JPS63299183A - Laser generator - Google Patents

Laser generator

Info

Publication number
JPS63299183A
JPS63299183A JP13140387A JP13140387A JPS63299183A JP S63299183 A JPS63299183 A JP S63299183A JP 13140387 A JP13140387 A JP 13140387A JP 13140387 A JP13140387 A JP 13140387A JP S63299183 A JPS63299183 A JP S63299183A
Authority
JP
Japan
Prior art keywords
heat exchanger
mirror
cooling water
laser
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13140387A
Other languages
Japanese (ja)
Inventor
Tsutomu Sugiyama
勤 杉山
Kiyoshi Saito
清 斉藤
Minoru Suzuki
実 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13140387A priority Critical patent/JPS63299183A/en
Publication of JPS63299183A publication Critical patent/JPS63299183A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0401Arrangements for thermal management of optical elements being part of laser resonator, e.g. windows, mirrors, lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To prevent an output mirror from damaging due to dew condensation and to stabilize a laser output by cooling the mirror and a total-reflection mirror with a coolant passed from a cooler through a second heat exchanger to supply the coolant of stable temperature higher than the dew point temperature to cool a resonator. CONSTITUTION:An output mirror 9 and a total-reflection mirror 13 are formed in a pipe state, and held and supported through a predetermined interval by supporting rods 16, 17 having low expansion coefficient to pass coolant. A cooler 19 for supplying coolant of predetermined temperature and quantity to a resonator 18 and composed of a discharge tube 5, the mirrors 9, 13 and the rods 16, 17, etc., is provided. In a laser generator constructed in this manner, the mirrors 9, 13 are cooled with the coolant passed from the cooler 19 through a second heat exchanger 2. Thus, the laser generator in which the coolant of higher stable temperature than the dew point temperature is supplied to cool the resonator 18 to prevent the mirror 9 from damaging due to dew condensation and to stabilize a laser output can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はレーザ発生装置に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a laser generator.

〔従来の技術〕[Conventional technology]

レーザ発生装置では実開昭58−20551号公報に記
載されているように、出力鏡にレーザ光を通過または反
射させる際に発生する損失熱を冷却水等で冷却すること
によって除去しているが、冷却の際に鏡面上に結露しな
いように更に乾燥した空気を吹き付けたり、露点以上の
温度の水を光学系専用の冷却装置を設けて供給し、出力
鏡の損傷を防止して安定化が図られる。
In a laser generator, as described in Japanese Utility Model Application No. 58-20551, the heat loss generated when the laser beam passes through or is reflected by the output mirror is removed by cooling it with cooling water or the like. During cooling, dry air is blown to prevent condensation on the mirror surface, and a dedicated cooling device is installed for the optical system to supply water with a temperature above the dew point to prevent damage to the output mirror and stabilize it. It will be planned.

また、共振器の光学系支持ロッドの熱変形による鏡類の
光軸ずれに起因したレーザ出力の変動を防止するために
、支持ロッドに一定温度の水を流して熱歪を安定化し、
出力の安定化が行われている。
In addition, in order to prevent fluctuations in laser output caused by optical axis misalignment of the mirrors due to thermal deformation of the optical system support rod of the resonator, we stabilized thermal distortion by flowing water at a constant temperature through the support rod.
Output has been stabilized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、出力鏡および全反射鏡の冷却用に露点
温度よりも高い水温の冷却装置をレーザガスの冷却水を
供給する装置とは別に設けたり、乾燥した清浄な空気を
製造し、出力鏡に吹付けるための配管を設けたりする必
要があった。
The above-mentioned conventional technology requires that a cooling device with a water temperature higher than the dew point temperature be provided separately from a device that supplies cooling water for the laser gas for cooling the output mirror and the total reflection mirror, or that dry, clean air is produced to cool the output mirror. It was necessary to install piping to spray the water.

また、共振器の支持ロッドの熱歪安定化のために流す水
は、支持ロッド表面の結露により高電圧の絶縁破壊を防
止するため出力鏡を冷却する冷却水が使用されている。
Furthermore, the water flowing to stabilize the thermal distortion of the support rod of the resonator is cooling water that cools the output mirror in order to prevent high voltage dielectric breakdown due to dew condensation on the surface of the support rod.

本発明は以上の点に鑑みなされたものであり、共振器の
冷却に露点温度より高い安定した温度の冷却水を供給し
、出力鏡の結露による破損防止およびレーザ出力の安定
化を図ることを可能としたレーザ発生装置を提供するこ
とを目的とするものである。
The present invention was made in view of the above points, and aims to supply cooling water with a stable temperature higher than the dew point temperature to cool the resonator, thereby preventing damage to the output mirror due to dew condensation and stabilizing the laser output. The object of the present invention is to provide a laser generating device that makes it possible.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、出力鏡、全反射鏡を冷却装置から第2熱交
換器を通過した冷却水で冷却することにより、達成され
る。
The above object is achieved by cooling the output mirror and the total reflection mirror with cooling water that has passed through the second heat exchanger from the cooling device.

〔作用〕[Effect]

出力鏡、全反射鏡を冷却装置から第2熱交換器を通過し
た冷却水で冷却することにより、所期の目的が達せられ
るがそれを次に説明する。
The desired purpose is achieved by cooling the output mirror and the total reflection mirror with cooling water that has passed through the second heat exchanger from the cooling device, which will be explained next.

レーザ発生装置のブロワで断熱圧縮されたレーザガスは
参考文献(日刊工業新聞社刊、数森敏部著新版圧縮機、
30頁式37)によれば、ブロワ入ロ圧力Pl、ガス温
度Tt(’K)、ブロワ出口圧力Pa、ガス温度Tz(
’K)、レーザガスの比熱比をKとすると、 4二1 Tz=TxX (Pg/Pt)         ・・
’(1)で表わされる。ここでブロワ入口ガス温度T1
は熱交換器により冷却されたガス温度であり、レーザの
発振状態によらず一定である。また、ブロワ出入口ガス
圧力Pa、Pzは放電管内の放電条件を一定に保つため
に、一定に保持される。従って、ブロワ出口ガス温度T
zは一定に保たれる0例えばルーツブロワを使用した場
合は通常圧力比Pa/Pzが約2程度、炭酸ガスレーザ
用ガスでは比熱比Kが1.3 から1.5なので、ルー
ツブロワ出口温度Txは約100℃程度になる。しかし
ブロワ出口のガス温度ではレーザ発振を行う際発振効率
が低下するため、炭酸ガスレーザでは少なくとも約30
℃程度まで冷却した後放電管に送風される。ブロワ出口
ガスの冷却条件はガス温度、ガス圧力、送風量等が一定
なので、ガス冷却に使用した冷媒(多くの場合は水)の
温度上昇は発振器出力または放電注入パワーの大小9発
振器の周囲温度に依存しなくなる。冷媒の温度上昇はブ
ロワ出口ガスを冷却する熱交換器の冷媒比熱、流量およ
び熱交換器の交換能力に依存することになる。
The laser gas adiabatically compressed by the blower of the laser generator is described in the references (Nikkan Kogyo Shimbun, New Edition Compressor by Toshibe Kazumori,
According to formula 37) on page 30, blower inlet pressure Pl, gas temperature Tt ('K), blower outlet pressure Pa, gas temperature Tz (
'K), and the specific heat ratio of the laser gas is K, then 421 Tz=TxX (Pg/Pt)...
'(1). Here, blower inlet gas temperature T1
is the temperature of the gas cooled by the heat exchanger, and is constant regardless of the laser oscillation state. Further, the blower inlet and outlet gas pressures Pa and Pz are kept constant in order to keep the discharge conditions in the discharge tube constant. Therefore, the blower outlet gas temperature T
z is kept constant 0. For example, when a Roots blower is used, the pressure ratio Pa/Pz is usually about 2, and for carbon dioxide laser gas, the specific heat ratio K is 1.3 to 1.5, so the Roots blower outlet temperature Tx is about The temperature will be around 100℃. However, the oscillation efficiency decreases when performing laser oscillation due to the gas temperature at the blower outlet, so for carbon dioxide lasers, at least
After cooling to about ℃, air is blown into the discharge tube. Since the cooling conditions for the blower outlet gas are constant, such as gas temperature, gas pressure, and air flow rate, the temperature rise of the refrigerant (in most cases water) used for gas cooling depends on the oscillator output or discharge injection power level 9 The ambient temperature of the oscillator become independent of The temperature rise of the refrigerant depends on the refrigerant specific heat and flow rate of the heat exchanger that cools the blower outlet gas, and the exchange capacity of the heat exchanger.

従って、冷媒の流量を絞ることにより露点以上の温度の
安定した冷媒が得られる。すなわちガスが流通する径路
のガス流速、配管等が決まればブロワのする仕事も決っ
てしまう、すなわちブロワ入口のガス温度、圧力、流量
等が一定であれば、出口も決った温度、ガス圧等になる
。このようにブロワの出口側の熱交換器にはガス温度、
圧力、流量等が一定の条件で入ってくる。このためこの
ガスを冷却する冷媒1例えば冷却水の温度、量を一定に
してこのブロワの出口側の熱交換器に流入すればその入
口と出口との温度差は一定になる。従ってブロワの出口
側の熱交換器に流入する冷却水の流量を調節すればこの
熱交換器から出る冷却水を露点以上の温度にすることが
できるのである。
Therefore, by restricting the flow rate of the refrigerant, a refrigerant having a stable temperature above the dew point can be obtained. In other words, if the gas flow rate, piping, etc. of the path through which the gas flows is determined, the work performed by the blower will also be determined.In other words, if the gas temperature, pressure, flow rate, etc. at the blower inlet are constant, the temperature, gas pressure, etc., at the outlet will also be fixed. become. In this way, the heat exchanger on the outlet side of the blower has gas temperature,
Pressure, flow rate, etc. enter under certain conditions. Therefore, if the temperature and amount of refrigerant 1, such as cooling water, for cooling this gas are kept constant and flows into the heat exchanger on the outlet side of this blower, the temperature difference between the inlet and the outlet will be constant. Therefore, by adjusting the flow rate of cooling water flowing into the heat exchanger on the outlet side of the blower, the temperature of the cooling water exiting from this heat exchanger can be brought to a temperature higher than the dew point.

この露点温度以上の冷媒(冷却水)を出力鏡および全反
射鏡の冷却に使用したので、出力鏡を結露させることな
く出力鏡の冷却が可能となる。また、この冷媒を共振器
の支持ロッドに通すようにしたので、支持ロッドを結露
させないで一定温度に保つこ、とができる。
Since the refrigerant (cooling water) having a temperature higher than this dew point temperature is used to cool the output mirror and the total reflection mirror, it is possible to cool the output mirror without causing dew condensation on the output mirror. Furthermore, since this refrigerant is passed through the support rod of the resonator, it is possible to maintain the support rod at a constant temperature without causing dew condensation.

〔実施例〕 以下、図示した実施例に基づいて本発明を説明する。第
1図には本発明の一実施例が示されている。同図に示さ
れているようにレーザガスはルーツブロワ1により圧送
され、出口側には圧縮加熱されたレーザガスを冷却する
第2熱交換器2および第3熱交換器3が配置され、ガス
接続管4によって連結されている。第3熱交換器3を出
たレーザガスは放電管5を通過する際、高電圧電源6に
接続された放電電極7,8の間で発生するグロー放電に
より励起される。放電入力エネルギーの一部はレーザ光
として出力鏡9より取り出されるが。
[Example] The present invention will be described below based on the illustrated example. FIG. 1 shows an embodiment of the invention. As shown in the figure, the laser gas is fed under pressure by a Roots blower 1, and a second heat exchanger 2 and a third heat exchanger 3 are arranged on the exit side to cool the compressed and heated laser gas, and a gas connection pipe 4 connected by. When the laser gas exiting the third heat exchanger 3 passes through the discharge tube 5, it is excited by a glow discharge generated between discharge electrodes 7 and 8 connected to a high voltage power source 6. A part of the discharge input energy is extracted from the output mirror 9 as laser light.

残りは熱としてレーザガス中に蓄えられ、第1熱交換器
10を通過する際に冷却水に奪われてゆく。
The remainder is stored in the laser gas as heat, and is taken away by cooling water when passing through the first heat exchanger 10.

出力鏡9は出力鏡支持板11に取り付けられ、冷却水を
通過させる穴を設けた出力鏡ホルダ12により固定され
る。同様に全反射鏡13は全反射鏡支持板14と全反射
鏡ホルダ15とで固定される。
The output mirror 9 is attached to an output mirror support plate 11 and fixed by an output mirror holder 12 provided with a hole through which cooling water passes. Similarly, the total reflection mirror 13 is fixed by a total reflection mirror support plate 14 and a total reflection mirror holder 15.

これら出力鏡9.全反射鏡13と放電管5との間には接
続ベローズ5a、5bが設けられている。
These output mirrors9. Connecting bellows 5a and 5b are provided between the total reflection mirror 13 and the discharge tube 5.

出力鏡9および全反射鏡13はパイプ状に加工され、冷
却水を通過できるようにした低膨張率の支持ロッド16
,17で所定の間隔を介して保持・支持されている。そ
して放電管5.出力It19.全反射鏡13および支持
ロッド16,17等より構成される共振器18に一定温
度、量の冷却水を供給する冷却装2!19が設けられて
いる。このように構成されたレーザ発生装置で本実施例
では出力鏡9.全反射鏡13を冷却装置19から第2熱
交換器2を通過した冷却水で冷却するようにした。
The output mirror 9 and the total reflection mirror 13 are processed into pipe shapes and have a support rod 16 with a low expansion coefficient that allows cooling water to pass through.
, 17 at a predetermined interval. and discharge tube 5. Output It19. A cooling device 2!19 is provided for supplying a constant temperature and amount of cooling water to the resonator 18, which is composed of the total reflection mirror 13, support rods 16, 17, and the like. In this embodiment of the laser generator configured as described above, the output mirror 9. The total reflection mirror 13 is cooled with cooling water that has passed through the second heat exchanger 2 from the cooling device 19.

このようにすることにより共振器18の冷却に露点温度
より高い安定した温度の冷却水が供給され、出力鏡9の
結露による破損が防止されレーザ出力が安定化するよう
になって、共振器18の冷却に露点温度より高い安定し
た温度の冷却水を供給し、出力鏡9の結露による破損防
止およびレーザ出力の安定化を図ることを可能としたレ
ーザ発生装置を得ることができる。
By doing this, cooling water with a stable temperature higher than the dew point temperature is supplied to cool the resonator 18, preventing damage to the output mirror 9 due to dew condensation, and stabilizing the laser output. By supplying cooling water at a stable temperature higher than the dew point temperature for cooling, it is possible to obtain a laser generator that can prevent damage to the output mirror 9 due to dew condensation and stabilize the laser output.

すなわち一定の温度の水を一定量供給する冷却装置19
を出た図中矢印表示の冷却水20は第3熱交換器3へ入
る冷却水21aと第2熱交換器2へ送る冷却水22aと
に分流される。第3熱交換器3を通った冷却水21bは
第1熱交換器1oを通り、冷却装!!19へ戻る。第2
熱交換器2へ流される冷却水22aは流量調整弁23に
より流量が調整され、冷却水22bとなって第2熱交換
器2に入り、第2熱交換器2を出た冷却水220は露点
温度以上の温度に保たれる。この第2熱交換器2を出た
冷却水22cは支持ロッド16゜17を通過した後に全
反射鏡13.出力鏡9の冷却が行われる。出力鏡ホルダ
12を出た冷却水22gは第1熱交換器10を出た冷却
水21cと合流して冷却装置19へ戻る。すなわち、冷
却装置19を出た冷却水20は、分流して冷却水22a
In other words, a cooling device 19 that supplies a constant amount of water at a constant temperature.
The cooling water 20 indicated by the arrow in the figure that has exited is divided into cooling water 21a that enters the third heat exchanger 3 and cooling water 22a that is sent to the second heat exchanger 2. The cooling water 21b that has passed through the third heat exchanger 3 passes through the first heat exchanger 1o, and then passes through the cooling system! ! Return to 19. Second
The flow rate of the cooling water 22a flowing into the heat exchanger 2 is adjusted by the flow rate adjustment valve 23, and the cooling water 22b becomes cooling water 22b and enters the second heat exchanger 2. The cooling water 220 that exits the second heat exchanger 2 has a dew point. temperature is maintained above the temperature. The cooling water 22c leaving the second heat exchanger 2 passes through the support rods 16 and 17, and then passes through the total reflection mirror 13. The output mirror 9 is cooled. The cooling water 22g that has exited the output mirror holder 12 joins the cooling water 21c that has exited the first heat exchanger 10 and returns to the cooling device 19. That is, the cooling water 20 that has exited the cooling device 19 is divided into cooling water 22a.
.

22b、22c、22d、22e、22fを経て冷却水
22gとなり、冷却水20の他方の分流水。
22b, 22c, 22d, 22e, and 22f become the cooling water 22g, which is the other branched water of the cooling water 20.

である冷却水21a、21bを経た冷却水21cと合流
し、冷却水24となって冷却装置19に戻る。このうち
冷却装置19から第2熱交換器2を通った冷却水22c
で全反射鏡13.出力鏡9が冷却されるが、ルーツブロ
ワ1を出るレーザガス流の温度、圧力および流量は前述
のように周囲の温度や放電条件には影響されず一定なの
で、第2熱交換器2の熱交換量は冷却水22bの量を一
定に保つことで一定となる。第2熱交換器2を出た冷却
水22cはまず支持ロッド16,17に流されるので、
レーザ出力の大小で変わる出力!!9や全反射fi13
の損失に左右されず、支持ロッド16.17の温度条件
変化による伸縮は抑制される。また、露点温度以上の冷
却水22fを通されるので出力鏡9の結露を防止できる
。第2熱交換器2の冷却水22bの流量が絞り込まれて
いるので、第2熱交換器2を出たレーザガスは放電管5
に送り込まれるまでには冷却されていない、ガスは第3
熱交換器3でレーザ発振効率を損なわない温度まで再度
冷却される。
It joins with the cooling water 21c that has passed through the cooling water 21a and 21b, becomes the cooling water 24, and returns to the cooling device 19. Of these, cooling water 22c that has passed through the second heat exchanger 2 from the cooling device 19
Total reflection mirror 13. Although the output mirror 9 is cooled, the temperature, pressure, and flow rate of the laser gas flow exiting the Roots blower 1 are constant without being affected by the ambient temperature or discharge conditions as described above, so the amount of heat exchanged by the second heat exchanger 2 is becomes constant by keeping the amount of cooling water 22b constant. Since the cooling water 22c leaving the second heat exchanger 2 is first flowed to the support rods 16 and 17,
Output that changes depending on the size of the laser output! ! 9 and total reflection fi13
The expansion and contraction of the support rods 16 and 17 due to changes in temperature conditions is suppressed regardless of the loss of the support rods 16 and 17. Further, since the cooling water 22f having a temperature higher than the dew point is passed through, dew condensation on the output mirror 9 can be prevented. Since the flow rate of the cooling water 22b of the second heat exchanger 2 is restricted, the laser gas exiting the second heat exchanger 2 is transferred to the discharge tube 5.
The gas is not cooled by the time it is sent to the third
The heat exchanger 3 cools the laser beam again to a temperature that does not impair laser oscillation efficiency.

このように本実施例によれば露点温度以上の温度で安定
した冷却水を共振器の支持ロッドに送って、支持ロッド
の熱歪による伸縮を一定量に安定させることができ、出
力の安定性が確保される。
In this way, according to this embodiment, by sending stable cooling water at a temperature above the dew point temperature to the support rod of the resonator, it is possible to stabilize the expansion and contraction of the support rod due to thermal strain to a constant amount, thereby improving the stability of the output. is ensured.

また、この露点温度以上の冷却水は出力鏡の冷却に使用
され、出力鏡を結露させることなく冷却することができ
、その長寿命化が図られる。更に、露点温度以上の冷却
水を得るために特別な冷却装置を必要とせず、発振器冷
却系統の操作ならびに保守が簡素化される。
Further, the cooling water having a temperature equal to or higher than the dew point temperature is used to cool the output mirror, and the output mirror can be cooled without causing dew condensation, thereby extending its life. Furthermore, no special cooling device is required to obtain cooling water above the dew point temperature, simplifying the operation and maintenance of the oscillator cooling system.

〔発明あ効果〕[Invention effect]

上述のように本発明は共振器の冷却に露点温度より高い
冷却水を供給し、出力鏡の結露による破損防止およびレ
ーザ出力の安定化が図られるようになって、共振器の冷
却に露点温度より高い冷却水を供給し、出力鏡の結露に
よる破損防止およびル−ザ出力の安定化を図ることを可
能としたレーザ発生装置を得ることができる。
As described above, the present invention supplies cooling water with a temperature higher than the dew point temperature to cool the resonator, thereby preventing damage to the output mirror due to dew condensation and stabilizing the laser output. It is possible to obtain a laser generator that can supply a higher level of cooling water, prevent damage to the output mirror due to dew condensation, and stabilize the laser output.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のレーザ発生装置の一実施例の、 発生
装置構成を示す説明図である。
FIG. 1 is an explanatory diagram showing the configuration of a laser generator according to an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1、レーザガスを放電励起する放電管、この放電管を挟
んで対向配置された出力鏡、全反射鏡および前記放電管
を支持する支持ロッドより構成される共振器と、前記放
電管にレーザガスを圧送・供給するルーツブロワと、前
記放電管で放電加熱されたレーザガスを冷却する第1熱
交換器と、前記ルーツブロワで圧縮加熱されたレーザガ
スを冷却する第2熱交換器とを備え、前記第1、第2熱
交換器は冷却装置から一定温度、量の冷却水が供給され
、前記出力鏡は前記支持ロッドの一方端側に連結された
出力鏡支持板、出力鏡ホルダで支持され、前記全反射鏡
は前記支持ロッドの他方端側に連結された全反射鏡支持
板、全反射鏡ホルダで支持されているレーザ発生装置に
おいて、前記出力鏡、全反射鏡を前記冷却装置から前記
第2熱交換器を通過した冷却水で冷却するようにしたこ
とを特徴とするレーザ発生装置。 2、前記支持ロッドが、中空状で、かつ前記第2熱交換
器を通過した冷却水で一定温度に保温されるものである
特許請求の範囲第1項記載のレーザ発装置。
[Scope of Claims] 1. A resonator composed of a discharge tube that excites laser gas by discharge, an output mirror disposed opposite to each other across the discharge tube, a total reflection mirror, and a support rod that supports the discharge tube; A roots blower that pumps and supplies laser gas to a discharge tube, a first heat exchanger that cools the laser gas heated by discharge in the discharge tube, and a second heat exchanger that cools the laser gas compressed and heated by the roots blower. , the first and second heat exchangers are supplied with cooling water at a constant temperature and amount from a cooling device, and the output mirror is supported by an output mirror support plate and an output mirror holder connected to one end of the support rod. In the laser generator, the total reflection mirror is supported by a total reflection mirror support plate and a total reflection mirror holder connected to the other end side of the support rod, and the output mirror and the total reflection mirror are connected to the cooling device. A laser generator characterized in that the laser generator is cooled by cooling water that has passed through the second heat exchanger. 2. The laser emitting device according to claim 1, wherein the support rod is hollow and is kept at a constant temperature by cooling water that has passed through the second heat exchanger.
JP13140387A 1987-05-29 1987-05-29 Laser generator Pending JPS63299183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13140387A JPS63299183A (en) 1987-05-29 1987-05-29 Laser generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13140387A JPS63299183A (en) 1987-05-29 1987-05-29 Laser generator

Publications (1)

Publication Number Publication Date
JPS63299183A true JPS63299183A (en) 1988-12-06

Family

ID=15057160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13140387A Pending JPS63299183A (en) 1987-05-29 1987-05-29 Laser generator

Country Status (1)

Country Link
JP (1) JPS63299183A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101782A (en) * 1988-10-08 1990-04-13 Fanuc Ltd Gas laser equipment
EP2583364A1 (en) * 2010-06-16 2013-04-24 Trumpf Laser- und Systemtechnik GmbH Gas laser and operating method therefor
JP2015514329A (en) * 2012-04-11 2015-05-18 トルンプフ レーザー− ウント ジュステームテヒニク ゲゼルシャフトミット ベシュレンクテル ハフツングTRUMPF Laser− und Systemtechnik GmbH Cooling device for gas laser, gas laser equipped with cooling device, and laser gas cooling method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101782A (en) * 1988-10-08 1990-04-13 Fanuc Ltd Gas laser equipment
EP2583364A1 (en) * 2010-06-16 2013-04-24 Trumpf Laser- und Systemtechnik GmbH Gas laser and operating method therefor
JP2015514329A (en) * 2012-04-11 2015-05-18 トルンプフ レーザー− ウント ジュステームテヒニク ゲゼルシャフトミット ベシュレンクテル ハフツングTRUMPF Laser− und Systemtechnik GmbH Cooling device for gas laser, gas laser equipped with cooling device, and laser gas cooling method

Similar Documents

Publication Publication Date Title
US6069907A (en) Laser diode pumped solid state laser and method using same
US9212648B2 (en) Laser spark plug
WO2003003531A1 (en) Line narrowing unit with flexural grating mount
US6735236B2 (en) High power gas discharge laser with line narrowing unit
JPH06204587A (en) Axial-flow type laser oscillator
RU2250544C2 (en) High-power gas-discharge lasers with emission-line helium-blast narrowing module
JPS63299183A (en) Laser generator
JP2016162849A (en) Temperature-controllable gas laser oscillator
US6049557A (en) High power photolytic iodine laser
US5802093A (en) Continuous wave photolytic iodine laser
KR101449824B1 (en) Gas laser and operating method therefor
US4771436A (en) Gas laser oscillator having a gas flow smoothing device to smooth gas flow in the electrical discharge region
JPS6232634B2 (en)
KR940007600B1 (en) Cooling apparatus of laser
JPS6310232Y2 (en)
JP3259161B2 (en) Gas laser oscillation device
JP3047596B2 (en) Axial laser oscillator
JP3139103B2 (en) Axial laser oscillator
JPS6420682A (en) Gas laser apparatus excited by high frequency discharge
Sugawara et al. 20-kW Fast-Axial-Flow CO 2 Laser with High-Frequency Turboblowers
JPH06350165A (en) Laser oscillator
JPH05167131A (en) Gas laser oscillator
JPH0744034Y2 (en) High frequency excitation gas laser device
JPS607189A (en) Method for correcting mode pattern of cross-flow type laser device and the same device
JPH08116113A (en) Laser resonator