JPS6394695A - Gas laser oscillator - Google Patents

Gas laser oscillator

Info

Publication number
JPS6394695A
JPS6394695A JP24014786A JP24014786A JPS6394695A JP S6394695 A JPS6394695 A JP S6394695A JP 24014786 A JP24014786 A JP 24014786A JP 24014786 A JP24014786 A JP 24014786A JP S6394695 A JPS6394695 A JP S6394695A
Authority
JP
Japan
Prior art keywords
laser
optical resonator
constant temperature
rectangular structure
laser oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24014786A
Other languages
Japanese (ja)
Inventor
Noboru Taguchi
昇 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP24014786A priority Critical patent/JPS6394695A/en
Publication of JPS6394695A publication Critical patent/JPS6394695A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • H01S3/073Gas lasers comprising separate discharge sections in one cavity, e.g. hybrid lasers
    • H01S3/076Folded-path lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To reduce turn mirror's effects on laser output and to stabilize the laser on a transverse mode, by installing a plurality of laser tubes whose tube axes are disposed perpendicularly to each other and reflectors so as to compose an optical resonator in square structure. CONSTITUTION:An optical resonator is composed in such square structure that light goes and returns between total reflection mirrors 3 and output mirrors 4 through turn mirrors, which are all disposed on respective four corners of the resonator. Laser tubes 6 are disposed along this optical path on the respective four sides and discharged to supply energy to this system, so that this system is operated as the optical resonator and laser light 7 is emitted. A thermostatic liquid 8 is made to always flow inside metallic pipes 1 in order to mechanically stabilize this square structure consisting of the metallic pipes 1 and metallic blocks 2. Thus, optical resonator's axes can be kept stable irrespective of changes in ambient states and emission of the laser light 7 can be stabilized.

Description

【発明の詳細な説明】 技術分野 本発明はガスレーザ発振器に関し、特に低速軸流形CO
2レーザ発振器に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to gas laser oscillators, particularly low-speed axial flow type CO
2 regarding laser oscillators.

従来技術 従来、この種のガスレーリ”発成器では、特に低速軸流
形CO2レーザ発振器では大きな出力を1υようとする
場合、長いレーザ管を用いなければならないが、第5図
に示すように、−直線上に艮いレーザ管を用いなくとも
、短いレーザ管6を並列に並べて折返しミラー5を用い
てコンパクトなガスレーザ発振器を構成させていた。
Prior Art Conventionally, in this type of gas Rayleigh generator, especially in a low-speed axial flow type CO2 laser oscillator, if a large output of 1υ is desired, a long laser tube must be used, but as shown in Fig. 5, - Instead of using laser tubes arranged in a straight line, a compact gas laser oscillator was constructed by arranging short laser tubes 6 in parallel and using folding mirrors 5.

このような従来のガスレーザ発振器では、第5図に示す
ような構造となっていたので、−木目のレーザ管から二
本口のレーザ管に光路を導く場合、2枚の折返しミラー
を必要とし、ざらにレーザ管を4本用いてガスレーザ発
振器を作ろうとすると、6枚の折返しミラーを必要とす
るため、低損失の反射特性を有する折返しミラーが用い
られたとしてもレーザ出力を大きくする場合に影響を与
えるという欠点がある。
Since such a conventional gas laser oscillator has a structure as shown in Fig. 5, two folding mirrors are required when guiding the optical path from the wood-grained laser tube to the two-port laser tube. If you try to make a gas laser oscillator using roughly four laser tubes, you will need six folding mirrors, so even if folding mirrors with low loss reflection characteristics are used, this will affect the increase in laser output. It has the disadvantage of giving

また、折返しミラーが変形した場合には、レーザの横モ
ードに影響を与えるという欠点がある。
Furthermore, there is a drawback that if the folding mirror is deformed, it will affect the transverse mode of the laser.

発明の目的 本発明は上記のような従来のものの欠点を除去すべくな
されたもので、レーザ出力への折返しミラーの影響を減
少させることができ、レーザの横モードへのImを減少
させることができるガスレーザ発振器の提供を目的とす
る。
Purpose of the Invention The present invention was made in order to eliminate the above-mentioned drawbacks of the conventional ones, and it is possible to reduce the influence of the folding mirror on the laser output, and to reduce Im to the transverse mode of the laser. The purpose is to provide a gas laser oscillator that can

発明の構成 本発明によるガスレーザ発振器は、管軸同士が互いに直
交して配置された複数のレーザ管と、反射鏡とにより方
形構造をなす光共振器を有することを特徴とする。
Structure of the Invention The gas laser oscillator according to the present invention is characterized by having an optical resonator having a rectangular structure formed by a plurality of laser tubes arranged with their tube axes perpendicular to each other and a reflecting mirror.

本発明による他のガスレーザ発振器は、管軸同士が互い
に直交して配置された複数のレーザ管及び反射鏡により
方形構造をなす光共振器と、前記光共振器の周囲を恒温
状態に維持する恒温維持手段とを有することを特徴とす
る。
Another gas laser oscillator according to the present invention includes an optical resonator having a rectangular structure made up of a plurality of laser tubes and reflecting mirrors arranged with their tube axes perpendicular to each other, and a constant temperature that maintains the periphery of the optical resonator in a constant temperature state. and maintenance means.

本発明による別のガスレーザ発振器は、管軸同士が亙い
に直交して配置された複数のレーザ管及び反tJJ11
により方形構造をなす光共振器と、前記光共振器の周囲
を恒温状態に維持する恒温維持手段と、前記光共振器を
収納するケースと、前記光共振器と前記ケースとの間に
設けられた緩衝手段とを有することを特徴とする。
Another gas laser oscillator according to the present invention includes a plurality of laser tubes whose tube axes are arranged perpendicularly to each other, and an anti-tJJ11
an optical resonator having a rectangular structure, a constant temperature maintaining means for maintaining a constant temperature around the optical resonator, a case for housing the optical resonator, and an optical resonator provided between the optical resonator and the case. and a buffer means.

実施例 次に、本発明の一実施例について図面を参照して説明す
る。
Embodiment Next, an embodiment of the present invention will be described with reference to the drawings.

第1図(a)は本発明の一実施例を示″Ij構成図、第
1図(b)は第1図(a)のA−A線に沿う矢視方向断
面図である。これらの図において、本発明の一実施例は
、金属バイブ1と、金属バイブ1の両端を保持し、四隅
に配置された金属ブロック2と、四隅の一つに配置され
た全反射ミラー3と、全反射ミラー3とともに配置され
た出力ミラー4と、四隅の残部に配置され、直角方向に
光を反射させる折返しミラー(反射鏡)5と、レーザ管
6とにより構成されている。
FIG. 1(a) is a block diagram showing one embodiment of the present invention, and FIG. 1(b) is a sectional view taken along line A-A in FIG. 1(a). In the figure, one embodiment of the present invention includes a metal vibrator 1, a metal block 2 which holds both ends of the metal vibrator 1 and is placed at the four corners, a total reflection mirror 3 placed at one of the four corners, and a total reflection mirror 3 placed at one of the four corners. It is composed of an output mirror 4 disposed together with a reflection mirror 3, return mirrors (reflection mirrors) 5 disposed at the remaining four corners to reflect light in a right angle direction, and a laser tube 6.

金属バイブ1と金属ブロック2とが図示の如く組立てら
れて方形構造体が構成され、この方形構造体の四隅に夫
々配置された全反射ミラー3と出力ミラー4と折返しミ
ラー5とにより、全反射ミラー3と出力ミラー4との間
を折返しミラー5を介して光が往復する光共振器を構成
している。この光路に沿ってレーザ管6が四辺の各辺に
配置され、これを放電させてエネルギをこの系に与える
ことによって光共振器として動作させ、レーザ光7を出
射させる。
A metal vibrator 1 and a metal block 2 are assembled as shown in the figure to form a rectangular structure, and total reflection mirrors 3, output mirrors 4, and folding mirrors 5 arranged at the four corners of this rectangular structure produce total reflection. An optical resonator is configured in which light travels back and forth between the mirror 3 and the output mirror 4 via the folding mirror 5. Laser tubes 6 are arranged on each of the four sides along this optical path, and are operated as an optical resonator by discharging them and giving energy to the system, thereby emitting laser light 7.

レーザ光7を安定して)ワるためには、光共振器が機械
的に安定していることが必要である。
In order to stably emit the laser beam 7, the optical resonator must be mechanically stable.

本発明の一実施例では、金属バイブ1と金属ブロック2
とからなる方形構造体を機械的に安定させるために、金
属パイプ1内に恒温化された液体8(たとえば、水、油
などを強制的に冷」したもの)を常時流している。これ
により、方形構造体の四隅に配置1された全反射ミラー
3と出力ミラー4と折返しミラー5との反射光軸によっ
て定められる光共振孔軸は、周囲の環境変化にかかわら
ず安定に保たれ、レーザ光7の出射は安定したものとな
り、レーザの横モードへの環境変化の影響を減少させる
ことができる。なお、図において1ユ恒温液体8の流れ
る様子は、図が繁雑となるのを避けるため上辺の金属バ
イブ1のみに示した。
In one embodiment of the present invention, a metal vibrator 1 and a metal block 2
In order to mechanically stabilize the rectangular structure consisting of the metal pipe 1, a constant temperature liquid 8 (for example, water, oil, etc., forcibly cooled) is constantly flowing inside the metal pipe 1. As a result, the optical resonance hole axis defined by the reflection optical axes of the total reflection mirror 3, the output mirror 4, and the folding mirror 5 arranged at the four corners of the rectangular structure is kept stable regardless of changes in the surrounding environment. , the emission of the laser beam 7 becomes stable, and the influence of environmental changes on the transverse mode of the laser can be reduced. In addition, in the figure, the flow of 1 unit of constant temperature liquid 8 is shown only on the metal vibrator 1 on the upper side to avoid complicating the figure.

第2図は本発明の伯の実施例の概念を示す概念図である
。図にJ3いては、本発明の一実筋91に示した方形構
造体の各辺に夫々2木のレーザ管6を配置したものであ
・す、方形構造体の構成は第1図に示す本発明の一実施
例と同様である。
FIG. 2 is a conceptual diagram showing the concept of an embodiment of the present invention. In the figure J3, two laser tubes 6 are arranged on each side of the rectangular structure shown in the solid line 91 of the present invention.The structure of the rectangular structure is shown in FIG. This is similar to an embodiment of the present invention.

本発明の当該他の実施例では、全反射ミラー3と出力ミ
ラー4との間の光の走行が8枚の折返しミラー5を介し
て行われ、8本のレーザ管6をこの先軸と一致さμて配
置している。第1図に示した本発明の一実施例の4本の
レーザ管6によって得られる出力の2倍の出力を1!す
るために、8本のレーザ管6を用いたレーザ発振器を実
現しようとすると、この図のように配置するのが有効で
ある。
In this other embodiment of the invention, the light travels between the total reflection mirror 3 and the output mirror 4 via eight folding mirrors 5, and the eight laser tubes 6 are aligned with the axes of the eight folding mirrors 5. It is arranged as follows. The output is 1! which is twice the output obtained by the four laser tubes 6 of the embodiment of the present invention shown in FIG. When trying to realize a laser oscillator using eight laser tubes 6, it is effective to arrange them as shown in this figure.

すなわち、従来のレー膏ア管6を平行に並べる方式では
、8木のレーザ管6を用いるには14枚の折返しミラー
5を必要とするが、本発明の他の実施例では折返しミラ
ー5が8枚で済むため、それだけ折返しミラー5での損
失を少なくすることができ、折返しミラー5の影響を減
少させた、効率の良いレーザ発振器を実現することがで
きる。
That is, in the conventional method of arranging the laser tubes 6 in parallel, 14 folding mirrors 5 are required to use 8 wooden laser tubes 6, but in other embodiments of the present invention, the folding mirrors 5 are Since only eight pieces are required, the loss in the folding mirror 5 can be reduced accordingly, and an efficient laser oscillator in which the influence of the folding mirror 5 is reduced can be realized.

第3図は本発明の一実施例および本発明の他の実施例を
用いたレーザ発振器をケースに取付けた例を示す構成図
である。図においては、方形構造体10をケース11に
固定するときに、板バネ12あるいは球軸受け13を用
いて固定することにより、ケース11の変形が直接方形
構造体10に伝わらないようにしている。
FIG. 3 is a configuration diagram showing an example in which a laser oscillator using one embodiment of the present invention and another embodiment of the present invention is attached to a case. In the figure, when fixing the rectangular structure 10 to the case 11, a plate spring 12 or a ball bearing 13 is used to prevent the deformation of the case 11 from being directly transmitted to the rectangular structure 10.

すなわち、恒温化された液体8を余圧バイブ1に常時流
すことによって環境変化の影響を受けないようにしても
、ケース11に方形構造体10をそのまま取付けるとケ
ース11の熱変形の影響を受けて方形構造体10が変形
してしまうことがあるので、ケース11の熱変形のII
を板バネ12の変形によって、あるいは、球軸受け13
の回転によって吸収して方形構造体10に大きな変形を
与えないようにすることによって、レーザの横モードへ
の環境変化の影響を減少させることができる。
In other words, even if the constant temperature liquid 8 is constantly supplied to the excess pressure vibrator 1 so that it is not affected by environmental changes, if the rectangular structure 10 is attached to the case 11 as is, it will be affected by the thermal deformation of the case 11. The rectangular structure 10 may be deformed due to heat deformation of the case 11.
by deforming the leaf spring 12 or by deforming the ball bearing 13.
By absorbing the rotation of the rectangular structure 10 and preventing large deformation from occurring in the rectangular structure 10, the influence of environmental changes on the transverse mode of the laser can be reduced.

第4図は本発明の一実施例および本発明の他の実施例を
用いたレーザ発振器とそのケース11とを分割組立て自
在とした例を示す構成図である。
FIG. 4 is a configuration diagram showing an example in which a laser oscillator using one embodiment of the present invention and another embodiment of the present invention and its case 11 can be assembled separately.

本発明の一実施例および本発明の他の実施例を用いたレ
ーザ発振器では、レーザ管6の良さを一辺とする方形構
造体10を基本としているために、レーザ発振器が二つ
の方向に対して大きくなってしまうので、方形構造体1
0およびケース11を接続体14.15を用いて夫々上
下に2分割および組立てを可能としている。なお、方形
構造体10の2分割においては、レーザ管6を取外して
から行う。
In the laser oscillator using one embodiment of the present invention and other embodiments of the present invention, since the laser oscillator is based on a rectangular structure 10 whose side is the length of the laser tube 6, the laser oscillator can be operated in two directions. Since it will be large, rectangular structure 1
0 and case 11 can be divided into upper and lower halves and assembled using connecting bodies 14 and 15, respectively. Note that the rectangular structure 10 is divided into two parts after the laser tube 6 is removed.

方形構造体10およびケース11は夫々分割して運搬し
、運搬後にこれらを接続体14.15を用いて夫々組立
てて、組立て後に恒温化された液体8を流ずようにする
ことによって、方形構造体10とケース11とが大きす
ぎるという運搬時の障害を除去することができる。
The rectangular structure 10 and the case 11 are transported separately, and after being transported, they are assembled using connectors 14 and 15, and after assembly, the constant temperature liquid 8 is prevented from flowing, thereby forming a rectangular structure. It is possible to eliminate the obstacle during transportation that the body 10 and case 11 are too large.

このように、レーザ管6を方形に配置するようにするこ
とによって、4本あるいは8本のレーザ管6で構成され
るレーザ発振器に用いられる折返しミラー5の数を減ら
すことができるので、レーザ出力への折返しミラー5の
影響を減少させ、折返しミラーでの損失やビームの変形
を少なくすることができ、出力の大きな、横モード特性
の優れたレーザ発Fjt器を実現できる。
By arranging the laser tubes 6 in a rectangular manner as described above, it is possible to reduce the number of folding mirrors 5 used in a laser oscillator composed of four or eight laser tubes 6, thereby increasing the laser output. It is possible to reduce the influence of the reflection mirror 5 on the reflection mirror 5, reduce loss in the reflection mirror and deformation of the beam, and realize a laser emitting Fjt device with a large output and excellent transverse mode characteristics.

また、方形構造体10金民バイブ1に恒温化された液体
8を常時流したり、方形構造体10を板バネ12あるい
は球軸受け13を用いてケース11に固定したりするこ
とにより、レーザの横モードへの環境変化の影響を減少
させることができ、横モード特性の優れたレーザ発振器
を実現することができる。
In addition, by constantly flowing a constant temperature liquid 8 through the rectangular structure 10 and the metal vibrator 1, and by fixing the rectangular structure 10 to the case 11 using a plate spring 12 or a ball bearing 13, it is possible to The influence of environmental changes on the mode can be reduced, and a laser oscillator with excellent transverse mode characteristics can be realized.

発明の詳細 な説明したように本発明によれば、レーザ管と折返しミ
ラーとにより方形構造をなす光共振器を設けることによ
り、折返しミラーによるレーデ出力への影響とレーザの
横モードへの影響とを減少さけることができるという効
果がある。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, as described in detail, by providing an optical resonator having a rectangular structure with a laser tube and a folding mirror, the influence of the folding mirror on the laser output and the influence on the transverse mode of the laser can be reduced. This has the effect of avoiding a decrease in

また、本発明の他の効果は、レー’f管の周囲に恒温化
された液体が常時流れるようにすることによって、レー
ザの横モードへの環境変化の影響を減少させることがで
さることである。
Another effect of the present invention is that by constantly flowing a constant-temperature liquid around the Ray'f tube, the influence of environmental changes on the transverse mode of the laser can be reduced. be.

ざらに、本発明の別の効果は、方形構造の光共振器を緩
衝手段を用いてケースに取付けることによって、レーザ
の横モードへの環境変化の影響を減少させることがでさ
ることである。
In general, another advantage of the present invention is that by attaching the rectangular optical resonator to the case using buffer means, the influence of environmental changes on the transverse mode of the laser can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a>は本発明の一実施例を示す構成図、第1図
(b)は第1図(a)のA−A線に沿う矢視方向断面図
、第2図は本発明の使の実施例を示す概念図、第3図は
本発明の一実施例および本発明の他の実施例を用いたレ
ーザ発振器をケースに取付けた例を示す構成図、第4図
は本発明の一実施例および本発明の他の実施例を用いた
レーザ発成器とそのケースとを分割組立て自在とした例
を示す構成図、第5図は従来例を示す概念図である。 主要部分の符号の説明 1・・・・・・金属バイブ 2・・・・・・金属ブロック 5・・・・・・折返しミラー 6・・・・・・レーザ管 8・・・・・・恒温化された液体 10・・・・・・方形構造体 11・・・・・・ケース 12・・・・・・板バネ 13・・・・・・球軸受け 14.15・・・・・・接続体
FIG. 1(a) is a configuration diagram showing an embodiment of the present invention, FIG. 1(b) is a cross-sectional view taken along line A-A in FIG. 1(a), and FIG. 2 is a diagram showing the present invention. 3 is a conceptual diagram showing an embodiment of the present invention, and FIG. 3 is a configuration diagram showing an example in which a laser oscillator using one embodiment of the present invention and another embodiment of the present invention is attached to a case. FIG. 4 is a conceptual diagram showing an embodiment of the present invention. FIG. 5 is a configuration diagram showing an example in which a laser generator using one embodiment of the present invention and another embodiment of the present invention and its case can be assembled in parts, and FIG. 5 is a conceptual diagram showing a conventional example.Main parts Explanation of the symbols 1...Metal vibrator 2...Metal block 5...Folding mirror 6...Laser tube 8...Isothermal Liquid 10... Rectangular structure 11... Case 12... Leaf spring 13... Ball bearing 14.15... Connection body

Claims (4)

【特許請求の範囲】[Claims] (1)管軸同士が互いに直交して配置された複数のレー
ザ管と、反射鏡とにより方形構造をなす光共振器を有す
ることを特徴とするガスレーザ発振器。
(1) A gas laser oscillator characterized by having an optical resonator having a rectangular structure formed by a plurality of laser tubes whose tube axes are arranged perpendicular to each other and a reflecting mirror.
(2)管軸同士が互いに直交して配置された複数のレー
ザ管及び反射鏡により方形構造をなす光共振器と、前記
光共振器の周囲を恒温状態に維持する恒温維持手段とを
有することを特徴とするガスレーザ発振器。
(2) It has an optical resonator having a rectangular structure made up of a plurality of laser tubes and reflecting mirrors whose tube axes are arranged orthogonal to each other, and a constant temperature maintenance means for maintaining the surroundings of the optical resonator in a constant temperature state. A gas laser oscillator featuring:
(3)前記恒温維持手段は前記レーザ管の周囲に恒温化
された液体が常時流れるように構成されていることを特
徴とする特許請求の範囲第2項のガスレーザ発振器。
(3) The gas laser oscillator according to claim 2, wherein the constant temperature maintaining means is configured so that a constant temperature liquid constantly flows around the laser tube.
(4)管軸同士が互いに直交して配置された複数のレー
ザ管及び反射鏡により方形構造をなす光共振器と、前記
光共振器の周囲を恒温状態に維持する恒温維持手段と、
前記光共振器を収納するケースと、前記光共振器と前記
ケースとの間に設けられた緩衝手段とを有することを特
徴とするガスレーザ発振器。
(4) an optical resonator having a rectangular structure made up of a plurality of laser tubes and reflecting mirrors arranged such that their tube axes are orthogonal to each other; and constant temperature maintaining means for maintaining the surroundings of the optical resonator in a constant temperature state;
A gas laser oscillator comprising: a case that houses the optical resonator; and a buffer provided between the optical resonator and the case.
JP24014786A 1986-10-08 1986-10-08 Gas laser oscillator Pending JPS6394695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24014786A JPS6394695A (en) 1986-10-08 1986-10-08 Gas laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24014786A JPS6394695A (en) 1986-10-08 1986-10-08 Gas laser oscillator

Publications (1)

Publication Number Publication Date
JPS6394695A true JPS6394695A (en) 1988-04-25

Family

ID=17055191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24014786A Pending JPS6394695A (en) 1986-10-08 1986-10-08 Gas laser oscillator

Country Status (1)

Country Link
JP (1) JPS6394695A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666938A1 (en) * 1990-09-19 1992-03-20 Trumpf Lasertechnik Gmbh Device for a power laser
EP2565993A1 (en) * 2011-09-05 2013-03-06 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Laser device and method for generating laser light
EP2564976A1 (en) * 2011-09-05 2013-03-06 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with at least one gas laser and heat dissipator
US9071034B2 (en) 2011-09-05 2015-06-30 Alltec Angewandte Laserlicht Technologie Gmbh Laser device
US9073349B2 (en) 2011-09-05 2015-07-07 Alltec Angewandte Laserlicht Technologie Gmbh Marking apparatus
US9077141B2 (en) 2011-09-05 2015-07-07 Alltec Angewandte Laserlicht Technologie Gmbh Gas laser device and gas reservoir
US9139019B2 (en) 2011-09-05 2015-09-22 Alltec Angewandte Laserlicht Technologie Gmbh Marking device for marking an object with marking light
US9300106B2 (en) 2011-09-05 2016-03-29 Alltec Angewandte Laserlicht Technologie Gmbh Laser device with a laser unit and a fluid container for a cooling means of said laser
US9348026B2 (en) 2011-09-05 2016-05-24 Alltec Angewandte Laserlicht Technologie Gmbh Device and method for determination of a position of an object by means of ultrasonic waves
US9577399B2 (en) 2011-09-05 2017-02-21 Alltec Angew Andte Laserlicht Technologie Gmbh Marking apparatus with a plurality of lasers and individually adjustable sets of deflection means
US9573223B2 (en) 2011-09-05 2017-02-21 Alltec Angewandte Laserlicht Technologie Gmbh Marking apparatus with a plurality of gas lasers with resonator tubes and individually adjustable deflection means
US9573227B2 (en) 2011-09-05 2017-02-21 Alltec Angewandte Laserlight Technologie GmbH Marking apparatus with a plurality of lasers, deflection means, and telescopic means for each laser beam
US9595801B2 (en) 2011-09-05 2017-03-14 Alltec Angewandte Laserlicht Technologie Gmbh Marking apparatus with a plurality of lasers and a combining deflection device
US9664898B2 (en) 2011-09-05 2017-05-30 Alltec Angewandte Laserlicht Technologie Gmbh Laser device and method for marking an object

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2666938A1 (en) * 1990-09-19 1992-03-20 Trumpf Lasertechnik Gmbh Device for a power laser
EP2565993A1 (en) * 2011-09-05 2013-03-06 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Laser device and method for generating laser light
EP2564976A1 (en) * 2011-09-05 2013-03-06 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with at least one gas laser and heat dissipator
WO2013034214A1 (en) 2011-09-05 2013-03-14 Alltec Angewandte Laserlicht Technologie Gmbh Laser device and method for generating laser light
WO2013034216A1 (en) 2011-09-05 2013-03-14 Alltec Angewandte Laserlicht Technologie Gmbh Marking apparatus with at least one gas laser and heat dissipator
CN103764334A (en) * 2011-09-05 2014-04-30 奥迪克激光应用技术股份有限公司 Marking apparatus with at least one gas laser and heat dissipator
US20140209580A1 (en) * 2011-09-05 2014-07-31 Alltec Angewandte Laserlight Technologie GmbH Marking Apparatus with at Least One Gas Laser and Heat Dissipator
US9071034B2 (en) 2011-09-05 2015-06-30 Alltec Angewandte Laserlicht Technologie Gmbh Laser device
US9077140B2 (en) 2011-09-05 2015-07-07 Alltec Angewandte Laserlight Technologie GmbH Laser device and method for generating laser light
US9073349B2 (en) 2011-09-05 2015-07-07 Alltec Angewandte Laserlicht Technologie Gmbh Marking apparatus
US9077141B2 (en) 2011-09-05 2015-07-07 Alltec Angewandte Laserlicht Technologie Gmbh Gas laser device and gas reservoir
CN103764334B (en) * 2011-09-05 2015-08-26 奥迪克激光应用技术股份有限公司 There is the mark instrument of at least one gas laser and radiator
US9139019B2 (en) 2011-09-05 2015-09-22 Alltec Angewandte Laserlicht Technologie Gmbh Marking device for marking an object with marking light
US9300106B2 (en) 2011-09-05 2016-03-29 Alltec Angewandte Laserlicht Technologie Gmbh Laser device with a laser unit and a fluid container for a cooling means of said laser
US9348026B2 (en) 2011-09-05 2016-05-24 Alltec Angewandte Laserlicht Technologie Gmbh Device and method for determination of a position of an object by means of ultrasonic waves
EA024141B1 (en) * 2011-09-05 2016-08-31 Алльтек Ангевандте Лазерлихт Технологи Гмбх Laser device and method for generating laser light
EA024428B1 (en) * 2011-09-05 2016-09-30 Алльтек Ангевандте Лазерлихт Технологи Гмбх Apparatus for marking an object with at least one gas laser and heat dissipator
US9577399B2 (en) 2011-09-05 2017-02-21 Alltec Angew Andte Laserlicht Technologie Gmbh Marking apparatus with a plurality of lasers and individually adjustable sets of deflection means
US9573223B2 (en) 2011-09-05 2017-02-21 Alltec Angewandte Laserlicht Technologie Gmbh Marking apparatus with a plurality of gas lasers with resonator tubes and individually adjustable deflection means
US9573227B2 (en) 2011-09-05 2017-02-21 Alltec Angewandte Laserlight Technologie GmbH Marking apparatus with a plurality of lasers, deflection means, and telescopic means for each laser beam
US9595801B2 (en) 2011-09-05 2017-03-14 Alltec Angewandte Laserlicht Technologie Gmbh Marking apparatus with a plurality of lasers and a combining deflection device
US9664898B2 (en) 2011-09-05 2017-05-30 Alltec Angewandte Laserlicht Technologie Gmbh Laser device and method for marking an object
US10236654B2 (en) 2011-09-05 2019-03-19 Alltec Angewandte Laserlight Technologie GmbH Marking apparatus with at least one gas laser and heat dissipator

Similar Documents

Publication Publication Date Title
JPS6394695A (en) Gas laser oscillator
US4050036A (en) Optical system for lasers
EP0371781A2 (en) High power laser with focusing mirror sets
US4723257A (en) Laser diode pumped solid state laser with miniaturized laser head
US5859868A (en) Solid-state laser device which is pumped by light output from laser diode
JP2009540582A (en) Solid-state laser with monolithic resonator
KR950031358A (en) Laser oscillator
US5125001A (en) Solid laser device
US5220577A (en) Waveguide laser with variable waveguide thickness
US4887270A (en) Continuous wave, frequency doubled solid state laser systems with stabilized output
US6160934A (en) Hollow lensing duct
JPH06196827A (en) Raman laser inside self-aligning cavity
US4173001A (en) Laser apparatus
JPS6182488A (en) Solid state laser device
JPS62219983A (en) Optical resonator for laser oscillator
US7068700B2 (en) Optical bench for diode-pumped solid state lasers in field applications
US5566195A (en) Intracavity raman laser
US5233406A (en) Recessed center post mounted dither system
JPH0843293A (en) Gas cell
US10574024B2 (en) Optical module, laser amplifier system, method and use
US5005182A (en) Laser pumping apparatus
WO1987006774A1 (en) Continuous wave, frequency-doubled solid state laser systems with stabilized output
JPH07106669A (en) Laser oscillator
JPS6024082A (en) Laser oscillator
JPH1126840A (en) Laser device