上用いられる。この皮膜形成剤は、ボイラ水管の伝熱面に吸着されて皮膜を形成し、ボイラ水管の伝熱面をこの皮膜で被覆するものである。この皮膜形成剤によって形成された皮膜は、ボイラ水管の伝熱面を覆うことによりバリヤ層(遮蔽層)として働き、腐食に対する保護皮膜として作用するため、この保護皮膜によって被覆されたボイラ水管の伝熱面は、腐食が抑制される。   As the film forming agent for the water treatment agent, at least one or more known materials such as silica (anhydrous silicic acid), sodium silicate, potassium silicate, orthosilicate, polysilicate and the like are used. This film forming agent is adsorbed on the heat transfer surface of the boiler water tube to form a film, and the heat transfer surface of the boiler water tube is covered with this film. The film formed by this film forming agent acts as a barrier layer (shielding layer) by covering the heat transfer surface of the boiler water pipe and acts as a protective film against corrosion. Therefore, the transfer of the boiler water pipe covered with this protective film is performed. Corrosion is suppressed on the hot surface.

また、この皮膜形成剤と共に用いられる脱酸素剤には、ビタミンCおよびその塩、タンニン、糖類型脱酸素剤、エリソルビン酸およびその塩、亜硫酸塩などの公知のものが少なくとも1種又は2種以上用いられる。この脱酸素剤は、ヒドラジンのような毒性もなく、ボイラ給水に溶存している酸素を除去することができる。ボイラ給水に溶存している酸素は、酸化剤としてボイラ水管の伝熱面を腐食する作用がある。そのため、ボイラ給水に溶存している酸素が脱酸素剤によって除去されると、ボイラ給水中の酸化剤濃度は低くなるので、ボイラ水管の伝熱面における全面腐食が防止される。また、ボイラ給水に溶存している酸素が除去されると、ボイラ水管の伝熱面において酸素濃度の不均一性が小さくなるため、酸素濃淡電池が形成されにくくなり、ボイラ水管の伝熱面における局部腐食も防止される。ここで、本発明の実施形態に係る水処理剤によってボイラ水管の伝熱面の局部腐食が防止されることについて詳しく説明する。   The oxygen scavenger used together with the film forming agent includes at least one or more known ones such as vitamin C and salts thereof, tannin, saccharide type oxygen scavenger, erythorbic acid and salts thereof, and sulfites. Used. This oxygen scavenger has no toxicity like hydrazine and can remove oxygen dissolved in boiler feed water. Oxygen dissolved in the boiler feed water acts to corrode the heat transfer surface of the boiler water pipe as an oxidizing agent. For this reason, when oxygen dissolved in the boiler feed water is removed by the oxygen scavenger, the oxidant concentration in the boiler feed water becomes low, so that the overall corrosion on the heat transfer surface of the boiler water pipe is prevented. In addition, if oxygen dissolved in the boiler feed water is removed, the oxygen concentration non-uniformity is reduced on the heat transfer surface of the boiler water pipe, so that it is difficult to form an oxygen concentration cell, and in the heat transfer surface of the boiler water pipe. Local corrosion is also prevented. Here, it will be described in detail that local corrosion of the heat transfer surface of the boiler water pipe is prevented by the water treatment agent according to the embodiment of the present invention.

一般に、ボイラ水管の伝熱面に腐食を抑制できる皮膜が形成されると、このボイラ水管の伝熱面に用いられる材料(たとえば、炭素鋼)はボイラ給水によって腐食されにくくなる。このボイラ水管の伝熱面に形成されている皮膜は、たとえばシリカ成分が炭素鋼の表面に吸着されたり、オキシ水酸化鉄が炭素鋼の表面に形成されたものである。しかし、このボイラ水管の伝熱面の表面には、皮膜形成を阻害する要因によって皮膜の形成が不充分な部分(皮膜欠陥部分)が存在している場合がある。この皮膜形成を阻害するものには、ボイラ給水中に皮膜形成を阻害する塩素イオンの存在、炭素鋼に含まれている硫黄(硫化物)などの表面偏析による表面の不均一性、ボイラ水管内を流れているボイラ給水の流速が不均一なことによる皮膜形成剤の濃度の不均一性などいろいろな要因がある。この皮膜形成を阻害する要因があると、ボイラ水管の伝熱面の表面には、シリカ又は鉄水酸化物によって形成された皮膜部分(健全な皮膜部分)と、この皮膜の形成が不充分な部分(皮膜欠陥部分)とが存在し、健全な皮膜部分と皮膜欠陥部分で局部電池が形成され、局部腐食が起きる場合がある。   In general, when a film capable of suppressing corrosion is formed on the heat transfer surface of the boiler water pipe, the material (for example, carbon steel) used for the heat transfer surface of the boiler water pipe is less likely to be corroded by the boiler feed water. The coating film formed on the heat transfer surface of the boiler water pipe is, for example, a silica component adsorbed on the surface of carbon steel or iron oxyhydroxide formed on the surface of carbon steel. However, the surface of the heat transfer surface of the boiler water pipe may have a portion (film defect portion) where the film formation is insufficient due to a factor that inhibits the film formation. Those that inhibit this film formation include the presence of chlorine ions that inhibit film formation in boiler feed water, surface non-uniformity due to surface segregation such as sulfur (sulfides) contained in carbon steel, There are various factors such as non-uniformity in the concentration of the film-forming agent due to the non-uniform flow rate of boiler feedwater flowing through. If there is a factor that hinders the formation of this film, the surface of the heat transfer surface of the boiler water pipe has a film part (sound film part) formed of silica or iron hydroxide, and this film is not sufficiently formed. There is a portion (film defect portion), a local battery is formed by a healthy film portion and a film defect portion, and local corrosion may occur.

ところで、一般に、隙間腐食や孔食等の局部腐食(金属表面の腐食が均一でなく、局部的に集中して生じる腐食をいう)は全面腐食(金属表面にほぼ均一に生じる腐食をいう)が起きにくい環境で生じやすいことが知られている。全面腐食は金属表面にほぼ均一に生じるため、金属表面が局部的に腐食されることはないのに対し、局部腐食は不動態皮膜や保護皮膜によって金属表面の腐食が全体的に抑制されている(健全な皮膜が形成されて全面腐食が抑制されている)場合に皮膜欠陥部分に起きやすい。これは、健全な皮膜部分と比べて皮膜欠陥部分が腐食されやすく、皮膜欠陥部分が局部的に集中して腐食されるからである。   By the way, in general, local corrosion such as crevice corrosion and pitting corrosion (corresponding to corrosion caused by localized concentration of the metal surface is not uniform) is general corrosion (referred to as corrosion occurring almost uniformly on the metal surface). It is known to occur easily in an environment where it is difficult to occur. Since the general corrosion occurs almost uniformly on the metal surface, the metal surface is not locally corroded, whereas the local corrosion is totally suppressed by the passive film and protective film. It tends to occur at the film defect part when a sound film is formed and the overall corrosion is suppressed. This is because the film defect part is more easily corroded than the sound film part, and the film defect part is locally concentrated and corroded.

すなわち、この皮膜欠陥部分は、健全な皮膜部分との間で局部電池を形成し、この皮膜欠陥部分が局部電池のアノード電極(電池の負極、酸化反応が起こり、金属は溶解される、すなわち腐食される)となり、健全な皮膜部分が局部電池のカソード電極(電池の正極、還元反応が起こり、金属は溶解されない、すなわち腐食されない)となるからである。この局部電池は、酸素濃淡電池が形成されて、電池反応が進行する。酸素濃淡電池は、一般にカソードを形成する健全な皮膜部分とアノードを形成する皮膜欠陥部分の酸素量(濃度)の比が大きい(電池起電力が大きい)ほど腐食速度が大きいことが知られている。このことは、逆にいえば、健全な皮膜部分と皮膜欠陥部分の酸素量(濃度)の比を小さくすることができれば、皮膜欠陥部分による局部腐食を防止(抑制)することができることを意味している。   That is, this film defect part forms a local battery with a healthy film part, and this film defect part is the anode electrode of the local battery (battery negative electrode, oxidation reaction takes place, metal is dissolved, ie, corrosion This is because the healthy film portion becomes the cathode electrode of the local battery (the positive electrode of the battery, a reduction reaction occurs, and the metal is not dissolved, that is, is not corroded). In this local battery, an oxygen concentration battery is formed, and the battery reaction proceeds. It is known that the oxygen concentration cell generally has a higher corrosion rate as the ratio of the oxygen amount (concentration) between the healthy film portion forming the cathode and the film defect portion forming the anode is larger (the cell electromotive force is larger). . In other words, this means that if the ratio of the oxygen amount (concentration) between the healthy film portion and the film defect portion can be reduced, local corrosion due to the film defect portion can be prevented (suppressed). ing.

本発明の水処理剤は、上記皮膜形成剤により形成されたボイラ水管の伝熱面の皮膜が何らかの原因で皮膜欠陥部分を形成しても、脱酸素剤によってボイラ給水中に溶存している酸素量(濃度)を減らして酸素濃淡電池を形成しがたくしているため、局部腐食を防止している。すなわち、ボイラ給水中に溶存している酸素量(濃度)が減ると、健全な皮膜部分の酸素量(濃度)の絶対量が減るため、健全な皮膜部分と皮膜欠陥部分との酸素量(濃度)の比が小さくなるので、酸素濃淡電池の起電力が小さくなり、局部腐食を防止することができる。   The water treatment agent of the present invention is the oxygen dissolved in the boiler feed water by the oxygen scavenger even if the film on the heat transfer surface of the boiler water pipe formed by the film forming agent forms a film defect part for some reason. Since it is difficult to form an oxygen concentration cell by reducing the amount (concentration), local corrosion is prevented. That is, when the oxygen amount (concentration) dissolved in the boiler feed water decreases, the absolute amount of oxygen (concentration) in the healthy film portion decreases, so the oxygen amount (concentration) in the healthy film portion and the film defect portion ) Ratio is small, the electromotive force of the oxygen concentration cell is small, and local corrosion can be prevented.

また、本発明の水処理剤には、脱酸素剤のほかにスケール抑制剤が配合されている。このスケール抑制剤には、クエン酸、エチレンジアミン四酢酸およびその塩、ポリアクリル酸、ポリマレイン酸などの公知のものが少なくとも1種又は2種以上用いられる。スケール抑制剤にクエン酸、エチレンジアミン四酢酸およびその塩(EDTA−Na)が用いられた場合には、ボイラ給水に含まれているカルシウムイオンやマグネシウムイオンは、このスケール抑制剤によってキレート化され、ボイラ水管の伝熱面に対してスケールが付着されにくくなる。また、スケール抑制剤にポリアクリル酸およびその塩、ポリマレイン酸およびその塩などが用いられた場合には、カルシウムイオンやマグネシウムイオンによって形成されたスケールの結晶核の成長が妨げられ、ボイラ水管の伝熱面にはスケールが付着しにくくなる。このように、ボイラ水管の伝熱面にスケールが付着しにくくなると、ボイラは優れた伝熱特性を維持して運転することができる。   In addition to the oxygen scavenger, the water treating agent of the present invention contains a scale inhibitor. As the scale inhibitor, at least one or more known substances such as citric acid, ethylenediaminetetraacetic acid and salts thereof, polyacrylic acid, and polymaleic acid are used. When citric acid, ethylenediaminetetraacetic acid and its salt (EDTA-Na) are used as the scale inhibitor, calcium ions and magnesium ions contained in the boiler feed water are chelated by the scale inhibitor, and the boiler Scale is less likely to adhere to the heat transfer surface of the water pipe. In addition, when polyacrylic acid and its salts, polymaleic acid and its salts, etc. are used as the scale inhibitor, the growth of the scale crystal nuclei formed by calcium ions and magnesium ions is hindered, and the propagation of the boiler water tube is prevented. Scale is less likely to adhere to the hot surface. Thus, when scale becomes difficult to adhere to the heat transfer surface of the boiler water pipe, the boiler can be operated while maintaining excellent heat transfer characteristics.

さらに、この水処理剤にはpH調整剤が配合されている。pH調整剤には、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物などの公知のものが少なくとも1種又は2種以上用いられる。このpH調整剤は、ボイラ水管の伝熱面の腐食を防止するために、ボイラ給水のpHをアルカリ側へ調整するものである。   Furthermore, a pH adjuster is blended in this water treatment agent. As the pH adjusting agent, at least one or more known substances such as alkali metal hydroxides such as sodium hydroxide and potassium hydroxide are used. This pH adjuster adjusts the pH of boiler feed water to the alkali side in order to prevent corrosion of the heat transfer surface of the boiler water pipe.

ところで、本発明における皮膜形成剤、脱酸素剤、スケール抑制剤、pH調整剤は個別の薬剤として水に溶解させた形で供給することが可能であるが、水処理剤の投入(薬注)の手間を考えると、一液の製剤にすることが望ましい。   By the way, although the film-forming agent, oxygen scavenger, scale inhibitor, and pH adjuster in the present invention can be supplied in the form of being dissolved in water as individual agents, the introduction of a water treatment agent (medical injection) Therefore, it is desirable to make a one-part preparation.

以下、本発明の実施形態に係る水処理剤の一実施例について、実施例1〜実施例3を挙げて、表1に基づいて詳しく説明する。

Figure 2006274427
Hereinafter, one example of the water treatment agent according to the embodiment of the present invention will be described in detail based on Table 1 with reference to Example 1 to Example 3.
Figure 2006274427

(1)実施例1
表1に示されている実施例1の水処理剤は、水処理剤全量100g当たり純水に皮膜形成剤と、脱酸素剤と、スケール抑制剤と、pH調整剤を所定量配合したものである。すなわち、実施例1の水処理剤は、皮膜形成剤にケイ酸ナトリウム(和光純薬、特級試薬)1.26gと、脱酸素剤にビタミンC(L-アスコルビン酸)(和光純薬、特級試薬)2.5gと、スケール抑制剤にEDTA−2Na(和光純薬、特級試薬)0.4gと、pH調整剤に水酸化ナトリウム(和光純薬、特級試薬)4.0gが配合されたもので、これを軟水化した水に1リツトル当たり500mg投入した。ここで、ボイラ給水として軟水化した水は、すなわち大阪市の軟化水を人工的に調整したものが用いられており、pHが7.5、電気伝導度が25mS/m、Mアルカリ度が20mg/リツトル−CaCO、硬度が1mg/リツトル−CaCOの水質を有するものである。この水処理剤の実施例および比較例に用いられる軟水化した水には、この大阪市の軟化水を人工的に調整した水が用いられており、この軟水化した水についての記載は以下省略する。
(1) Example 1
The water treatment agent of Example 1 shown in Table 1 is a mixture of a predetermined amount of a film forming agent, an oxygen scavenger, a scale inhibitor, and a pH adjuster in pure water per 100 g of the total amount of the water treatment agent. is there. That is, the water treatment agent of Example 1 is 1.26 g of sodium silicate (Wako Pure Chemicals, special grade reagent) as a film forming agent, and vitamin C (L-ascorbic acid) (Wako Pure Chemicals, special grade reagent) as an oxygen scavenger. ) 2.5 g, 0.4 g of EDTA-2Na (Wako Pure Chemical, special grade reagent) in the scale inhibitor, and 4.0 g of sodium hydroxide (Wako Pure Chemical, special grade reagent) in the pH adjuster. 500 mg per liter was put into softened water. Here, the water softened as the boiler feed water, that is, the artificially adjusted soft water of Osaka City is used, pH is 7.5, electric conductivity is 25 mS / m, M alkalinity is 20 mg. / Little-CaCO 3 , having a water quality of 1 mg / Little-CaCO 3 . As the water softened water used in Examples and Comparative Examples of this water treatment agent, water prepared by artificially adjusting the softened water of Osaka City is used, and description of the water softened is omitted below. To do.

(2)実施例2
実施例2の水処理剤は、実施例1の水処理剤と同様に、水処理剤全量100g当たり純水に皮膜形成剤と、脱酸素剤と、スケール抑制剤と、pH調整剤を所定量配合したものである。すなわち、実施例2の水処理剤は、皮膜形成剤にケイ酸ナトリウム(和光純薬、特級試薬)5.46gと、脱酸素剤にビタミンC(L-アスコルビン酸)(和光純薬、特級試薬)5.0gと、スケール抑制剤にEDTA−2Na(和光純薬、特級試薬)0.4gと、pH調整剤に水酸化ナトリウム(和光純薬、特級試薬)4.0gが配合されたもので、これを軟水化した水に1リツトル当たり500mg投入した。
(2) Example 2
In the same manner as the water treatment agent of Example 1, the water treatment agent of Example 2 contains a predetermined amount of a film forming agent, an oxygen scavenger, a scale inhibitor, and a pH adjuster per 100 g of the total amount of the water treatment agent. It is a blend. That is, the water treatment agent of Example 2 was 5.46 g of sodium silicate (Wako Pure Chemicals, special grade reagent) as a film forming agent, and vitamin C (L-ascorbic acid) (Wako Pure Chemicals, special grade reagent) as an oxygen scavenger. ) 5.0 g, 0.4 g of EDTA-2Na (Wako Pure Chemicals, special grade reagent) in the scale inhibitor, and 4.0 g of sodium hydroxide (Wako Pure Chemicals, special grade reagent) in the pH adjuster. 500 mg per liter was put into softened water.

(3)実施例3
実施例3の水処理剤は、実施例1の水処理剤と同様に、水処理剤全量100g当たり純水に皮膜形成剤と、脱酸素剤と、スケール抑制剤と、pH調整剤を所定量配合したものである。すなわち、実施例3の水処理剤は、皮膜形成剤にケイ酸ナトリウム9.66gと、脱酸素剤にビタミンC(L-アスコルビン酸)(和光純薬、特級試薬)7.5gと、スケール抑制剤にEDTA−2Na(和光純薬、特級試薬)0.4gと、pH調整剤に水酸化ナトリウム(和光純薬、特級試薬)4.0gが配合されたもので、これを軟水化した水に1リツトル当たり500mg投入した。
(3) Example 3
In the same manner as the water treatment agent of Example 1, the water treatment agent of Example 3 contains a predetermined amount of a film forming agent, an oxygen scavenger, a scale inhibitor, and a pH adjuster per 100 g of the total amount of the water treatment agent. It is a blend. That is, the water treatment agent of Example 3 was 9.66 g of sodium silicate as a film forming agent, 7.5 g of vitamin C (L-ascorbic acid) (Wako Pure Chemicals, special grade reagent) as an oxygen scavenger, and scale suppression. EDTA-2Na (Wako Pure Chemicals, special grade reagent) 0.4g in the agent and sodium hydroxide (Wako Pure Chemicals, special grade reagent) 4.0g in the pH adjuster, which is mixed with softened water 500 mg was introduced per liter.

<比較例>
(1)比較例1
比較例1の水処理剤は、水処理剤全量100g当たり純水に皮膜形成剤と、スケール抑制剤と、pH調整剤を所定量配合したものである。すなわち、比較例1の水処理剤は、皮膜形成剤にケイ酸ナトリウム(和光純薬、特級試薬)0.04gと、スケール抑制剤にEDTA−2Na(和光純薬、特級試薬)0.4gと、pH調整剤に水酸化ナトリウム(和光純薬、特級試薬)4.0gが配合されたもので、これを軟水化した水に1リツトル当たり500mg投入した。
<Comparative example>
(1) Comparative Example 1
The water treatment agent of Comparative Example 1 is obtained by blending a predetermined amount of a film forming agent, a scale inhibitor, and a pH adjuster with pure water per 100 g of the total amount of the water treatment agent. That is, the water treatment agent of Comparative Example 1 has 0.04 g of sodium silicate (Wako Pure Chemical, special grade reagent) as a film forming agent and 0.4 g of EDTA-2Na (Wako Pure Chemical, special grade reagent) as a scale inhibitor. In addition, 4.0 g of sodium hydroxide (Wako Pure Chemicals, special grade reagent) was added to the pH adjuster, and 500 mg per liter was added to softened water.

(2)比較例2
比較例2の水処理剤は、比較例1の水処理剤と同様に、水処理剤全量100g当たり純水に皮膜形成剤と、スケール抑制剤と、pH調整剤を所定量配合したものである。すなわち、比較例2の水処理剤は、皮膜形成剤にケイ酸ナトリウム(和光純薬、特級試薬)21.5gと、スケール抑制剤にEDTA−2Na(和光純薬、特級試薬)0.4gと、pH調整剤に水酸化ナトリウム(和光純薬、特級試薬)4.0gが配合されたもので、これを軟水化した水に1リツトル当たり500mg投入した。
(2) Comparative Example 2
Similar to the water treatment agent of Comparative Example 1, the water treatment agent of Comparative Example 2 is obtained by blending a predetermined amount of a film forming agent, a scale inhibitor, and a pH adjuster into pure water per 100 g of the total amount of the water treatment agent. . That is, the water treatment agent of Comparative Example 2 has 21.5 g of sodium silicate (Wako Pure Chemical, special grade reagent) as a film forming agent and 0.4 g of EDTA-2Na (Wako Pure Chemical, special grade reagent) as a scale inhibitor. In addition, 4.0 g of sodium hydroxide (Wako Pure Chemicals, special grade reagent) was added to the pH adjuster, and 500 mg per liter was added to softened water.

<評価>
(1)実験条件
実施例1〜3、比較例1〜2に示された水処理剤を所定量添加したボイラ給水を用いて、ボイラ水管の伝熱面におけるスケール付着特性と腐食の評価を行った。このスケール付着特性と腐食の評価は、蒸発量が1.35kg/時間の実験用貫流ボイラに、実施例1〜3、比較例1〜2に示された水処理剤を所定量添加した軟水をボイラ給水用に供給し、圧力が0.3MPaの蒸気を連続的に発生させながら、ボイラ給水のブロー率が10%となるようにして運転された実験用貫流ボイラを用いて行われた。この実験用貫流ボイラの運転は、ボイラ水管の伝熱面におけるスケール付着特性と腐食の評価ができるだけ実機の評価に近いものとなるために、48時間連続して行われた。ボイラ水管の伝熱面におけるスケール付着特性は、ボイラの運転開始から24時間後にボイラ水(ボイラ水管内の水で加熱を受けた水をいう)を採水し、ボイラ水中のCa濃度を測定し、Caの溶解度を評価するとともに、48時間の運転終了後に実験用貫流ボイラから評価用のボイラ水管を抜き出し、このボイラ水管の伝熱面を観察して評価した。また、ボイラ水管の伝熱面における腐食は、前記評価用のボイラ水管の伝熱面を観察して評価した。
<Evaluation>
(1) Experimental conditions Using the boiler feed water to which a predetermined amount of the water treatment agent shown in Examples 1 to 3 and Comparative Examples 1 and 2 is added, the scale adhesion characteristics and corrosion on the heat transfer surface of the boiler water pipe are evaluated. It was. The scale adhesion characteristics and the corrosion were evaluated by adding soft water obtained by adding a predetermined amount of the water treatment agent shown in Examples 1 to 3 and Comparative Examples 1 and 2 to an experimental once-through boiler having an evaporation amount of 1.35 kg / hour. This was carried out using an experimental once-through boiler that was supplied for boiler feed water and was operated such that the blow rate of the boiler feed water was 10% while continuously generating steam having a pressure of 0.3 MPa. This experimental once-through boiler was operated continuously for 48 hours because the scale adhesion characteristics and corrosion evaluation on the heat transfer surface of the boiler water pipe were as close as possible to those of the actual machine. The scale adhesion characteristics on the heat transfer surface of the boiler water pipe are measured 24 hours after the start of operation of the boiler by collecting boiler water (referred to water heated by the water in the boiler water pipe) and measuring the Ca concentration in the boiler water. In addition to evaluating the solubility of Ca, an evaluation boiler water pipe was extracted from the experimental once-through boiler after 48 hours of operation, and the heat transfer surface of the boiler water pipe was observed and evaluated. Further, the corrosion on the heat transfer surface of the boiler water tube was evaluated by observing the heat transfer surface of the boiler water tube for evaluation.

(2)スケール付着特性の評価
ボイラ水管の伝熱面におけるスケール付着特性は、以下の手順で評価される。
先ず、ボイラの運転開始から24時間後にボイラ水の採水を行い、採水されたボイラ水のCa濃度はICP発光分析装置によって測定され、この測定されたCa濃度からCa溶解度を評価し、ボイラ水管の伝熱面におけるスケール付着特性が評価される。ここで、Ca溶解度の評価によるスケール付着特性の評価は、ボイラ水管の伝熱面にCaがスケールとして析出すると、ボイラ水のCa濃度、すなわちCa溶解度が低下することに着目してなされたものである。具体的には、Ca濃度が1.0mg/リツトル−CaCO含まれたボイラ給水をボイラのブロー率10%の条件下で実験用貫流ボイラを運転した場合において、ボイラ水管の伝熱面にCaがスケールとして析出していなければ、ボイラ水のCa溶解度は低下せずに、Ca濃度は約10mg/リツトルを維持した濃度として検出される。一方、仮にボイラ水管の伝熱面の表面にCaがスケールとして析出する場合には、ボイラ水のCa溶解度は低下し、Ca濃度は10mg/リツトルよりも低い濃度として検出される。
(2) Evaluation of scale adhesion characteristics Scale adhesion characteristics on the heat transfer surface of the boiler water pipe are evaluated by the following procedure.
First, the boiler water is sampled 24 hours after the start of operation of the boiler, and the Ca concentration of the sampled boiler water is measured by an ICP emission analyzer, and the solubility of the Ca is evaluated from the measured Ca concentration. Scale adhesion characteristics on the heat transfer surface of the water pipe are evaluated. Here, the evaluation of the scale adhesion property by the evaluation of the Ca solubility is made by paying attention to the decrease in the Ca concentration of the boiler water, that is, the Ca solubility, when Ca is deposited as a scale on the heat transfer surface of the boiler water pipe. is there. Specifically, in the case where an experimental once-through boiler is operated with a boiler feed water containing a Ca concentration of 1.0 mg / liter-CaCO 3 under a condition where the boiler blow rate is 10%, the heat transfer surface of the boiler water pipe has Ca. If it is not deposited as a scale, the Ca concentration is detected as a concentration maintaining about 10 mg / liter without reducing the Ca solubility of the boiler water. On the other hand, if Ca deposits as a scale on the surface of the heat transfer surface of the boiler water pipe, the Ca solubility of the boiler water is decreased, and the Ca concentration is detected as a concentration lower than 10 mg / liter.

次に、ボイラの運転開始から48時間後に実験用貫流ボイラの運転を停止し、この停止されたボイラからボイラ水管を抜き取り、このボイラ水管の伝熱面にCaがスケールとして付着しているか否かを肉眼およびルーペで観察し、スケール付着特性を評価する。また、スケール付着特性は、ボイラ水管の伝熱面に付着したスケールの厚さを膜厚計を用いて測定し、スケールの厚さから評価を行うこともできる。   Next, after 48 hours from the start of boiler operation, the operation of the experimental once-through boiler is stopped, the boiler water pipe is extracted from the stopped boiler, and whether or not Ca adheres to the heat transfer surface of the boiler water pipe as a scale. Is observed with the naked eye and a magnifying glass to evaluate the scale adhesion characteristics. In addition, the scale adhesion property can be evaluated from the thickness of the scale by measuring the thickness of the scale adhered to the heat transfer surface of the boiler water pipe using a film thickness meter.

このようにして、表1には、実施例1〜3、比較例1〜2に示された水処理剤を所定量添加したボイラ給水について、ボイラの運転開始から24時間後におけるCa濃度としてのボイラ水のCa溶解度が示されている。   Thus, in Table 1, about the boiler feed water to which a predetermined amount of the water treatment agent shown in Examples 1 to 3 and Comparative Examples 1 and 2 was added, as the Ca concentration after 24 hours from the start of operation of the boiler. The Ca solubility of boiler water is shown.

この表1に示された結果によれば、実施例1〜3および比較例1の水処理剤を所定量添加したボイラ給水は、Ca溶解度は10mg/リツトル以上であった。一方、比較例2の水処理剤を所定量添加したボイラ給水は、Ca溶解度は10mg/リツトル以下であった。比較例2の水処理剤において、Ca溶解度が小さかったのは、ボイラ給水中のケイ酸ナトリウムの濃度が大きいため、ケイ酸ナトリウム中のシリカ成分と硬度(Ca)が結合してボイラ水管の伝熱面に厚く付着したからである。   According to the results shown in Table 1, the boiler feed water to which the predetermined amounts of the water treatment agents of Examples 1 to 3 and Comparative Example 1 were added had a Ca solubility of 10 mg / liter or more. On the other hand, the boiler feed water to which a predetermined amount of the water treatment agent of Comparative Example 2 was added had a Ca solubility of 10 mg / liter or less. In the water treatment agent of Comparative Example 2, the reason why the Ca solubility was small was that the concentration of sodium silicate in the boiler feed water was large, so that the silica component in the sodium silicate and the hardness (Ca) were combined and transferred to the boiler water pipe. It is because it adhered to the hot surface thickly.

(3)腐食の評価
ボイラ水管の伝熱面における腐食の評価は、以下の手順にて行われた。先ず、ボイラの運転を48時間後に停止し、この停止されたボイラからボイラ水管を抜き取って水管表面からスケールを水洗や酸洗によって除去する。次に、スケールが除去されたボイラ水管の表面を肉眼やルーペなどで目視観察して全面腐食の有無を調べる。最後に、局部腐食について、スケールが除去されたボイラ水管の表面に孔食(ピッチングともいう)が発生しているか否かを肉眼やルーペなどで目視観察して調べ、孔食が起きている部位の深さを光学的変位計で測定し、孔食の最大深さを求める。
(3) Evaluation of corrosion Evaluation of corrosion on the heat transfer surface of the boiler water pipe was performed according to the following procedure. First, the operation of the boiler is stopped after 48 hours, the boiler water pipe is extracted from the stopped boiler, and the scale is removed from the surface of the water pipe by water washing or pickling. Next, the surface of the boiler water pipe from which the scale has been removed is visually observed with the naked eye or a magnifying glass to examine whether there is any general corrosion. Finally, for local corrosion, the surface of the boiler water tube from which scale has been removed is examined by visual observation with the naked eye or a loupe to see if pitting corrosion (also called pitting) has occurred. Is measured with an optical displacement meter to determine the maximum depth of pitting corrosion.

表1には、実施例1〜3、比較例1〜2に示された水処理剤を所定量添加したボイラ給水について、ボイラ水管の伝熱面における全面腐食の有無、局部腐食の有無、孔食の最大深さが、それぞれ示されている。   Table 1 shows boiler supply water to which a predetermined amount of the water treatment agent shown in Examples 1 to 3 and Comparative Examples 1 and 2 is added, whether or not there is general corrosion on the heat transfer surface of the boiler water pipe, whether or not there is local corrosion, Each maximum eclipse depth is shown.

この表1に示された結果によれば、実施例1〜3および比較例2の水処理剤を所定量添加したボイラ給水には、ボイラ水管の伝熱面の全面腐食と局部腐食が防止されていた。一方、比較例1の水処理剤を所定量添加したボイラ給水には、全面腐食は防止されていたが、ボイラ水管の伝熱面の局部腐食は防止されていなかった。   According to the results shown in Table 1, in the boiler feed water to which a predetermined amount of the water treatment agents of Examples 1 to 3 and Comparative Example 2 are added, overall corrosion and local corrosion of the heat transfer surface of the boiler water pipe are prevented. It was. On the other hand, in the boiler feed water to which a predetermined amount of the water treatment agent of Comparative Example 1 was added, overall corrosion was prevented, but local corrosion of the heat transfer surface of the boiler water pipe was not prevented.

以上のことから、この実施例1〜3に係る水処理剤によれば、ボイラ水管の伝熱面に腐食を抑制できる皮膜が皮膜形成剤により形成され、ボイラ給水中の溶存酸素は脱酸素剤により除去され、さらにボイラ水管の伝熱面のスケーリングはスケール抑制剤で防止され、ボイラ給水のpHはpH調整されるので、ボイラ水管の伝熱面の全面腐食と局部腐食を防止するとともに、優れた伝熱特性を得ることができる。   From the above, according to the water treatment agents according to Examples 1 to 3, a film capable of suppressing corrosion is formed on the heat transfer surface of the boiler water pipe by the film forming agent, and the dissolved oxygen in the boiler feed water is oxygen scavenger. In addition, scaling of the heat transfer surface of the boiler water pipe is prevented by the scale inhibitor, and the pH of the boiler feed water is adjusted to prevent overall corrosion and local corrosion of the heat transfer surface of the boiler water pipe. Heat transfer characteristics can be obtained.

次に、蒸気ボイラ装置に本発明の水処理剤を用いた水処理方法の一実施例について、図1に基づいて説明する。図1には、蒸気ボイラ装置の概略構成が示されている。
図1において、蒸気ボイラ装置1は、給水装置部2と、蒸気ボイラ3と、水処理剤供給部4と、制御部5とから構成されている。
Next, an embodiment of a water treatment method using the water treatment agent of the present invention in a steam boiler device will be described with reference to FIG. FIG. 1 shows a schematic configuration of a steam boiler apparatus.
In FIG. 1, the steam boiler device 1 includes a water supply unit 2, a steam boiler 3, a water treatment agent supply unit 4, and a control unit 5.

給水装置部2は、ボイラ給水を蒸気ボイラ3へ供給する各種の前処理装置から構成されており、軟水器21と、脱気装置22と、給水タンク23とが備えられている。軟水器21は、補給水供給路W1を経て外部から供給される水道水又は工業用水などの補給水を軟水化処理(軟化)する装置である。補給水を軟水化処理(軟化)するのは、補給水に含まれているカルシウムイオンやマグネシウムイオンを取り除くためである。ここで、カルシウムイオンやマグネシウムイオンを取り除くのは、これらがボイラ水管の伝熱面にスケールとして付着して伝熱特性が低下するのを防ぐためである。この軟水器21で軟化された補給水(軟水)は、脱気装置22で脱気される。   The water supply unit 2 includes various pretreatment devices that supply boiler water to the steam boiler 3, and includes a water softener 21, a deaeration device 22, and a water supply tank 23. The water softener 21 is a device that softens (softens) supply water such as tap water or industrial water supplied from the outside through the supply water supply path W1. The reason why the makeup water is softened (softened) is to remove calcium ions and magnesium ions contained in the makeup water. Here, the reason why calcium ions and magnesium ions are removed is to prevent them from adhering as a scale to the heat transfer surface of the boiler water pipe and deteriorating heat transfer characteristics. The makeup water (soft water) softened by the water softener 21 is deaerated by the deaerator 22.

脱気装置22は、軟水中に溶存酸素が存在すると、この酸素によりボイラ水管の伝熱面は腐食されやすくなるため、主として軟水中の溶存酸素を予め取り除く装置である。脱気装置22には、気体分離膜や加熱により連続して酸素を除去する装置と減圧や超音波を利用するバッチ式装置等が用いられる。このうち、気体を通し、液体を通さない膜である気体分離膜を用いる装置は、操作性が容易で、安定して連続運転ができ、コストが安価なことから好ましい装置である。すなわち、気体分離膜を用いる装置は、気体分離膜の内側に、軟水化処理された水(軟水)を流し、膜の外側を真空状態にするとこの軟水に含まれている気体を膜の間を通って膜の外側へ排気し、軟水を脱気することができる。   The deaeration device 22 is a device that mainly removes dissolved oxygen in soft water in advance because dissolved oxygen is present in the soft water, so that the heat transfer surface of the boiler water pipe is easily corroded by the oxygen. As the deaerator 22, a gas separation membrane, a device that continuously removes oxygen by heating, a batch-type device that uses reduced pressure or ultrasonic waves, or the like is used. Among these, an apparatus using a gas separation membrane, which is a membrane that allows gas to pass and does not allow liquid to pass, is preferable because it is easy to operate, can be stably operated continuously, and is inexpensive. That is, in an apparatus using a gas separation membrane, softened water (soft water) is allowed to flow inside the gas separation membrane, and when the outside of the membrane is evacuated, the gas contained in the soft water is passed between the membranes. It can be exhausted to the outside of the membrane and the soft water can be degassed.

この脱気装置22で溶存酸素が取り除かれた軟水は、給水タンク23に貯留される。給水タンク23には、蒸気ボイラ3へ供給するボイラ給水が貯留され、ボイラ給水中のシリカ濃度や溶存酸素量を測定し、検出する検出部24が備えられている。この給水タンク23には、脱気装置22で脱気された軟水と、蒸気ボイラ3で生成された蒸気が負荷装置(図示省略)において熱交換した復水とが復水回収路(図示省略)を経て供給される。また、給水タンク23には、ボイラ給水を薬品処理するために後述する水処理剤タンク41に貯留されている水処理剤が薬剤供給ポンプP1により水処理剤供給路W2を経て供給される。この水処理剤は、上記本発明の実施形態に記載されている水処理剤であり、水を主成分とし、ボイラ水管の伝熱面に皮膜を形成する皮膜形成剤と、脱酸素剤と、スケール抑制剤と、pH調整剤とが配合されている。そのため、この水処理剤をボイラ給水へ供給すると、ボイラ水管の伝熱面の腐食やスケールの付着を防止することができる。このボイラ給水は、給水ポンプP2により給水タンク23から給水路W3を経て蒸気ボイラ3へ供給される。   The soft water from which dissolved oxygen has been removed by the degassing device 22 is stored in the water supply tank 23. Boiler feed water to be supplied to the steam boiler 3 is stored in the feed water tank 23, and a detection unit 24 that measures and detects the silica concentration and dissolved oxygen amount in the boiler feed water is provided. In this water supply tank 23, soft water deaerated by the deaerator 22 and condensate obtained by heat exchange of steam generated by the steam boiler 3 in a load device (not shown) are a condensate recovery path (not shown). Supplied via In addition, a water treatment agent stored in a water treatment agent tank 41, which will be described later, is supplied to the water supply tank 23 through a water treatment agent supply path W2 by a chemical supply pump P1 in order to perform chemical treatment of boiler supply water. This water treatment agent is the water treatment agent described in the embodiment of the present invention, a film forming agent that is mainly composed of water and forms a film on the heat transfer surface of the boiler water pipe, an oxygen scavenger, A scale inhibitor and a pH adjuster are blended. Therefore, when this water treatment agent is supplied to the boiler feed water, corrosion of the heat transfer surface of the boiler water pipe and adhesion of scale can be prevented. This boiler feed water is supplied from the feed water tank 23 to the steam boiler 3 via the feed water path W3 by the feed water pump P2.

ここにおいて、検出部24で検出されるシリカ濃度は、シリカ(二酸化ケイ素)としての濃度であり、JIS K 0101に記載のモリブデン黄吸光光度法に従って測定され、検出される。また、溶存酸素量は、JIS K 0101に記載の工業用水試験法に従って測定され、検出される。   Here, the silica concentration detected by the detection unit 24 is a concentration as silica (silicon dioxide), which is measured and detected according to the molybdenum yellow absorptiometry described in JIS K 0101. The amount of dissolved oxygen is measured and detected according to the industrial water test method described in JIS K 0101.

このボイラ給水が供給された蒸気ボイラ3では、蒸気が生成され、この蒸気は蒸気ラインS1を経て各種の負荷装置(図示省略)へ供給される。
蒸気ボイラ3は、ボイラ給水を加熱して蒸気を生成するものであり、高温高圧環境にある。中でもボイラ水管(図示省略)は、管の外面側で加熱源から輻射熱を直接受け、管の内面側(ボイラ水管の伝熱面)に高温高圧のボイラ給水又は蒸気が流れているため、過酷な環境にある。このボイラ水管の伝熱面は、ボイラ給水の水質がよくない場合は、腐食が生じたり、スケールが付着するため、蒸気ボイラ3は安定した運転を長期間連続して行うことができなくなるおそれがある。そのため、ボイラ給水の水質管理は重要な項目であり、本実施例に示すようなボイラ給水の水処理方法が求められている。
In the steam boiler 3 supplied with this boiler feed water, steam is generated, and this steam is supplied to various load devices (not shown) via the steam line S1.
The steam boiler 3 generates steam by heating boiler feed water, and is in a high temperature and high pressure environment. In particular, a boiler water pipe (not shown) receives radiant heat directly from a heating source on the outer surface side of the pipe, and high-temperature / high-pressure boiler feed water or steam flows on the inner surface side (heat transfer surface of the boiler water pipe). In the environment. If the quality of the boiler feed water is poor, the heat transfer surface of the boiler water pipe may be corroded or scales attached, so that the steam boiler 3 may not be able to operate stably for a long period of time. is there. Therefore, the water quality management of boiler feed water is an important item, and a boiler feed water treatment method as shown in this embodiment is required.

本実施例の水処理方法は、給水タンク23に貯留されているボイラ給水中に溶解しているシリカ濃度や溶存酸素量に変動が生じた場合、所定の濃度に予め調整されて水処理剤タンク41に貯留されている水処理剤を、前記変動に対応して給水タンク23へ供給する方法である。この場合、給水タンク23へ供給される水処理剤は、シリカ濃度や溶存酸素量の変動に対応して供給量が制御されている。水処理剤の供給量の制御は、後述する制御部5により水処理剤供給部4の薬剤供給ポンプP1の吐出量を制御して行われる。   In the water treatment method of this embodiment, when fluctuations occur in the silica concentration or dissolved oxygen amount dissolved in the boiler feed water stored in the feed water tank 23, the water treatment agent tank is adjusted in advance to a predetermined concentration. In this method, the water treatment agent stored in 41 is supplied to the water supply tank 23 in response to the fluctuation. In this case, the supply amount of the water treatment agent supplied to the water supply tank 23 is controlled in accordance with fluctuations in the silica concentration and the dissolved oxygen amount. The supply amount of the water treatment agent is controlled by controlling the discharge amount of the chemical supply pump P1 of the water treatment agent supply unit 4 by the control unit 5 described later.

水処理剤供給部4は、前述した水処理剤を貯留している水処理剤タンク41と、水処理剤タンク41から給水タンク23へ供給する薬剤供給ポンプP1から構成されている。水処理剤タンク41は所定の濃度に予め調整された水処理剤を貯留する。
ボイラ給水中のシリカ濃度や溶存酸素量の変動は、ボイラ給水中のシリカ濃度や溶存酸素量を給水タンク23に備えられている検出部24で検出し、検出されたシリカ濃度や溶存酸素量に基づいて制御部5により判断される。
The water treatment agent supply unit 4 includes a water treatment agent tank 41 that stores the water treatment agent described above, and a chemical supply pump P <b> 1 that supplies the water treatment agent tank 41 to the water supply tank 23. The water treatment agent tank 41 stores a water treatment agent adjusted in advance to a predetermined concentration.
The fluctuation of the silica concentration and dissolved oxygen amount in the boiler feed water is detected by the detection unit 24 provided in the feed water tank 23, and the detected silica concentration and dissolved oxygen amount are detected. Based on this, the control unit 5 determines.

制御部5は、図1に示すように、給水装置部2および水処理剤供給部4を構成する各機器に電気的に接続されている。具体的には、制御部5は、ボイラ給水タンク23に備えられている検出部24および薬剤供給ポンプP1に電気的に接続されている。
制御部5は、マイクロコンピュータを中心とした論理回路として構成され、中央演算処理ユニットのCPU51、一時的にデータを記憶するRAM52、処理プログラムが記憶されたROM53、あるいは各種信号を入出力する入出力ポート54が備えられている。制御部5は、前述したように、シリカ濃度や溶存酸素量に関する情報を検出部24から入力し、これに基づいて、薬剤供給ポンプP1の吐出量の制御信号を出力し、薬剤供給ポンプP1の吐出量を制御する。
As shown in FIG. 1, the control unit 5 is electrically connected to each device constituting the water supply device unit 2 and the water treatment agent supply unit 4. Specifically, the control unit 5 is electrically connected to the detection unit 24 and the chemical supply pump P1 provided in the boiler water supply tank 23.
The control unit 5 is configured as a logic circuit centered on a microcomputer, and includes a CPU 51 of a central processing unit, a RAM 52 that temporarily stores data, a ROM 53 that stores processing programs, and an input / output that inputs and outputs various signals. A port 54 is provided. As described above, the control unit 5 inputs information related to the silica concentration and the dissolved oxygen amount from the detection unit 24, and based on this, outputs a control signal for the discharge amount of the drug supply pump P1, and outputs the control signal of the drug supply pump P1. Control the discharge rate.

ここで、薬剤供給ポンプP1の吐出量を制御するのは、給水タンク23へ供給される水処理剤の供給量が多くなると、ボイラ水管の伝熱面にスケールが付着し易くなり、伝熱特性が悪くなるので、これを防ぐためである。一方、給水タンク23へ供給される水処理剤の供給量が少なくなると、ボイラ水管の伝熱面に形成されるシリカ層又は鉄水酸化物層の厚さが薄くなり、ボイラ水管の伝熱面が全面腐食されたりするので、これを防ぐためである。また、ボイラ水管の伝熱面に形成されるシリカ層又は鉄水酸化物層の厚さの分布が不均一になると、ボイラ水管の伝熱面は局部腐食され易くなるので、これを防ぐためである。   Here, the discharge amount of the chemical supply pump P1 is controlled when the supply amount of the water treatment agent supplied to the water supply tank 23 increases, the scale easily adheres to the heat transfer surface of the boiler water pipe, and the heat transfer characteristics This is to prevent this from happening. On the other hand, when the supply amount of the water treatment agent supplied to the water supply tank 23 decreases, the thickness of the silica layer or the iron hydroxide layer formed on the heat transfer surface of the boiler water pipe becomes thin, and the heat transfer surface of the boiler water pipe This is to prevent this from being totally corroded. Also, if the thickness distribution of the silica layer or iron hydroxide layer formed on the heat transfer surface of the boiler water pipe becomes uneven, the heat transfer surface of the boiler water pipe is likely to be locally corroded. is there.

このように、本実施例の水処理方法によれば、ボイラ給水中のシリカ濃度や溶存酸素量に変動が生じた場合、ボイラ水管の伝熱面に皮膜を形成する皮膜形成剤と、脱酸素剤と、スケール抑制剤と、pH調整剤とが配合され、所定の濃度に調整された水処理剤について、水処理剤タンクから給水タンクへ供給する量を前記変動に対応して制御することにより、ボイラ水管の伝熱面における全面腐食と局部腐食を防止するとともに、優れた伝熱特性を得ることができる。   Thus, according to the water treatment method of the present embodiment, when fluctuation occurs in the silica concentration or dissolved oxygen amount in the boiler feed water, a film forming agent that forms a film on the heat transfer surface of the boiler water pipe, By controlling the amount supplied from the water treatment agent tank to the water supply tank for the water treatment agent adjusted to a predetermined concentration by blending the agent, the scale inhibitor, and the pH adjusting agent. In addition to preventing general corrosion and local corrosion on the heat transfer surface of the boiler water pipe, excellent heat transfer characteristics can be obtained.

本発明の実施例2に係る蒸気ボイラ装置の概略構成図である。It is a schematic block diagram of the steam boiler apparatus which concerns on Example 2 of this invention.

符号の説明Explanation of symbols

1 蒸気ボイラ装置
2 給水装置部
3 蒸気ボイラ
4 水処理剤供給部
5 制御部
DESCRIPTION OF SYMBOLS 1 Steam boiler apparatus 2 Water supply apparatus part 3 Steam boiler 4 Water treatment agent supply part 5 Control part

Claims (6)

水を主成分とし、
ボイラ水管の伝熱面に皮膜を形成する皮膜形成剤と、
脱酸素剤と、
スケール抑制剤と、
pH調整剤と、
が前記水に配合されていることを特徴とする水処理剤。
Water as the main component,
A film-forming agent that forms a film on the heat transfer surface of the boiler water pipe;
An oxygen scavenger;
A scale inhibitor;
a pH adjuster;
Is formulated in the water.
前記皮膜形成剤は、シリカ、ケイ酸ナトリウム、ケイ酸カリウム、オルトケイ酸塩、ポリケイ酸塩のうちの少なくとも1種又は2種以上からなることを特徴とする請求項1に記載の水処理剤。 The said film formation agent consists of at least 1 sort (s) or 2 or more types of silica, sodium silicate, potassium silicate, orthosilicate, and polysilicate, The water treatment agent of Claim 1 characterized by the above-mentioned. 前記脱酸素剤は、ビタミンCおよびその塩、タンニン、糖類型脱酸素剤、エリソルビン酸およびその塩、亜硫酸塩のうちの少なくとも1種又は2種以上からなることを特徴とする請求項1又は2に記載の水処理剤。 The said oxygen scavenger consists of at least 1 sort (s) or 2 or more types among vitamin C and its salt, tannin, saccharide type oxygen scavenger, erythorbic acid and its salt, and sulfite. Water treatment agent as described in 4. 前記スケール抑制剤は、クエン酸、エチレンジアミン四酢酸およびその塩、ポリアクリル酸およびその塩、ポリマレイン酸およびその塩のうちの少なくとも1種又は2種以上からなることを特徴とする請求項1,2,又は3に記載の水処理剤。 The scale inhibitor comprises at least one or more of citric acid, ethylenediaminetetraacetic acid and salts thereof, polyacrylic acid and salts thereof, polymaleic acid and salts thereof, and the like. Or the water treatment agent according to 3. 前記pH調整剤は、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属の水酸化物のうちの少なくとも1種又は2種以上からなることを特徴とする請求項1,2,3又は4に記載の水処理剤。 The said pH adjuster consists of at least 1 sort (s) or 2 or more types of alkali metal hydroxides, such as sodium hydroxide and potassium hydroxide, The 1, 2, 3, or 4 characterized by the above-mentioned. Water treatment agent. 請求項1,2,3,4又は5に記載の水処理剤を所定の濃度に調整する工程と、
給水タンクに溶解しているシリカ濃度と溶存酸素量を検出する工程と、
前記給水タンクへ供給される前記水処理剤の量を制御する工程とからなることを特徴とする水処理方法。
Adjusting the water treatment agent according to claim 1, 2, 3, 4 or 5 to a predetermined concentration;
Detecting the concentration of silica dissolved in the water tank and the amount of dissolved oxygen;
And a step of controlling the amount of the water treatment agent supplied to the water supply tank.
JP2005099551A 2005-03-30 2005-03-30 Water treating agent and water treatment method Withdrawn JP2006274427A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005099551A JP2006274427A (en) 2005-03-30 2005-03-30 Water treating agent and water treatment method
KR1020077022065A KR20070116022A (en) 2005-03-30 2006-03-20 Water treatment and method of water treatment
PCT/JP2006/306064 WO2006109546A1 (en) 2005-03-30 2006-03-20 Water treatment and method of water treatment
US11/885,150 US20080257831A1 (en) 2005-03-30 2006-03-20 Water Treating Agent and Water Treatment Method
CNA200680010488XA CN101151400A (en) 2005-03-30 2006-03-20 Water treatment and method of water treatment
CA002603426A CA2603426A1 (en) 2005-03-30 2006-03-20 Water treatment and method of water treatment
TW095110218A TW200640804A (en) 2005-03-30 2006-03-24 Water treating agent and water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005099551A JP2006274427A (en) 2005-03-30 2005-03-30 Water treating agent and water treatment method

Publications (1)

Publication Number Publication Date
JP2006274427A true JP2006274427A (en) 2006-10-12

Family

ID=37086828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005099551A Withdrawn JP2006274427A (en) 2005-03-30 2005-03-30 Water treating agent and water treatment method

Country Status (5)

Country Link
JP (1) JP2006274427A (en)
KR (1) KR20070116022A (en)
CN (1) CN101151400A (en)
CA (1) CA2603426A1 (en)
WO (1) WO2006109546A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281228A (en) * 2007-05-08 2008-11-20 Miura Co Ltd Chemical injection method
JP2009285530A (en) * 2008-05-27 2009-12-10 Kurita Water Ind Ltd Water treatment agent for boiler device, and water treatment method for boiler device
WO2010016434A1 (en) * 2008-08-05 2010-02-11 栗田工業株式会社 Boiler water treatment agent and water treatment process
US8277662B2 (en) 2009-03-25 2012-10-02 Miura Co., Ltd. Steam boiler apparatus and operating method therefor
WO2013058115A1 (en) * 2011-10-18 2013-04-25 栗田工業株式会社 Method for inhibiting iron scale deposition on water side in steam generator
JP2016168559A (en) * 2015-03-13 2016-09-23 株式会社東芝 Method and device for suppressing generation of scale
CN105984962A (en) * 2015-01-30 2016-10-05 乌鲁木齐汇通星月化工科技有限公司 Renewable high-hardness anti-scaling agent and preparation method thereof
JPWO2014199523A1 (en) * 2013-06-14 2017-02-23 栗田工業株式会社 Water treatment method for steam generating equipment
CN107673489A (en) * 2017-11-14 2018-02-09 昌邑市龙港无机硅有限公司 A kind of recirculated water corrosion inhibiting and descaling agent
JP2018145488A (en) * 2017-03-07 2018-09-20 三浦工業株式会社 Water treatment agent, scale removal method and scale suppression method
JP2019044200A (en) * 2017-08-29 2019-03-22 三浦工業株式会社 Sulfurous acid-based water treatment agent and water treatment method
JP2019044201A (en) * 2017-08-29 2019-03-22 三浦工業株式会社 Sulfurous acid-based water treatment agent and water treatment method

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009285522A (en) * 2008-05-27 2009-12-10 Miura Co Ltd Reverse osmosis membrane device
JP5610135B2 (en) * 2010-05-12 2014-10-22 三浦工業株式会社 Metal cleaning method
JP5510123B2 (en) * 2010-06-30 2014-06-04 三浦工業株式会社 Operation method of steam boiler
AR090505A1 (en) * 2012-04-09 2014-11-19 Nalco Co METHOD AND DEVICE FOR THE PREVENTION OF CORROSION IN HOT WATER SYSTEMS
CN103351031A (en) * 2013-05-10 2013-10-16 湖北中烟工业有限责任公司 Purification agent for prolonging use period of reconstituted tobacco production circulation water, and use method thereof
CN104628154A (en) * 2013-11-09 2015-05-20 西安润达化工科技有限公司 Boiler water treatment agent
CN108101237A (en) * 2017-12-08 2018-06-01 亿利洁能科技(颍上)有限公司 A kind of briquette boiler water treatment agent and Application way
CN110952103A (en) * 2019-12-06 2020-04-03 万华化学集团股份有限公司 Carbon steel corrosion inhibitor for oxygen-containing salt water and preparation method thereof
JP7083365B2 (en) * 2020-03-12 2022-06-10 栗田工業株式会社 How to control corrosion fatigue of evaporation pipes in boilers
CN113248030A (en) * 2021-05-25 2021-08-13 山东上远环保科技有限公司 Composite phosphorus-free boiler water treatment agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003043028A (en) * 2001-07-31 2003-02-13 Miura Co Ltd Method and apparatus for measuring constituent concentration
JP2003120904A (en) * 2001-08-09 2003-04-23 Miura Co Ltd Water treating agent for steam boiler device
JP4110768B2 (en) * 2001-11-28 2008-07-02 三浦工業株式会社 Boiler water treatment agent

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008281228A (en) * 2007-05-08 2008-11-20 Miura Co Ltd Chemical injection method
JP2009285530A (en) * 2008-05-27 2009-12-10 Kurita Water Ind Ltd Water treatment agent for boiler device, and water treatment method for boiler device
JP5402931B2 (en) * 2008-08-05 2014-01-29 栗田工業株式会社 Boiler water treatment agent and water treatment method
WO2010016434A1 (en) * 2008-08-05 2010-02-11 栗田工業株式会社 Boiler water treatment agent and water treatment process
KR101493381B1 (en) 2008-08-05 2015-02-13 쿠리타 고교 가부시키가이샤 Boiler water treatment agent and water treatment process
US8277662B2 (en) 2009-03-25 2012-10-02 Miura Co., Ltd. Steam boiler apparatus and operating method therefor
JP2013086029A (en) * 2011-10-18 2013-05-13 Kurita Water Ind Ltd Method of preventing formation of iron scale in water-side can of steam generator
WO2013058115A1 (en) * 2011-10-18 2013-04-25 栗田工業株式会社 Method for inhibiting iron scale deposition on water side in steam generator
JPWO2014199523A1 (en) * 2013-06-14 2017-02-23 栗田工業株式会社 Water treatment method for steam generating equipment
CN105984962A (en) * 2015-01-30 2016-10-05 乌鲁木齐汇通星月化工科技有限公司 Renewable high-hardness anti-scaling agent and preparation method thereof
JP2016168559A (en) * 2015-03-13 2016-09-23 株式会社東芝 Method and device for suppressing generation of scale
JP2018145488A (en) * 2017-03-07 2018-09-20 三浦工業株式会社 Water treatment agent, scale removal method and scale suppression method
JP2019044200A (en) * 2017-08-29 2019-03-22 三浦工業株式会社 Sulfurous acid-based water treatment agent and water treatment method
JP2019044201A (en) * 2017-08-29 2019-03-22 三浦工業株式会社 Sulfurous acid-based water treatment agent and water treatment method
CN107673489A (en) * 2017-11-14 2018-02-09 昌邑市龙港无机硅有限公司 A kind of recirculated water corrosion inhibiting and descaling agent

Also Published As

Publication number Publication date
KR20070116022A (en) 2007-12-06
CN101151400A (en) 2008-03-26
WO2006109546A1 (en) 2006-10-19
CA2603426A1 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP2006274427A (en) Water treating agent and water treatment method
US20080257831A1 (en) Water Treating Agent and Water Treatment Method
US7955853B2 (en) Method and device for creating and analyzing an at temerature and pressure oxidation-reduction potential signature in hot water systems for preventing corrosion
US9352980B2 (en) Method and device for preventing corrosion in hot water systems
US6645400B2 (en) Corrosion control utilizing a hydrogen peroxide donor
US20100163469A1 (en) Control system for monitoring localized corrosion in an industrial water system
EP2179076B1 (en) Method for preventing corrosion in hot water systems
JP5691128B2 (en) Scale inhibitor and scale prevention method
TWI641798B (en) Method and device for preventing corrosion in hot water systems
JP5045618B2 (en) Water treatment agent and water treatment method
JP5099884B2 (en) Corrosion inhibitor
JP5970884B2 (en) Anticorrosion method
JP7083365B2 (en) How to control corrosion fatigue of evaporation pipes in boilers
JP2003159597A (en) Water treating agent
JP2006274337A (en) Treatment agent and treatment method for boiler water
JP2015174040A (en) Water treatment method for steam generation equipment
WO2024084874A1 (en) Method for operating boiler
JP4442764B2 (en) Drum boiler and exhaust heat recovery boiler equipped with drum boiler
JP4445767B2 (en) Method and apparatus for producing rust-proof functional water
JP4467046B2 (en) Metal corrosion inhibitor
JP2003160889A (en) Water treatment agent
KR20220150293A (en) Method of suppressing corrosion fatigue of evaporation tube in boiler
Kessler et al. Performance Of A New Mill Supply Treatment Program
JP2003082480A (en) Method for suppressing corrosion of nonpassivated metallic body, and method for suppressing corrosion of boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070918

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091127