JPS6396980A - Lser resonator - Google Patents

Lser resonator

Info

Publication number
JPS6396980A
JPS6396980A JP24207386A JP24207386A JPS6396980A JP S6396980 A JPS6396980 A JP S6396980A JP 24207386 A JP24207386 A JP 24207386A JP 24207386 A JP24207386 A JP 24207386A JP S6396980 A JPS6396980 A JP S6396980A
Authority
JP
Japan
Prior art keywords
temperature
laser
members
heat medium
laser resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24207386A
Other languages
Japanese (ja)
Inventor
Norio Karube
規夫 軽部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP24207386A priority Critical patent/JPS6396980A/en
Publication of JPS6396980A publication Critical patent/JPS6396980A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To bring the temperature of a thermal medium in coincident with a room temperature thereby to simply maintain the temperature of all supporting members constant by circulating the medium in the connecting holes of the members of a laser resonator. CONSTITUTION:A high-frequency voltage is applied to generate a glow discharge in the interior 1c of a laser tube 1, CO2 molecules are excited by passing laser gas through the interior 1c, the irradiated light of predetermined wavelength is reflected to be resonated by reflecting mirrors 2, 4 at both sides of the tube 1, and the reflected lights are partly obtained as a laser output from the mirror 4. In this case, connecting holes 61a-61d are respectively formed longitudinally in the members 6a-6d of the resonator, a circulating water is fed to the holes 61, the heat of the circulating water is exchanged by a radiator 8 and a feed pipe 9 to bring in coincidence with a room temperature. Accordingly, the temperature difference between the upper and lower parts of the tube 1 is absorbed to bring the temperatures of the members 6 in coincidence.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ共振器に関し、特に、平行に位置する2
枚の反射鏡によりレーザ管内の光を相互に反射してレー
ザ出力を得るレーザ共振器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a laser resonator, and in particular, to a laser resonator located in parallel to each other.
The present invention relates to a laser resonator that obtains a laser output by mutually reflecting light within a laser tube using two reflecting mirrors.

〔従来の技術〕[Conventional technology]

第3図は従来のレーザ共振器の問題点を説明するための
図である。
FIG. 3 is a diagram for explaining the problems of the conventional laser resonator.

第3図に示されるように、従来の炭酸ガス等の気体レー
ザを発生させるためのレーザ共振器は、概略すると、レ
ーザ管101、反射鏡102゜104、保持部材103
,105、および、支持部材106a〜106dを具備
している。
As shown in FIG. 3, a conventional laser resonator for generating a gas laser such as carbon dioxide gas includes a laser tube 101, a reflecting mirror 102, a holding member 103,
, 105, and support members 106a to 106d.

レーザ管101は、例えば、高周波の電圧を印加してそ
のレーザ管の内部にグロー放電を生じさせ、そして、グ
ロー放電を行っているレーザ管101の内部にレーザガ
ス(例えば、COl+ N t。
The laser tube 101 applies, for example, a high-frequency voltage to generate a glow discharge inside the laser tube, and a laser gas (for example, COI+Nt) is supplied to the inside of the laser tube 101 that is generating the glow discharge.

Heの混合気体)を通過させることによって、レーザガ
ス中の炭酸ガス分子を励起するようになされている。そ
して、励起されて高準位の分子振動状態にある炭酸ガス
分子が低準位の分子振動状態に遷移するときに所定の波
長の光を放出するが、レーザ共振器は上記の放出された
光をレーザ管1010両側に設けられた2枚の反射鏡1
02および104で反射して共振させ、その反射光の一
部をハーフミラ−である反射鏡104から取り出すこと
によりレーザ出力を得るものである。上記した反射鏡1
02および104は、それぞれ保持部材103および1
05に取付けられ、また、保持部材103と105とは
4本の支持部材106a〜106dによって相互に固定
支持されている。
By passing a mixed gas of He, carbon dioxide molecules in the laser gas are excited. When the excited carbon dioxide molecules transition to a low-level molecular vibrational state, they emit light of a predetermined wavelength, and the laser resonator uses the emitted light. Two reflecting mirrors 1 installed on both sides of the laser tube 1010
02 and 104 to cause resonance, and a portion of the reflected light is taken out from the reflecting mirror 104, which is a half mirror, thereby obtaining a laser output. Reflector 1 mentioned above
02 and 104 are holding members 103 and 1, respectively.
05, and the holding members 103 and 105 are fixedly supported by four supporting members 106a to 106d.

ところで、反射鏡102と104とは正確に平行とされ
ていなければ、レーザ管101内で放出された光を2枚
の反射鏡102および104で何度も反射して共振させ
ることができない。すなわち、2枚の反射鏡102と1
04との角度が正確な平行状態から少しでもずれると、
それらの反射鏡102および104で反射される光の経
路も次第にずれが大きくなり、反射光の経路は反射鏡の
外側へ向かって進行することになってしまう、この2枚
の反射鏡102と104との角度のずれは、主にレーザ
管101から放射される熱によって、レーザ管101の
上部の温度TIとレーザ管101の下部の温度T!との
間に温度差を生じ、支持部材106 a (106b)
と支持部材106 c(106d)との熱膨張による長
さ変化が相違することが原因となっている。そのため、
支持部材106a〜106dの材質としては、熱膨張係
数の極めて小さいF e −N i合金等のインバ(I
nvar)が使用されている。
By the way, unless the reflecting mirrors 102 and 104 are accurately parallel, the light emitted within the laser tube 101 cannot be reflected many times by the two reflecting mirrors 102 and 104 and resonated. That is, two reflecting mirrors 102 and 1
If the angle with 04 deviates even slightly from the exact parallel state,
The path of the light reflected by these two reflecting mirrors 102 and 104 gradually becomes larger, and the path of the reflected light ends up proceeding toward the outside of the reflecting mirrors. The difference in angle between the temperature TI at the top of the laser tube 101 and the temperature T! at the bottom of the laser tube 101 is caused mainly by the heat radiated from the laser tube 101. A temperature difference is generated between the support member 106a (106b)
This is caused by the difference in length change due to thermal expansion between the support member 106c (106d) and the support member 106c (106d). Therefore,
The material of the support members 106a to 106d is Invar (I), such as Fe-Ni alloy, which has an extremely small coefficient of thermal expansion.
nvar) is used.

また、従来より、レーザ管101の上部の温度T、と下
部の温度Ttとの温度差の影響を無くして支持部材10
6a (106b)の温度と支持部材106c (10
6d)の温度とを一致させるために、支持部材106a
〜106dの内部の長手軸方向に連通孔を形成し、それ
ら各支持部材の連通孔に温度が一定とされた水を流すこ
とが行われている。
Furthermore, conventionally, the support member 10 can be removed by eliminating the influence of the temperature difference between the temperature T at the upper part of the laser tube 101 and the temperature Tt at the lower part.
6a (106b) and support member 106c (10
6d), the support member 106a
Communication holes are formed in the longitudinal axis direction of the support members 106d to 106d, and water at a constant temperature is allowed to flow through the communication holes of each support member.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように、従来のレーザ共振器は、レーザ管10
1からの発熱によるレーザ管の上部と下部との温度差に
対して、支持部材106a〜106dに熱膨張係数の極
めて小さいインバ等の材質を使用して、支持部材106
a〜106dが熱によって伸縮しないようにしていた。
As mentioned above, a conventional laser resonator includes a laser tube 10
1, the supporting members 106a to 106d are made of a material such as Invar, which has an extremely small coefficient of thermal expansion.
A to 106d were prevented from expanding and contracting due to heat.

しかし、この方式ではインバ等の熱膨張係数の極めて小
さい材質は高価となる欠点がある。
However, this method has the disadvantage that materials with extremely small thermal expansion coefficients, such as Invar, are expensive.

また、レーザ管101の上部の温度T1と下部の温度T
、との温度差の影響を無くして支持部材106a (1
06b)の温度と支持部材106C(106d)の温度
とを一致させるために、各支持部材の連通孔に一定温度
の水を流すことが行われている。しかし、このような一
定温度の水を各支持部材の連通孔に流すためには、その
水の温度を常に一定とするための恒温器およびその恒温
水を循環させるためのポンプを存するチラーを必要とし
ていた。そして、このチラーは大型のものが必要とされ
るだけでなく、恒温器で設定された温度と室温との間に
差があると、例えば、恒温器で設定された温度が室温よ
りも相当低いと、支持部材106a−106dに結露等
を生じることになり、チラーから送出される水の温度を
室温に一致させなければならない、しかし、室温は季節
や毎日の天気等によって様々に変化するため、チラーか
ら送出される恒温水の温度を、例えば、人手によって頻
繁に設定しなければならなかった。このように、チラー
を使用して恒温水を支持部材106a〜106dの連通
孔に循環させるレーザ共振器は、チラーに要する費用だ
けでなく温度設定の手間についても問題があった。
In addition, the temperature T1 at the top of the laser tube 101 and the temperature T at the bottom
, the support member 106a (1
In order to match the temperature of the support member 106C (106d) with the temperature of the support member 106C (106d), water at a constant temperature is allowed to flow through the communication hole of each support member. However, in order to flow water at a constant temperature into the communication holes of each support member, a chiller is required that includes a constant temperature chamber to keep the temperature of the water constant and a pump to circulate the constant temperature water. It was. Not only is this chiller required to be large, but if there is a difference between the temperature set by the thermostat and the room temperature, for example, the temperature set by the thermostat is considerably lower than the room temperature. As a result, condensation or the like will occur on the support members 106a-106d, and the temperature of the water sent from the chiller must be made to match the room temperature.However, since the room temperature varies depending on the season, daily weather, etc. For example, the temperature of the constant-temperature water sent out from the chiller had to be frequently set manually. As described above, the laser resonator that uses a chiller to circulate constant-temperature water through the communication holes of the support members 106a to 106d has problems not only in the cost required for the chiller but also in the time and effort required to set the temperature.

本発明の目的は、上述した従来形のレーザ共振器におけ
る問題点に濡み、反射鏡がそれぞれ取付けられた一対の
保持部材を相互に固定支持する支持部材の内部に連通孔
を形成し、循環手段により各支持部材の連通孔に熱媒質
を循環させ、さらに、簡単な構成の熱交換手段によりこ
の熱媒質の温度を室温に一致させることによって、室温
と同じ温度の熱媒質を各支持部材の連通孔に循環させて
全ての支持部材の温度を一定とすることのできる簡単で
低価格のレーザ共振器を提供することにある。
An object of the present invention is to solve the above-mentioned problems in the conventional laser resonator, and to form a communication hole inside a supporting member that fixedly supports a pair of holding members each having a reflecting mirror attached thereto. By circulating a heat medium through the communication holes of each support member by means of a heat exchange means, and by making the temperature of this heat medium match the room temperature by means of a simply configured heat exchange means, a heat medium having the same temperature as room temperature is transferred to each support member. It is an object of the present invention to provide a simple and low-cost laser resonator that can keep the temperature of all supporting members constant by circulating through a communication hole.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、レーザ管と、該レーザ管の両側に平行
に設けられた一対の反射鏡と、該6反射鏡がそれぞれ取
付けられた一対の保持部材と、該各保持部材を相互に固
定支持し、内部に連通孔が形成された複数の支持部材と
、該各支持部材の連通孔を循環し、該各支持部材の温度
を全て同一の温度とする熱媒質と、該熱媒質を前記各支
持部材の連通孔を介して循環させる循環手段と、前記熱
媒質の温度を室温にする熱交換手段と、を具備するレー
ザ共振器が提供される。
According to the present invention, a laser tube, a pair of reflecting mirrors provided in parallel on both sides of the laser tube, a pair of holding members to which the six reflecting mirrors are respectively attached, and the holding members are fixed to each other. a plurality of support members each having a communication hole formed therein; a heat medium that circulates through the communication holes of each of the support members to bring the temperature of each of the support members to the same temperature; A laser resonator is provided that includes a circulation means for circulating the heat medium through communication holes in each support member, and a heat exchange means for bringing the temperature of the heat medium to room temperature.

〔作 用〕[For production]

上述した構成を有する本発明のレーザ共振器によれば、
レーザ管の両側に平行に設けられた一対の反射鏡がそれ
ぞれ取付けられた一対の保持部材は、内部に連通孔が形
成された複数の支持部材によって相互に固定支持される
。また、循環手段によって各支持部材の連通孔に熱媒質
が循環される。
According to the laser resonator of the present invention having the above-described configuration,
A pair of holding members each having a pair of reflecting mirrors provided in parallel on both sides of the laser tube are fixedly supported by a plurality of supporting members each having a communication hole formed therein. Further, the heat medium is circulated through the communication holes of each support member by the circulation means.

そして、上記熱媒質は熱交換手段によってその温度が室
温と一致するようにされるため、全ての支持部材の温度
は室温と同じ温度となり、これによって、レーザ管の上
部の支持部材と下部の支持部材との間に温度差がなくな
り、2枚の反射鏡は常に平行関係が維持されることにな
る。
Then, since the temperature of the heat medium is made to match the room temperature by the heat exchange means, the temperature of all the support members becomes the same as the room temperature, and thereby the upper support member and the lower support member of the laser tube There will be no temperature difference between the two reflecting mirrors and the two reflecting mirrors will always maintain a parallel relationship.

〔実施例〕〔Example〕

以下、図面を参照して本発明に係るレーザ共振器の一実
施例を説明する。
Hereinafter, one embodiment of a laser resonator according to the present invention will be described with reference to the drawings.

第1図は本発明に係るレーザ共振器の一実施例を概略的
に示す図であり、第2図は第1図のレーザ共振器をAA
線に沿って切断した断面図である。
FIG. 1 is a diagram schematically showing an embodiment of the laser resonator according to the present invention, and FIG. 2 is a diagram showing the laser resonator of FIG.
FIG. 3 is a cross-sectional view taken along a line.

第1図に示されるように、レーザ共振器は、概略すると
、レーザ管1、反射@2,4、保持部材3.5、および
、支持部材68〜6dを具備している。
As shown in FIG. 1, the laser resonator generally includes a laser tube 1, a reflector @2, 4, a holding member 3.5, and support members 68-6d.

レーザ管1は、例えば、2MHz程度の高周波電圧を印
加してレーザ管lの内部1c(第2図参照)にグロー放
電を生じさせ、また、グロー放電を行っているレーザ管
の内部1cにレーザガス(例えば、CO□* N、、H
eの混合気体)を通過させることによって、CO* 、
分子を励起するようになされている。そして、励起され
て高準位の分子振動状態にあるC Ox分子が低準位の
分子振動状態に遷移するときに放出される所定の波長の
光をレーザ管1の両側に設けられた2枚の反射鏡2およ
び4で反射して共振させる。そして、その反射光の一部
をハーフミラ−である反射鏡4からレーザ出力として取
り出すようになされている。上記の反射鏡2および4は
、それぞれ保持部材3および5に傾きの調整可能として
取付けられ、また、保持部材3と5は4本の支持部材1
06a〜106dによって相互に固定支持されている。
The laser tube 1 applies a high frequency voltage of, for example, about 2 MHz to generate a glow discharge in the interior 1c of the laser tube 1 (see Figure 2), and also injects laser gas into the interior 1c of the laser tube where the glow discharge is occurring. (For example, CO□*N,,H
CO*,
It is designed to excite molecules. Then, two laser beams installed on both sides of the laser tube 1 emit light of a predetermined wavelength that is emitted when the excited COx molecules in a high-level molecular vibration state transition to a low-level molecular vibration state. The light is reflected by the reflecting mirrors 2 and 4 and resonates. A part of the reflected light is extracted as a laser output from a reflecting mirror 4 which is a half mirror. The above-mentioned reflecting mirrors 2 and 4 are attached to holding members 3 and 5, respectively, so that their inclinations can be adjusted.
They are mutually fixedly supported by 06a to 106d.

すなわち、反射鏡2と4とは正確に平行とされていなけ
れば、レーザ管1内で発生した光を2枚の反射鏡2およ
び4で何度も反射して共振させることができないが、反
射a12と保持部材3との接続および反射鏡4と保持部
材5との接続は、それぞれベローズ2aおよび4aを介
して行われ、2枚の反射鏡2および4と保持部材3およ
び5との取付は個所には、2枚の反射鏡2と4とが正確
に平行となるような微調整機構が設けられている。
In other words, unless the reflecting mirrors 2 and 4 are exactly parallel, the light generated in the laser tube 1 cannot be reflected many times by the two reflecting mirrors 2 and 4 and resonated. The connection between a12 and the holding member 3 and the connection between the reflecting mirror 4 and the holding member 5 are performed via bellows 2a and 4a, respectively, and the attachment of the two reflecting mirrors 2 and 4 and the holding members 3 and 5 is made by A fine adjustment mechanism is provided at this location to ensure that the two reflecting mirrors 2 and 4 are accurately parallel to each other.

この微調整機構によって、2つの保持部材3および5の
工作上の平行状態からのずれを補償し、支持部材6a〜
6dの長さが個別に変化しない状態において、2枚の反
射鏡2および4を完全に平行とすることができるように
なされている。また、レーザ管1と保持部材3および5
との接続個所にもベローズ1aおよび1bが設けられ、
レーザ管1の発熱による長さの変化に対応するようにな
されている。
This fine adjustment mechanism compensates for deviations from the parallel state of the two holding members 3 and 5, and
The two reflecting mirrors 2 and 4 can be made completely parallel in a state where the lengths of the mirrors 6d do not change individually. In addition, the laser tube 1 and the holding members 3 and 5
Bellows 1a and 1b are also provided at the connection points with
This is designed to accommodate changes in the length of the laser tube 1 due to heat generation.

第1図および第2図から明らかなように、支持部材6a
〜6dの内部には、それらの長手軸方向にそれぞれ連通
孔61a〜61dが形成されていて、それぞれの連通孔
61a〜61dには各支持部材6a〜6dの温度を一定
とするための循環水が流されている。この支持部材の連
通孔61a〜61dに流される循環水の量は、1つの支
持部材の連通孔に付き、例えば、101/分程度であり
、これによって、レーザ管1からの発熱によるレーザ管
の上部と下部との温度差を吸収し、全ての支持部材6a
〜6dの温度を一致させることができる。
As is clear from FIGS. 1 and 2, the support member 6a
-6d are formed with communication holes 61a-61d in the longitudinal axis direction, and each communication hole 61a-61d is provided with circulating water for keeping the temperature of each supporting member 6a-6d constant. is being washed away. The amount of circulating water flowing through the communication holes 61a to 61d of this support member is, for example, about 101/min per communication hole of one support member. It absorbs the temperature difference between the upper part and the lower part, and all supporting members 6a
Temperatures of ~6d can be matched.

上記した支持部材6a〜6dの連通孔61a〜61dに
流す循環水はポンプ7によって送出され、第1図中の矢
印で示されるように、移送パイプ9、空冷式ラジェータ
8、および、支持部材の連通孔61a〜61dを介して
ポンプ7に戻されるようになされている。ここで、循環
水の温度は空冷式ラジェータ8および移送パイプ9を通
ることによって熱交換され、高周波励起レーザが設置さ
れた場所の室温に一致するようになる。そのため、季節
や毎日の天気等による室温の変化に対しても、恒温器等
の特別な装置を必要とすることな(、常に、循環水の温
度を室温に一致させることができる。このように、循環
水の温度は季節や毎日の天気等による室温の変化に伴っ
て変化し、従って、全ての支持部材63〜6dの温度が
室温に一致して変化することになる。ここで、全ての支
持部材6a〜6dは室温によってその温度を変化させる
ことになるが、この温度変化は支持部材6a〜6dの全
てに対するもので各支持部材の相互間の温度差は、常に
、存在しないので一対の保持部材3および5に取付けら
れた2枚の反射鏡2と3との平行関係は、常に、維持さ
れ続けることになる。
The circulating water flowing through the communication holes 61a to 61d of the support members 6a to 6d described above is sent out by the pump 7, and as shown by the arrow in FIG. It is configured to be returned to the pump 7 via communication holes 61a to 61d. Here, the temperature of the circulating water is exchanged by passing through the air-cooled radiator 8 and the transfer pipe 9 to match the room temperature of the place where the high-frequency excitation laser is installed. Therefore, even when the room temperature changes due to the season or daily weather, there is no need for special equipment such as a thermostat (the temperature of the circulating water can always be kept consistent with the room temperature. The temperature of the circulating water changes with changes in room temperature due to seasons, daily weather, etc. Therefore, the temperature of all the supporting members 63 to 6d changes to match the room temperature. The temperature of the support members 6a to 6d will change depending on the room temperature, but this temperature change applies to all of the support members 6a to 6d, and there is always no temperature difference between the support members, so there is no difference in temperature between the pair of support members. The parallel relationship between the two reflecting mirrors 2 and 3 attached to the holding members 3 and 5 is always maintained.

以上の実施例において、ポンプ7で送出される循環水は
空冷式ラジェータ8を通って室温との熱交換が行われる
ように構成されているが、この空冷式ラジェータ8が無
くともポンプ7と支持部材の連通孔61a〜61dを繋
ぐ移送パイプ9によって室温との熱交換を行うことがで
きる。この空冷式ラジェータ8を設けないで移送パイプ
9だけで熱交換を行う場合、移送パイプ9は熱伝導率の
高い金属パイプ等の材質で形成するのが好ましい。
In the above embodiment, the circulating water sent out by the pump 7 is configured to exchange heat with the room temperature through the air-cooled radiator 8, but even without this air-cooled radiator 8, the pump 7 and the Heat exchange with room temperature can be performed by the transfer pipe 9 that connects the communication holes 61a to 61d of the member. When heat exchange is performed using only the transfer pipe 9 without providing the air-cooled radiator 8, the transfer pipe 9 is preferably formed of a material with high thermal conductivity, such as a metal pipe.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したように、本発明に係るレーザ共振器は、
反射鏡がそれぞれ取付けられた一対の保持部材を相互に
固定支持する支持部材の内部に連通孔を形成し、循環手
段により各支持部材の連通孔に熱媒質を循環させ、さら
に、簡単な構成の熱交換手段によりこの熱媒質の温度を
室温に一致させることによって、室温と同じ温度の熱媒
質を各支持部材の連通孔に循環させて全ての支持部材の
温度を一定とすることのできる簡単で低価格のレーザ共
振器を提供することができる。
As detailed above, the laser resonator according to the present invention includes:
A communication hole is formed inside a support member that fixedly supports a pair of holding members each having a reflecting mirror attached thereto, and a heat medium is circulated through the communication hole of each support member by a circulation means. By matching the temperature of this heat medium with room temperature using a heat exchange means, a heat medium with the same temperature as room temperature is circulated through the communication holes of each support member, making it possible to keep the temperature of all support members constant. A low-cost laser resonator can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るレーザ共振器の一実施例を概略的
に示す図、 第2図は第1図のレーザ共振器をA −A線に沿って切
断した断面図、 ゛第3図は従来のレーザ共振器の問題点を説明するため
の図である。 (符号の説明) 1・・・レーザ管、 2.4・・・反射鏡、 3.5・・・保持部材、 63〜6d・・・支持部材、 61a〜61d・・・連通孔、 7・・・ポンプ、 8・・・空冷式ラジェータ、 9・・・移送パイプ。
FIG. 1 is a diagram schematically showing an embodiment of a laser resonator according to the present invention, FIG. 2 is a cross-sectional view of the laser resonator in FIG. 1 taken along line A-A, and FIG. FIG. 2 is a diagram for explaining problems with a conventional laser resonator. (Explanation of symbols) 1... Laser tube, 2.4... Reflecting mirror, 3.5... Holding member, 63-6d... Supporting member, 61a-61d... Communication hole, 7. ...Pump, 8.Air-cooled radiator, 9.Transfer pipe.

Claims (1)

【特許請求の範囲】 1、レーザ管と、 該レーザ管の両側に平行に設けられた一対の反射鏡と、 該各反射鏡がそれぞれ取付けられた一対の保持部材と、 該各保持部材を相互に固定支持し、内部に連通孔が形成
された複数の支持部材と、 該各支持部材の連通孔を循環し、該各支持部材の温度を
全て同一の温度とする熱媒質と、 該熱媒質を前記各支持部材の連通孔を介して循環させる
循環手段と、 前記熱媒質の温度を室温にする熱交換手段と、を具備す
るレーザ共振器。 2、前記熱媒質は、水である特許請求の範囲第1項に記
載のレーザ共振器。 3、前記循環手段は、ポンプで構成されている特許請求
の範囲第1項に記載のレーザ共振器。 4、前記熱交換手段は、空冷式ラジエータで構成されて
いる特許請求の範囲第1項に記載のレーザ共振器。 5、前記熱交換手段は、前記熱媒質を移送する移送パイ
プで構成されている特許請求の範囲第1項に記載のレー
ザ共振器。
[Claims] 1. A laser tube, a pair of reflecting mirrors provided in parallel on both sides of the laser tube, a pair of holding members to which the respective reflecting mirrors are attached, and the holding members are mutually attached. a plurality of support members fixedly supported by the support member and having communication holes formed therein; a heat medium that circulates through the communication holes of each of the support members to bring the temperature of each support member to the same temperature; and the heat medium. A laser resonator comprising: a circulation means for circulating the heat medium through communication holes of each of the support members; and a heat exchange means for bringing the temperature of the heat medium to room temperature. 2. The laser resonator according to claim 1, wherein the heat medium is water. 3. The laser resonator according to claim 1, wherein the circulation means is constituted by a pump. 4. The laser resonator according to claim 1, wherein the heat exchange means is constituted by an air-cooled radiator. 5. The laser resonator according to claim 1, wherein the heat exchange means is constituted by a transfer pipe that transfers the heat medium.
JP24207386A 1986-10-14 1986-10-14 Lser resonator Pending JPS6396980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24207386A JPS6396980A (en) 1986-10-14 1986-10-14 Lser resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24207386A JPS6396980A (en) 1986-10-14 1986-10-14 Lser resonator

Publications (1)

Publication Number Publication Date
JPS6396980A true JPS6396980A (en) 1988-04-27

Family

ID=17083878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24207386A Pending JPS6396980A (en) 1986-10-14 1986-10-14 Lser resonator

Country Status (1)

Country Link
JP (1) JPS6396980A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797689A (en) * 1980-12-11 1982-06-17 Matsushita Electric Ind Co Ltd Laser oscillator
JPS57124487A (en) * 1981-01-27 1982-08-03 Ushio Inc Gas laser oscillator
JPS5961978A (en) * 1982-10-01 1984-04-09 Nippon Sekigaisen Kogyo Kk Laser irradiating device
JPS59207676A (en) * 1983-05-11 1984-11-24 Daihen Corp Gas laser device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5797689A (en) * 1980-12-11 1982-06-17 Matsushita Electric Ind Co Ltd Laser oscillator
JPS57124487A (en) * 1981-01-27 1982-08-03 Ushio Inc Gas laser oscillator
JPS5961978A (en) * 1982-10-01 1984-04-09 Nippon Sekigaisen Kogyo Kk Laser irradiating device
JPS59207676A (en) * 1983-05-11 1984-11-24 Daihen Corp Gas laser device

Similar Documents

Publication Publication Date Title
US5875206A (en) Laser diode pumped solid state laser, printer and method using same
US4232276A (en) Laser apparatus
US4099143A (en) Gas recirculating stabilized laser
US4757511A (en) High frequency folded gross-flow gas laser with approved gas flow characteristics and method for producing laser beam using same
JP2005506687A (en) High power high power solid state laser amplification system and method
JPS55113391A (en) Gas flow type laser device
CN105932524B (en) The gas laser oscillator of trip temperature adjustment can be entered
EP0580867B1 (en) Laser
JPH084161B2 (en) Gas laser equipment
JPS6394695A (en) Gas laser oscillator
JPS6396980A (en) Lser resonator
US4342113A (en) Laser apparatus
EP0902511A2 (en) Solid laser oscillator with laser diode excitation
US9570875B2 (en) Laser oscillator including fans which cool resonator unit
JPH08256U (en) Laser cavity
US4564947A (en) High-power lasers
JPH1154818A (en) Gas laser oscillation device
JPS6021584A (en) Laser device
WO1987006774A1 (en) Continuous wave, frequency-doubled solid state laser systems with stabilized output
JPS6310232Y2 (en)
JPS607189A (en) Method for correcting mode pattern of cross-flow type laser device and the same device
JPS63299183A (en) Laser generator
US3735285A (en) Solid-state laser
JPS62224990A (en) Gas laser osciillator
JPH0744034Y2 (en) High frequency excitation gas laser device