JP3139103B2 - Axial laser oscillator - Google Patents
Axial laser oscillatorInfo
- Publication number
- JP3139103B2 JP3139103B2 JP3748292A JP3748292A JP3139103B2 JP 3139103 B2 JP3139103 B2 JP 3139103B2 JP 3748292 A JP3748292 A JP 3748292A JP 3748292 A JP3748292 A JP 3748292A JP 3139103 B2 JP3139103 B2 JP 3139103B2
- Authority
- JP
- Japan
- Prior art keywords
- laser
- gas
- discharge
- gas cooler
- oscillator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Lasers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明はレーザ切断加工機などに
用いるレーザ出力を安定化し、かつ小形化した軸流形レ
ーザ発振器に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial-flow laser oscillator having a stabilized laser output used in a laser cutting machine or the like and having a reduced size.
【0002】[0002]
【従来の技術】以下に従来の軸流形レーザ発振器につい
て説明する。図3において、1は共振器ベース、1a,
1bは共振器保持板、2は出力鏡、3は全反射鏡、4は
折り返し鏡、5a〜5dは放電管、6は送風機、7a〜
7cは給気ダクト、9a,9bは分配ブロック、25a
は集合ブロック、25b,25cは集合ブロック支持
部、26は排気ダクト、27はガス冷却器、28は排気
ダクト、29は熱交換器、30a〜30cは冷却ファン
である。2. Description of the Related Art A conventional axial flow laser oscillator will be described below. In FIG. 3, 1 is a resonator base, 1a,
1b is a resonator holding plate, 2 is an output mirror, 3 is a total reflection mirror, 4 is a folding mirror, 5a to 5d are discharge tubes, 6 is a blower, and 7a to
7c is an air supply duct, 9a and 9b are distribution blocks, 25a
Is an assembly block, 25b and 25c are assembly block support portions, 26 is an exhaust duct, 27 is a gas cooler, 28 is an exhaust duct, 29 is a heat exchanger, and 30a to 30c are cooling fans.
【0003】上記各構成要素よりなる軸流形レーザ発振
器について、各構成要素の関係と動作を説明する。図3
に示すように、共振器ベース1の両端に共振器保持板1
a,1bを取付け、また出力鏡2,全反射鏡3,折り返
し鏡4,放電管5a〜5dが同軸上に配設されている。
気体レーザ媒質は送風機6により給気ダクト7a〜7c
から共振器保持板1a,1bに取付けた分配ブロック9
a,9bを通して4本の放電管5a〜5dに等分して供
給され、図示していないが高電圧電源が発生する高電圧
を印加した放電電極による放電により励起されてレーザ
光を出力する。放電管5a〜5dを通過して放電加熱さ
れた気体レーザ媒質は共振器の中央の集合ブロック支持
部25b,25cに保持された集合ブロック25aで1
本に集められて排気ダクト26より排気される。排気さ
れた気体レーザ媒質は、排気ダクト26に接続されてい
るガス冷却器27で冷却された後、排気ダクト28を通
して再び送風機6に戻される。発振器内の雰囲気は熱交
換器29と冷却ファン30a〜30cで冷却される。[0003] The relationship between the components and the operation of the axial flow laser oscillator comprising the above components will be described. FIG.
As shown in FIG.
a, 1b, and an output mirror 2, a total reflection mirror 3, a folding mirror 4, and discharge tubes 5a to 5d are arranged coaxially.
The gas laser medium is supplied by a blower 6 to supply air ducts 7a to 7c.
From the distribution block 9 attached to the resonator holding plates 1a, 1b
The laser light is supplied equally to the four discharge tubes 5a to 5d through a and 9b, and is excited by discharge by a discharge electrode to which a high voltage generated by a high-voltage power supply (not shown) is applied to output laser light. The gas laser medium, which has been discharged and heated by passing through the discharge tubes 5a to 5d, is collected by the collective block 25a held by the collective block supports 25b and 25c at the center of the resonator.
It is collected in a book and exhausted from the exhaust duct 26. The exhausted gas laser medium is cooled by the gas cooler 27 connected to the exhaust duct 26, and then returned to the blower 6 through the exhaust duct 28. The atmosphere in the oscillator is cooled by the heat exchanger 29 and the cooling fans 30a to 30c.
【0004】一般にこの種の軸流形レーザ発振器のガス
冷却に用いられているフィンチューブ形熱交換器は、熱
交換を行なうフィンチューブコアとコアを収納するケー
シングから構成されており、加熱された気体レーザ媒質
を集合排気する配管を通してからレーザ共振器から離し
て取付けたガス冷却器のケーシングに接続されている。A fin tube type heat exchanger generally used for gas cooling of this kind of axial flow type laser oscillator comprises a fin tube core for performing heat exchange and a casing for accommodating the core, and is heated. The gas laser medium is connected to a casing of a gas cooler mounted separately from a laser resonator through a pipe for collecting and exhausting the gas laser medium.
【0005】従来の軸流形レーザ発振器では、加熱され
た気体レーザ媒質が光軸上に置かれた集合ブロック25
や、ガス冷却器27と集合ブロック25をつなぐ排気ダ
クト26を加熱するため、発振器を起動したときや、レ
ーザ出力を調整のため放電入力を変化させたときに、こ
れらの配管の温度変化による膨脹収縮が起こる。また、
表面温度が上昇しているため輻射熱によっても共振器ベ
ース1を暖めて共振器ベース1の温度分布が不均一にな
る。[0005] In a conventional axial-flow laser oscillator, a heated gas laser medium is placed on an assembly block 25 on an optical axis.
When the oscillator is started to heat the exhaust duct 26 connecting the gas cooler 27 and the collecting block 25, or when the discharge input is changed to adjust the laser output, the expansion due to the temperature change of these pipes. Shrinkage occurs. Also,
Since the surface temperature has risen, the resonator base 1 is also warmed by radiant heat, and the temperature distribution of the resonator base 1 becomes uneven.
【0006】また、放電管5や集合ブロック25や排気
ダクト26の各接合部は、高温の気体レーザ媒質にさら
されているので配管シールの劣化が起こり易い。Further, since the respective joints of the discharge tube 5, the collecting block 25, and the exhaust duct 26 are exposed to the high-temperature gas laser medium, deterioration of the pipe seal easily occurs.
【0007】[0007]
【発明が解決しようとする課題】上述のように従来の構
成では、各配管の膨脹収縮や共振器ベース1の温度分布
の不均一によって、共振器の光軸が狂い出力が変動する
という問題点、また各配管の接合部の配管シールの劣化
により気体レーザ媒質と空気の気密性が悪くなりレーザ
出力が低下するという問題点、さらに、発振器内を冷却
する大形の熱交換器29と大風量のファン30で、集合
ブロック25や排気ダクト26に冷風を吹き付けること
で上記の問題点を緩和を図ることがあるが、共振器の光
軸狂いを十分に抑制できず、かつ、熱交換器29のため
に形状が大形化するという問題点を有していた。As described above, the conventional structure has a problem that the optical axis of the resonator is disturbed and the output fluctuates due to expansion and contraction of each pipe and non-uniform temperature distribution of the resonator base 1. In addition, there is a problem that the airtightness between the gas laser medium and the air is deteriorated due to deterioration of a pipe seal at a joint portion of each pipe, and the laser output is reduced. The above problem may be mitigated by blowing cool air to the collecting block 25 and the exhaust duct 26 with the fan 30 of the above. However, it is not possible to sufficiently suppress the optical axis of the resonator, and the heat exchanger 29 For this reason, there was a problem that the shape was enlarged.
【0008】本発明は、上記従来の問題点を解決するも
ので、レーザ出力を安定化し、かつ、形状を小形化した
軸流形レーザ発振器を提供することを目的とする。An object of the present invention is to solve the above-mentioned conventional problems, and an object of the present invention is to provide an axial-flow laser oscillator having a stabilized laser output and a reduced size.
【0009】[0009]
【課題を解決するための手段】この目的を達成するため
に本発明の軸流形レーザ発振器は、互いに気密性を保つ
積み重ねた複数の板の相互間の隙間に冷却媒体,気体レ
ーザ媒質,冷却媒体,発振器内の雰囲気を順に流通させ
たものを一組として、その複数組を積み重ねたガス冷却
器と、ガス冷却器の積み重ねた板の両面からレーザ共振
器の光軸と同軸に放電管と同数のレーザ光が通過する孔
をあけて配設した放電管と、放電管から離れた位置にガ
ス冷却器に設けた孔に配設した排気ダクトを備えたもの
である。SUMMARY OF THE INVENTION To achieve this object, an axial-flow laser oscillator according to the present invention comprises a cooling medium, a gas laser medium, and a cooling medium provided in a gap between a plurality of stacked plates which are kept airtight. A gas cooler in which a plurality of media and an atmosphere in an oscillator are circulated in order as a set, a gas cooler in which a plurality of sets are stacked, and a discharge tube coaxial with the optical axis of the laser resonator from both surfaces of the stacked plates of the gas cooler. It has a discharge tube provided with holes through which the same number of laser beams pass, and an exhaust duct provided in a hole provided in the gas cooler at a position away from the discharge tubes.
【0010】[0010]
【作用】この構成により、放電励起して加熱された気体
レーザ媒質を放電管を出た直後に冷却して、排気ダクト
の温度上昇や輻射熱による共振器ベースの温度上昇をな
くし、気密シールの熱劣化をなくすることとなる。With this configuration, the gas laser medium heated by discharge excitation is cooled immediately after exiting the discharge tube, so that the temperature rise in the exhaust duct and the temperature of the resonator base due to radiant heat are eliminated, and the heat of the hermetic seal is reduced. Deterioration will be eliminated.
【0011】[0011]
【実施例】以下本発明の一実施例について、図面を参照
しながら説明する。本発明の一実施例を示す図1ないし
図2では、従来例と同一部品に同一符号を付して説明は
省略する。An embodiment of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2 showing one embodiment of the present invention, the same parts as those of the conventional example are denoted by the same reference numerals, and description thereof will be omitted.
【0012】図1および図2に示すように、放電管5a
または5cは一端をガス分配ブロック9aまたは9bに
取付けられ、他端を接続フランジ5eまたは5gにより
ガス冷却器10の下部の分配仕切管19aによってあけ
た貫通孔部に取付けられ、放電管5bまたは5dも同様
に分配仕切管19b(図示せず、以下同様に図示せず)
のあけた貫通孔部に接続フランジにより取付けられてい
る。As shown in FIGS. 1 and 2, the discharge tube 5a
Alternatively, 5c is attached to the gas distribution block 9a or 9b at one end, and the other end is attached to the through hole formed by the distribution partition tube 19a at the lower part of the gas cooler 10 by the connection flange 5e or 5g, and the discharge tube 5b or 5d. Similarly, the distribution partition tube 19b (not shown, and similarly not shown below)
It is attached to the opened through-hole by a connection flange.
【0013】排気ダクト8は接続フランジ8aにより、
また緩和パイプ11は接続フランジ11aにより、それ
ぞれガス冷却器10の上部の集合仕切管19cがあけた
貫通孔部に取付けられている。The exhaust duct 8 is connected by a connecting flange 8a.
In addition, the relief pipe 11 is attached to the through-hole portion formed by the collecting partition pipe 19c at the upper part of the gas cooler 10 by the connection flange 11a.
【0014】ガス冷却器10は、取付金具10c,10
dにより共振器ベース1の上に固設され、ガス冷却器1
0の対角線上で冷却水を入出させる下部に水入り口10
aが、上部に水出口10bが配設されている。The gas cooler 10 includes mounting fittings 10c, 10
d, fixed on the resonator base 1 and the gas cooler 1
Water inlet 10 at the bottom where cooling water enters and exits on the diagonal of 0
a is provided with a water outlet 10b at the top.
【0015】またガス冷却器10は空気/水仕切板15
a,水/気体レーザ媒質仕切板16a,17aおよび空
気/水仕切板18aの順に数mmの隙間をあけて配設した
一組と同様に配設した15b〜18bの一組と15c〜
18cの一組を積み重ねて構成し、下部に放電管5a,
5cおよび放電管5b,5dの間隔と同一間隔で2列の
放電管径より大きい内径の孔をあけて、気体レーザ媒質
の分配仕切管19aおよび19bを挿入して接着する。
分配仕切管19a,19bには水/気体レーザ媒質仕切
板16a〜16cと17a〜17cの間の隙間の位置だ
けに孔があけられている。The gas cooler 10 includes an air / water partition plate 15.
a, a set of 15b to 18b and a set of 15c to 18c arranged in the same manner as a set of water / gas laser medium partition plates 16a, 17a and an air / water partition plate 18a with a gap of several mm therebetween.
18c is formed by stacking the discharge tubes 5a,
At the same intervals as the intervals between the discharge tubes 5c and the discharge tubes 5b and 5d, two rows of holes having an inner diameter larger than the diameter of the discharge tubes are opened, and the distribution partition tubes 19a and 19b of the gas laser medium are inserted and bonded.
The distribution partition pipes 19a and 19b are provided with holes only at the positions of the gaps between the water / gas laser medium partition plates 16a to 16c and 17a to 17c.
【0016】2本の分配仕切管19a,19bの中間の
ガス冷却器10の上部の所には4本の放電管5の断面積
の和に等しい断面積の貫通孔があけられており、気体レ
ーザ媒質の集合仕切管19cを挿入して各仕切板15a
〜15c,16a〜16c,17a〜17c,18a〜
18cと接着されている。集合仕切管19cには、分配
仕切管19a,19bと同様に、水/気体レーザ媒質仕
切板16a〜16cと17a〜17cの間の隙間の位置
だけに孔があけられている。A through-hole having a cross-sectional area equal to the sum of the cross-sectional areas of the four discharge tubes 5 is formed in the upper portion of the gas cooler 10 between the two distribution partition tubes 19a and 19b. Inserting the partition pipe 19c of the laser medium and inserting each partition plate 15a
~ 15c, 16a ~ 16c, 17a ~ 17c, 18a ~
18c. The collecting partition tube 19c is provided with holes only at the positions of the gaps between the water / gas laser medium partition plates 16a to 16c and 17a to 17c, similarly to the distribution partition tubes 19a and 19b.
【0017】集合仕切管19cによりあいたガス冷却器
10の両側面の孔には排気ダクト8と緩和パイプ11が
接続されている。排気ダクト8の他端は図示していない
が送風機に接続されており、また、緩和パイプ11の他
端は図示していないが発振器筐体に固定されている。緩
和パイプ11と排気ダクト8の断面積は同等である。An exhaust duct 8 and a relief pipe 11 are connected to holes on both sides of the gas cooler 10 opened by the collecting partition pipe 19c. The other end of the exhaust duct 8 is connected to a blower (not shown), and the other end of the relief pipe 11 is fixed to an oscillator casing (not shown). The cross-sectional areas of the relief pipe 11 and the exhaust duct 8 are equivalent.
【0018】ガス冷却器10の上下位置の水の出入り口
は、気体レーザ媒質の分配仕切管19a,19b,集合
仕切管19cと同様に各仕切板を貫通して挿入接着され
た水の分配仕切管20a,集合仕切管20bに接続され
ている。水の仕切管20には、空気/水仕切板15a〜
15cと水/気体レーザ媒質仕切板16a〜16cの間
の隙間および水/気体レーザ媒質仕切板17a〜17c
と空気/水仕切板18a〜18cの間の隙間の部分に孔
があけられている。The water inlets and outlets at the upper and lower positions of the gas cooler 10 are provided with water distribution partition pipes which are inserted and bonded through the respective partition plates similarly to the distribution partition pipes 19a, 19b and 19c of the gas laser medium. 20a, connected to the collecting partition tube 20b. Air / water partition plates 15a to 15
The gap between 15c and the water / gas laser medium partition 16a-16c and the water / gas laser medium partition 17a-17c
A hole is formed in a gap between the air and water / water partition plates 18a to 18c.
【0019】ガス冷却器10の外周の側面20a,21
bは内面で各仕切板に接着されているが、空気/水仕切
板15a〜15c,18a〜18cの間の隙間の部分は
隙間とほぼ同幅の短冊状の孔があけられている。送風フ
ァン12はガス冷却器10の横に配置されている。The outer side surfaces 20a, 21 of the gas cooler 10
Although b is adhered to each partition plate on the inner surface, a gap between the air / water partition plates 15a to 15c and 18a to 18c is provided with a strip-shaped hole having substantially the same width as the gap. The blower fan 12 is arranged beside the gas cooler 10.
【0020】以上のように構成された軸流形レーザ発振
器について、その動作を説明する。4本の放電管5a〜
5d内へは、気体レーザ媒質が従来例で説明したと同様
に送風機6により給気ダクト7a〜7cより分配ブロッ
ク9a,9bを通じて4等分して供給され、高電圧源の
発生する高電圧を印加した放電電極間でグロー放電を起
こすことにより励起されてレーザ光を発振する。発振さ
れたレーザ光は、出力鏡2および全反射鏡3の間を折り
返し鏡4で折曲げられながら増幅して往復し、最後は出
力鏡2から外へ取り出される。放電管5内で温度上昇し
た気体レーザ媒質は、ガス冷却器10で回収され、冷却
されて再び送風機6により給気ダクト7a〜7cを通じ
て放電管5へ送られる。The operation of the axial-flow laser oscillator configured as described above will be described. Four discharge tubes 5a-
5d, the gas laser medium is supplied by the blower 6 from the air supply ducts 7a to 7c into four equal parts through the distribution blocks 9a and 9b in the same manner as described in the conventional example, and the high voltage generated by the high voltage source is supplied. Glow discharge is caused between the applied discharge electrodes to be excited to oscillate laser light. The oscillated laser light is amplified and reciprocated while being bent by the folding mirror 4 between the output mirror 2 and the total reflection mirror 3, and is finally taken out of the output mirror 2. The gas laser medium whose temperature has risen in the discharge tube 5 is recovered by the gas cooler 10, cooled, and sent again to the discharge tube 5 by the blower 6 through the air supply ducts 7 a to 7 c.
【0021】ガス冷却器10内で分配仕切管19a,1
9bから水/気体レーザ媒質仕切板16a〜16cと1
7a〜17cの間の隙間に分かれて流れていき、集合仕
切管19cで再び1本に集められるが、水/気体レーザ
媒質仕切板16a〜16cと17a〜17cに沿って実
線の矢印で示したように気体レーザ媒質が流れるとき、
空気/水仕切板15a〜15cと水/気体レーザ媒質仕
切板16a〜16cの間および水/気体レーザ媒質仕切
板17a〜17cと空気/水仕切板18a〜18cの間
を冷却水が破線の矢印で示したように並行して流れ、気
体レーザ媒質と冷却水流との温度差により各仕切板を通
じて熱伝導が起こり、気体レーザ媒質が排気ダクト8へ
出るときには冷却されて出てくる。In the gas cooler 10, the distribution partition pipes 19a, 1
9b to water / gas laser medium partition plates 16a to 16c and 1
It flows into the gaps between 7a to 17c and is collected again by the collecting partition pipe 19c, but is indicated by solid arrows along the water / gas laser medium partition plates 16a to 16c and 17a to 17c. As the gas laser medium flows,
Cooling water flows between the air / water partition plates 15a to 15c and the water / gas laser medium partition plates 16a to 16c and between the water / gas laser medium partition plates 17a to 17c and the air / water partition plates 18a to 18c. As shown by the arrow, heat flows through each partition plate due to the temperature difference between the gas laser medium and the cooling water flow, and when the gas laser medium exits to the exhaust duct 8, it is cooled and exits.
【0022】緩和パイプ11は、排気ダクト8の断面積
に相当する真空力で排気ダクト8の方にガス冷却器10
が引かれる力を打ち消す。The relaxation pipe 11 is moved toward the exhaust duct 8 by the gas cooler 10 with a vacuum force corresponding to the cross-sectional area of the exhaust duct 8.
Counteracts the pulling force.
【0023】さらに、ガス冷却器10の横の送風ファン
12はガス冷却器10内の空気/水仕切板18aと15
bおよび18bと15cの間の隙間に発振器内の雰囲気
を図2の紙面に垂直方向に流し込み、冷却水により発振
器内の雰囲気を冷却して安定化させる。Further, the blower fan 12 beside the gas cooler 10 is provided with air / water partition plates 18a and 15 in the gas cooler 10.
The atmosphere in the oscillator is caused to flow in the direction perpendicular to the plane of FIG. 2 into the gap between b and 18b and 15c, and the atmosphere in the oscillator is cooled and stabilized by cooling water.
【0024】この結果、放電管5を出た高温の気体レー
ザ媒質により排気ダクト8を加熱膨脹させることなく、
かつ気体レーザ媒質からの放熱がない。またガス冷却器
10に沿って流れる発振器内の雰囲気が冷却水で冷却さ
れるので発振器内の熱交換器を設けなくても共振器ベー
ス1の温度分布の不均一を生じることがない。そのた
め、発振器の運転中の共振器の光軸の狂いが生じない。
また、気体レーザ媒質との気密を行なう気密シール22
b,22d部分は空気/水仕切板15aに接しており温
度が低いので気密シール22b,22dの劣化が起こり
にくい。As a result, the exhaust duct 8 is not heated and expanded by the high-temperature gas laser medium exiting the discharge tube 5,
There is no heat radiation from the gas laser medium. Further, since the atmosphere in the oscillator flowing along the gas cooler 10 is cooled by the cooling water, the temperature distribution of the resonator base 1 does not become uneven even if the heat exchanger in the oscillator is not provided. Therefore, the optical axis of the resonator does not deviate during the operation of the oscillator.
Further, a hermetic seal 22 for hermetic sealing with the gas laser medium.
Since the portions b and 22d are in contact with the air / water partition plate 15a and have a low temperature, the hermetic seals 22b and 22d are unlikely to deteriorate.
【0025】以上のように本実施例によれば、複数の板
を積み重ねて互いに気密したうえ、板の隙間に冷却水,
気体レーザ媒質,冷却水,発振器内の雰囲気を順に流通
させたものを一組として、その複数組を積み重ねたガス
冷却器と、レーザ共振器の光軸と同軸に放電管と、放電
管から離した位置に排気ダクトを設けることにより、レ
ーザ発振中の共振器の光軸の狂いを抑制して出力を安定
に保つことができる。また、気密シール22b,22d
の熱劣化が起こらないので真空漏れによる出力低下がな
いので長期的に出力を安定化できる。さらに、ガス冷却
器10の共振器の光軸内に組み込み、かつ、発振器内の
冷却の熱交換器を不要にできるので発振器全体の形状を
小形化できる。As described above, according to the present embodiment, a plurality of plates are stacked and air-tight with each other.
A gas laser medium, cooling water, and an atmosphere in the oscillator are sequentially circulated as one set. A gas cooler in which a plurality of sets are stacked, a discharge tube coaxial with the optical axis of the laser resonator, and a discharge tube separated from the discharge tube By providing the exhaust duct at the position set as described above, it is possible to suppress the optical axis of the resonator during laser oscillation from being disordered and to keep the output stable. In addition, the airtight seals 22b and 22d
Since thermal degradation does not occur, output does not decrease due to vacuum leakage, and output can be stabilized for a long time. Furthermore, the shape of the whole oscillator can be reduced because it can be incorporated in the optical axis of the resonator of the gas cooler 10 and the cooling heat exchanger in the oscillator can be dispensed with.
【0026】[0026]
【発明の効果】以上の実施例の説明からも明らかなよう
に本発明は、互いに気密性を保って積み重ねた複数の板
の相互間の隙間に冷却媒体,気体レーザ媒質,冷却媒
体,発振器内の雰囲気を順に流通させたものを一組とし
て、その複数組を積み重ねたガス冷却器と、ガス冷却器
の積み重ねた板の両面にレーザ発振器の光軸と同軸に放
電管と同数のレーザ光が流通する孔をあけて配設した放
電管と、放電管から離れた位置にガス冷却器に設けた孔
に配設した排気ダクトを備えた構成により、レーザ出力
を安定化し、かつ、形状を小形化した優れた軸流形レー
ザ発振器を実現できるものである。As is apparent from the above description of the embodiment, the present invention provides a cooling medium, a gas laser medium, a cooling medium, an oscillator in a gap between a plurality of plates stacked while maintaining airtightness. As a set, a gas cooler in which a plurality of sets are stacked, and the same number of laser beams as the discharge tubes coaxially with the optical axis of the laser oscillator are provided on both surfaces of the stacked plates of the gas cooler. The laser output is stabilized and the shape is small due to the configuration with a discharge tube provided with a hole for circulation and an exhaust duct provided in a hole provided in the gas cooler at a position away from the discharge tube. Thus, an excellent axial flow type laser oscillator can be realized.
【図1】本発明の一実施例の軸流形レーザ発振器の要部
の概念を示した斜面略図FIG. 1 is a schematic perspective view showing a concept of a main part of an axial flow laser oscillator according to an embodiment of the present invention.
【図2】同軸流形レーザ発振器のガス冷却器の一部を欠
載して断面を示した側面図FIG. 2 is a side view showing a cross section of a coaxial flow laser oscillator with a part of a gas cooler not shown;
【図3】従来の軸流形レーザ発振器の要部の概念を示し
た斜面略図FIG. 3 is a schematic perspective view showing a concept of a main part of a conventional axial flow laser oscillator.
5a〜5d 放電管 6 送風機 7a〜7c 給気ダクト 8 排気ダクト 10 ガス冷却器 5a-5d Discharge tube 6 Blower 7a-7c Air supply duct 8 Exhaust duct 10 Gas cooler
Claims (1)
両端に出力鏡と全反射鏡を取付けたレーザ共振器と、気
体レーザ媒質の送風機と、前記レーザ共振器と前記送風
機を接続する給気ダクトおよび排気ダクトと、ガス冷却
器と、高電圧電源を備え、前記放電管内の前記気体レー
ザ媒質を前記高電圧電源に接続された前記放電電極の放
電により励起してレーザ光を発生させる軸流形レーザ発
振器であって、互いに気密性を保つ積み重ねた板の相互
間の隙間に冷却媒体,気体レーザ媒質,冷却媒体,発振
器内の雰囲気を順に流通させたものを一組として、その
複数組を積み重ねて構成した前記ガス冷却器と、そのガ
ス冷却器の積み重ねた板の両面から前記レーザ共振器の
光軸と同軸に前記レーザ光が通過する孔をあけて配設し
た前記放電管と、前記放電管から離れた位置に前記ガス
冷却器に設けた孔に配設した前記排気ダクトを備えた軸
流形レーザ発振器。1. A plurality of discharge tubes having discharge electrodes, a laser resonator having output mirrors and total reflection mirrors attached to both ends thereof, a blower of a gas laser medium, and a power supply connecting the laser resonator and the blower. An axis that includes an air duct and an exhaust duct, a gas cooler, and a high-voltage power supply, and that excites the gas laser medium in the discharge tube by discharge of the discharge electrode connected to the high-voltage power supply to generate laser light. A plurality of flow-type laser oscillators in which a cooling medium, a gas laser medium, a cooling medium, and an atmosphere in an oscillator are sequentially passed through gaps between stacked plates that maintain airtightness. The gas cooler configured by stacking, the discharge tube provided with holes through which the laser light passes coaxially with the optical axis of the laser resonator from both sides of the stacked plates of the gas cooler, Previous An axial-flow laser oscillator including the exhaust duct provided in a hole provided in the gas cooler at a position away from the discharge tube.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3748292A JP3139103B2 (en) | 1992-02-25 | 1992-02-25 | Axial laser oscillator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3748292A JP3139103B2 (en) | 1992-02-25 | 1992-02-25 | Axial laser oscillator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05235440A JPH05235440A (en) | 1993-09-10 |
JP3139103B2 true JP3139103B2 (en) | 2001-02-26 |
Family
ID=12498745
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3748292A Expired - Fee Related JP3139103B2 (en) | 1992-02-25 | 1992-02-25 | Axial laser oscillator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3139103B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7247443B2 (en) * | 2017-10-26 | 2023-03-29 | 国立研究開発法人量子科学技術研究開発機構 | laser amplifier |
-
1992
- 1992-02-25 JP JP3748292A patent/JP3139103B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH05235440A (en) | 1993-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2135815A (en) | Cross flow type laser devices | |
JP3139103B2 (en) | Axial laser oscillator | |
US4564947A (en) | High-power lasers | |
JPH01268080A (en) | Solid-state laser device | |
WO1993007663A1 (en) | Laser device | |
JP3047596B2 (en) | Axial laser oscillator | |
JP3259153B2 (en) | Gas laser oscillation device | |
CN113889826B (en) | Laser oscillator | |
JP3259161B2 (en) | Gas laser oscillation device | |
US5058125A (en) | Laser oscillator | |
GB2145274A (en) | Gas laser system | |
JP4124310B2 (en) | Gas laser heat exchanger | |
JPH06326379A (en) | Gas laser oscillator | |
JPH08139390A (en) | Gas laser apparatus | |
JPH05160469A (en) | Laser oscillator | |
JPH06350165A (en) | Laser oscillator | |
JP2000174364A (en) | Laser oscillator | |
JPS6342533Y2 (en) | ||
JP3092816B2 (en) | Gas laser oscillation device | |
JPH04263481A (en) | Gas laser device | |
JPS63299183A (en) | Laser generator | |
JPH09199771A (en) | Gas laser oscillator | |
JPS6420682A (en) | Gas laser apparatus excited by high frequency discharge | |
JPH0327582A (en) | Transverse gas laser oscillator | |
JPS61279186A (en) | Lateral flow type gas laser device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |