JPH01268080A - Solid-state laser device - Google Patents

Solid-state laser device

Info

Publication number
JPH01268080A
JPH01268080A JP9547988A JP9547988A JPH01268080A JP H01268080 A JPH01268080 A JP H01268080A JP 9547988 A JP9547988 A JP 9547988A JP 9547988 A JP9547988 A JP 9547988A JP H01268080 A JPH01268080 A JP H01268080A
Authority
JP
Japan
Prior art keywords
heat
laser medium
laser
intensity
smooth side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9547988A
Other languages
Japanese (ja)
Other versions
JP2681278B2 (en
Inventor
Yasuto Nai
名井 康人
Kazuki Kuba
一樹 久場
Shigenori Yagi
重典 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63095479A priority Critical patent/JP2681278B2/en
Publication of JPH01268080A publication Critical patent/JPH01268080A/en
Application granted granted Critical
Publication of JP2681278B2 publication Critical patent/JP2681278B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/025Constructional details of solid state lasers, e.g. housings or mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0405Conductive cooling, e.g. by heat sinks or thermo-electric elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0606Crystal lasers or glass lasers with polygonal cross-section, e.g. slab, prism
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0915Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light
    • H01S3/092Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp
    • H01S3/093Processes or apparatus for excitation, e.g. pumping using optical pumping by incoherent light of flash lamp focusing or directing the excitation energy into the active medium

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To eliminate distortion of oscillating beam pattern and to output the stable pattern characterized by high oscillating efficiency and no change with time, by providing temperature controllers comprising heat sources which output quantity of heat to be supplied in correspondence with the intensity of pumping light and outer wall parts having specified heat capacity on the non-smooth side surfaces of laser medium in a tightly fixed pattern. CONSTITUTION:In a laser apparatus, a pair of facing optical smooth surfaces 1e and 1f are provided, a laser medium 1 having a rectangular cross surface is excited and laser light is outputted. A temperature controller comprising heat sources 11a which output quantities of heat to be supplied in correspondence with the intensity of the excited light and outer wall parts 11b which cover the heat sources 11a and have the specified heat capacity are provided on non-smooth side surfaces 1a and 1b of the laser medium 1 in a tightly fixed pattern. For example, the heat controller 11 comprises the pipe 11a and the outer wall part 11b. The pipe 11a is provided at the central part, and liquid having the specified quantity of heat in correspondence with the intensity of the excited light is circulated through the pipe. The outer wall part 11b has the specified heat capacity. Heat dissipation from the laser medium 1 at the non-smooth side surfaces 1a and 1b which are the interfaces with the laser medium is prevented by propagation of heat from the pipes 11a in the outer wall parts 11b. Thus the thermal equilibrium is maintained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、スラブ形固体レーザ装置に係り、さらに詳
しくは該装置におけるレーザ媒質の温度分布の制御装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a slab-type solid-state laser device, and more particularly to a control device for temperature distribution of a laser medium in the device.

[従来の技術] 第3図は例えばLa5er Focus / E−OT
ECHNOLOGY。
[Prior art] Figure 3 shows, for example, La5er Focus/E-OT.
ECHNOLOGY.

SEPTEMt3ER,1983P、106に開示され
た従来のスラブ形固体レーザ装置の構成を示す断面図で
ある。
1 is a cross-sectional view showing the configuration of a conventional slab-type solid-state laser device disclosed in SEPTEMt3ER, 1983P, 106.

図において、(1)はレーザ媒質、(la)、(1,b
)はレーザ媒質(1)の非平滑側面、(2)はこれらの
非平滑側面(Ia)、(lb)のそれぞれに密着して設
けた断熱材、(3)はレーザ媒質(,1)の上下の対称
位置に設けた励起ランプ、(4)は一対の反射鏡、(5
)はレーザ媒質(1)を冷却する冷却剤の流路、(6〉
は冷却剤の循環方向である。
In the figure, (1) is the laser medium, (la), (1, b
) is the non-smooth side surface of the laser medium (1), (2) is the heat insulating material provided in close contact with each of these non-smooth sides (Ia) and (lb), and (3) is the non-smooth side surface of the laser medium (,1). Excitation lamps installed in vertically symmetrical positions, (4) a pair of reflecting mirrors, (5
) is a coolant flow path for cooling the laser medium (1), (6>
is the direction of coolant circulation.

次に、第3図およびレーザ媒質(1)の周辺部の詳細を
示した第4図を参照して動作を説明する。
Next, the operation will be explained with reference to FIG. 3 and FIG. 4 showing details of the peripheral portion of the laser medium (1).

第3図において、励起ランプ(3)より発光した励起光
は反射鏡(4)で反射し、レーザ媒質(1,)に吸収さ
れてレーザ発振が生起する、このレーザ発振時にレーザ
媒質(1)に吸収された励起光によるエネルギ中、レー
ザ発振に寄与しない分は熱エネルギに変換されてレーザ
媒質(1)内で発熱するので、この熱を流路(5)に循
環する冷却剤によって冷却し、所定の温度に保持する。
In Figure 3, the excitation light emitted from the excitation lamp (3) is reflected by the reflecting mirror (4) and absorbed by the laser medium (1,) to generate laser oscillation. Of the energy from the excitation light absorbed by the laser medium, the part that does not contribute to laser oscillation is converted into thermal energy and generates heat within the laser medium (1), so this heat is cooled by the coolant circulating in the flow path (5). , maintained at a predetermined temperature.

第4図は上記のレーザ媒質(1)における発熱および冷
却作用によって生じる熱の伝播、温度分市の状態を示し
、レーザ媒質(1)内で発熱した熱は、端部(lc) 
、 (ld)以外の部分ではレーザ媒質(1)の内部よ
り矢印(7)で示すように冷却剤の管路(5)の方向へ
伝播してゆき、等混線(8)は破線で示すようにレーザ
媒質(1)の平滑面(le) 、 (1(’)に平行で
、内部に近くなるほど高温状態となる。
Figure 4 shows the state of heat propagation and temperature distribution caused by heat generation and cooling in the laser medium (1).
, In the part other than (ld), the coolant propagates from inside the laser medium (1) toward the coolant pipe (5) as shown by the arrow (7), and the equimixture line (8) is shown by the broken line. The smooth surface (le) of the laser medium (1) is parallel to (1(')), and the closer it is to the inside, the higher the temperature becomes.

しかし、端部(tc) 、(ld)においては、断熱材
(2)の断熱作用により非平滑側面(la)、(lb)
を経たレーザ媒質(1)の内部よりの熱の伝播をある程
度抑制するが、完全に断熱することができないため、矢
印(9)で示すように放射状に熱が伝播し、等温11 
(10)は図に示すような曲線状となり、内部に近くな
るほど高温状態となる。
However, at the ends (tc) and (ld), the non-smooth side surfaces (la) and (lb) due to the insulation effect of the heat insulating material (2)
Although the heat propagation from inside the laser medium (1) through the laser medium (1) is suppressed to some extent, it cannot be completely insulated, so the heat propagates radially as shown by the arrow (9), resulting in an isothermal 11
(10) has a curved shape as shown in the figure, and the closer it is to the inside, the higher the temperature becomes.

[発明が解決しようとする課題] 上記のような従来のスラブ形固定レーザ装置では、レー
ザ媒質(1)の両端部(lc) 、 (ld)における
完全な断熱が行なわれないために、非平滑側面(la)
 、 (lb)および平滑面(le) 、 (1f’)
にほぼ沿うようにした等混線(10)が生じる。この等
混線(10)による温度分布が熱レンズ効果となって、
発振ビームパターンの歪や発振効率の低下を生じたり、
発振ビームパターンや発振出力が経時変化するなどの問
題がある。
[Problems to be Solved by the Invention] In the conventional slab-type fixed laser device as described above, complete insulation is not performed at both ends (lc) and (ld) of the laser medium (1), so the non-smooth surface Side (la)
, (lb) and smooth surface (le) , (1f')
An equal crosstalk line (10) is generated which is approximately along the line. The temperature distribution due to this equimixing line (10) becomes a thermal lens effect,
This may cause distortion of the oscillation beam pattern or decrease in oscillation efficiency.
There are problems such as the oscillation beam pattern and oscillation output changing over time.

この発明は上記のような問題点を解消するためになされ
たもので、発振ビームパターンの歪を無くし、発振効率
が高くかつ経時変化の無い安定したパターンを出力する
ことができる固体レーザ装置を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and provides a solid-state laser device that eliminates distortion of the oscillation beam pattern, has high oscillation efficiency, and can output a stable pattern that does not change over time. The purpose is to

[課題を解決するための手段] この発明に係る固体レーザ装置は、励起光の強度に応じ
て供給熱量を出力する熱源と所定の熱容量の周壁部とか
らなる温度制御器を、レーザ媒質の非平滑側面に密着し
て設け、レーザ媒質と上記周壁部との界面において熱平
衡状態にし、非平滑側面よりの熱伝播を阻止するように
したものである。
[Means for Solving the Problems] A solid-state laser device according to the present invention uses a temperature controller consisting of a heat source that outputs the amount of heat to be supplied according to the intensity of excitation light and a peripheral wall portion of a predetermined heat capacity to It is provided in close contact with the smooth side surface to create a thermal equilibrium state at the interface between the laser medium and the peripheral wall, thereby preventing heat propagation from the non-smooth side surface.

[作 用] この発明における励起光によるレーザ媒質内で発生する
熱は、レーザ媒質の平滑面に接する冷却剤の方向へのみ
伝播するので、レーザ媒質全領域にわたって平滑面に平
行な等混線が生じる。また、励起光の強度が変動して等
混線の位置が移動しても、励起光の変動に対応して温度
制御器の供給熱量が変動するので、レーザ媒質と周壁部
との界面における熱平衡を保持する。
[Function] Since the heat generated in the laser medium by the excitation light in this invention propagates only in the direction of the coolant that is in contact with the smooth surface of the laser medium, equimixing lines parallel to the smooth surface occur over the entire area of the laser medium. . Furthermore, even if the intensity of the excitation light fluctuates and the position of the equicrosstalk moves, the amount of heat supplied to the temperature controller will change in response to the fluctuation of the excitation light, so the thermal balance at the interface between the laser medium and the peripheral wall will be affected. Hold.

[実施例] 第1図はこの発明の一実施例によるスラブ形固体レーザ
装置におけるレーザ媒体およびその周辺部の構成を示す
断面図である。図において、 (1)。
[Embodiment] FIG. 1 is a cross-sectional view showing the configuration of a laser medium and its peripheral portion in a slab-type solid-state laser device according to an embodiment of the present invention. In the figure, (1).

(la)、(lb)、(lc)、(ld)、(le)、
(lf’)、(5)、(6)、(7)。
(la), (lb), (lc), (ld), (le),
(lf'), (5), (6), (7).

(8)は従来例を示した第4図における同符号の部分と
同一または相当部分である。
(8) is the same or equivalent part to the part with the same reference numeral in FIG. 4 showing the conventional example.

(11)はレーザ媒質(1)の非平滑側面(la) 、
 (lb)および管路(5)に密着して設けたレーザ媒
質(1)の端部(le) 、 (ld)に対する温度制
御器であり、中心部に設けた励起光の強度に応じて所定
熱量の液体を循環する管路(lla)と、所定の熱容量
を有する周壁部(11t+)とからなり、管路(lla
)よりの周壁部(llb)内の熱の伝播によって、レー
ザ媒質(1)との界面となる非平滑側面(la) 、 
(lb)におけるレーザ媒質(1)よりの放熱を阻止し
、熱平衡状態に保つようになっている。
(11) is the non-smooth side surface (la) of the laser medium (1),
(lb) and the end portions (le) and (ld) of the laser medium (1) provided in close contact with the conduit (5). The pipe (lla) consists of a pipe (lla) that circulates a liquid with a calorific value, and a peripheral wall (11t+) that has a predetermined heat capacity.
), the non-smooth side surface (la) becomes an interface with the laser medium (1) due to the propagation of heat within the peripheral wall (llb),
(lb) is prevented from dissipating heat from the laser medium (1) to maintain a state of thermal equilibrium.

次に、第1図を参照して動作を説明する。従来例の動作
と同様に、レーザ発振時にレーザ媒質(1)に吸収され
た励起光によるエネルギ中、レーザ発振に寄与しない分
は熱エネルギに変換されてレーザ媒質(1)内で発熱し
、この熱は流路(5)を循環する冷却剤によって冷却さ
れるので、レーザ媒質(1)の中央部より平滑面(Le
)、(IF)側へ熱が伝播する。ここで、非平滑側面(
la) 、 (lb)に密着している温度制御器(11
)の周壁部(llb)における熱の伝播挙動に着目する
と、周壁部(llb)の材質と容積とで定まる熱容量お
よび管路(lla)の循環流体より供給される熱量等を
あらかじめ設定して、非平滑側面(la) = (lb
)に接する周壁部(llb)と、これに対峙するレーザ
媒質(1)の端部(lc) 、(ld)との温度分布が
等しくなるようにしであるので、相互に熱の伝播作用が
なく平衡状態となり、レーザ媒質(1)の全長にわたっ
て一定状態の等混線(8)を保持する。
Next, the operation will be explained with reference to FIG. Similar to the operation of the conventional example, the part of the energy from the excitation light absorbed by the laser medium (1) during laser oscillation, which does not contribute to laser oscillation, is converted into thermal energy and generates heat within the laser medium (1). Since the heat is cooled by the coolant circulating in the flow path (5), the smooth surface (Le
), heat propagates to the (IF) side. Here, the non-smooth side (
The temperature controller (11) is in close contact with the
), the heat capacity determined by the material and volume of the peripheral wall (llb) and the amount of heat supplied from the circulating fluid of the pipe (lla) are set in advance, Non-smooth side surface (la) = (lb
), and the edges (lc) and (ld) of the laser medium (1) facing the circumferential wall (llb) are designed to have equal temperature distribution, so there is no mutual heat propagation effect. It becomes an equilibrium state and maintains a constant equimixture (8) over the entire length of the laser medium (1).

また、上記の熱平衡状態時に励磁光の強度が変動し、レ
ーザ媒質(1)内の発熱量が変化すると、図示のない調
節手段によって励起光め変動に対応する管路(lla)
よりの供給熱量を増減するようにして、常に非平滑側面
(la)、(lb)と温度制御器(11)との界面近傍
における熱平衡を保つようにしている。
In addition, when the intensity of the excitation light fluctuates during the above-mentioned thermal equilibrium state and the amount of heat generated in the laser medium (1) changes, an adjustment means (not shown) adjusts the conduit (lla) to accommodate the fluctuation of the excitation light.
By increasing or decreasing the amount of heat supplied to the temperature controller, thermal equilibrium is always maintained in the vicinity of the interface between the non-smooth side surfaces (la) and (lb) and the temperature controller (11).

レーザ媒質(1)の中心部と平滑面(le)、(If’
)との間の温度差は、レーザ発振中の励起光がジグザグ
に通過することによって補償できるので、非平滑側面(
la) 、(fb)間すなわちレーザ媒質<1)の全領
域にわたって上記温度差が一定状態に保たれていれば、
レーザ発振時のビームパターンは端部に歪の無い良好な
パターンが得られ、またレーザ光路の偏向すなわち熱レ
ンズ効果が無くなり、レーザ媒質(1)の全領域をレー
ザ励起して発振効率が増大する。
The center of the laser medium (1) and the smooth surfaces (le) and (If'
) can be compensated by the zigzag passage of the excitation light during laser oscillation, so the non-smooth side surface (
If the above temperature difference is kept constant over the entire region between la) and fb, that is, the laser medium <1),
A good beam pattern with no distortion at the edges is obtained during laser oscillation, and the deflection of the laser optical path, that is, the thermal lens effect is eliminated, and the entire region of the laser medium (1) is excited by the laser, increasing oscillation efficiency. .

なお、上記実施例では温度制御器(11)がレーザ媒質
(1)とともに冷却剤の管路(5)に囲まれた一体構造
の例について説明したが、例えば第2図に示したように
温度制御器(11)の面が管路(5)に隣隣接しなくて
もよく、また加熱源(lla)として例えばペルティエ
素子などの熱雷素子を用いるようにしても、上記実施例
と同様の効果を奏する。
In the above embodiment, the temperature controller (11) and the laser medium (1) are surrounded by the coolant pipe (5), but as shown in FIG. The surface of the controller (11) does not need to be adjacent to the conduit (5), and even if a thermal lightning element such as a Peltier element is used as the heating source (lla), the same effect as in the above embodiment can be achieved. be effective.

[発明の効果] 以上説明したように、この発明によればレーザ媒質の両
端部に、あらかじめ算定した供給熱量を有する熱源と、
この熱源の周壁部とからなる温度制御器を設け、レーザ
媒質の端面(非平滑側面)方向での熱伝播を無くするよ
うに構成したので、レーザ媒質全領域に効率のよいレー
ザ励起が生じ、かつ発振ビームパターンの歪の無い安定
したレーザ出力が得られる効果がある。
[Effects of the Invention] As explained above, according to the present invention, a heat source having a pre-calculated amount of heat to be supplied is provided at both ends of the laser medium,
A temperature controller consisting of the peripheral wall of this heat source is provided to eliminate heat propagation in the direction of the end face (unsmooth side surface) of the laser medium, so efficient laser excitation occurs in the entire area of the laser medium. Moreover, there is an effect that stable laser output without distortion of the oscillation beam pattern can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるスラブ形固定レーザ
装置のレーザ媒体およびその周辺部の構成を示す断面図
、第2図はこの発明の他の実施例の構成を示す断面図、
第3図は従来のスラブ形固定レーザ装置の構成を示す縦
断面図、第4図は第3図におけるレーザ媒体およびその
周辺部の構成を示す断面図である。 図において、(1)はレーザ媒質、(la) 、 (t
b)は非平滑側面、(le)、(1r)は平滑面、(1
1)は温度制御器、(lla)は管路、(llb)は周
壁。 なお、図中同一符号は同一または相当部分を示す。
FIG. 1 is a cross-sectional view showing the structure of a laser medium and its peripheral portion of a slab-type fixed laser device according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the structure of another embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing the structure of a conventional slab-type fixed laser device, and FIG. 4 is a sectional view showing the structure of the laser medium and its peripheral portion in FIG. 3. In the figure, (1) is the laser medium, (la), (t
b) is a non-smooth side surface, (le), (1r) are smooth surfaces, (1
1) is a temperature controller, (lla) is a pipe, and (llb) is a peripheral wall. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 対峙する一対の光学的平滑面を有し、断面が矩形状のレ
ーザ媒質を励起してレーザ光を出力するレーザ装置にお
いて、 上記レーザ媒質の非平滑側面のそれぞれに密着して、励
起光の強度に対応して供給熱量を出力する熱源と、この
熱源の周囲を覆い所定の熱容量を有する周壁部とからな
る温度制御手段を設けたことを特徴とする固定レーザ装
置。
[Claims] In a laser device that excites a laser medium having a rectangular cross section and outputs laser light, the laser device has a pair of optically smooth surfaces facing each other, the laser medium having a pair of optically smooth surfaces that are in close contact with each of the non-smooth side surfaces of the laser medium. A fixed laser device, characterized in that a fixed laser device is provided with temperature control means comprising a heat source that outputs a supplied amount of heat in accordance with the intensity of excitation light, and a peripheral wall portion surrounding the heat source and having a predetermined heat capacity.
JP63095479A 1988-04-20 1988-04-20 Solid-state laser device Expired - Fee Related JP2681278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095479A JP2681278B2 (en) 1988-04-20 1988-04-20 Solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095479A JP2681278B2 (en) 1988-04-20 1988-04-20 Solid-state laser device

Publications (2)

Publication Number Publication Date
JPH01268080A true JPH01268080A (en) 1989-10-25
JP2681278B2 JP2681278B2 (en) 1997-11-26

Family

ID=14138754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095479A Expired - Fee Related JP2681278B2 (en) 1988-04-20 1988-04-20 Solid-state laser device

Country Status (1)

Country Link
JP (1) JP2681278B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410585A (en) * 1990-04-27 1992-01-14 Herutsu Kogyo Kk Cooling method of solid-state laser material
JPH11289123A (en) * 1998-02-17 1999-10-19 Trw Inc Method and apparatus for minimizing thermo-optical path difference for stimulated emission medium in solid-phase laser
WO2005031928A1 (en) * 2003-09-25 2005-04-07 Hamamatsu Photonics K.K. Solid state laser
JP2006196882A (en) * 2004-12-14 2006-07-27 Hamamatsu Photonics Kk Optical amplifier, laser oscillator, and mopa laser equipment
US7502396B2 (en) 2003-08-28 2009-03-10 Hamamatsu Photonics K.K. Solid-state laser apparatus
CN105215555A (en) * 2015-10-26 2016-01-06 惠州市杰普特电子技术有限公司 Laser mark printing device
KR20160009735A (en) * 2014-07-16 2016-01-27 한국원자력연구원 Solid laser apparatus for thermal lens compensation
CN109217084A (en) * 2017-06-30 2019-01-15 中国科学院上海光学精密机械研究所 The control method and high energy repetition capacitance laser of high energy repetition capacitance laser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234385A (en) * 1986-04-04 1987-10-14 Mitsubishi Electric Corp Solid-state laser apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62234385A (en) * 1986-04-04 1987-10-14 Mitsubishi Electric Corp Solid-state laser apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0410585A (en) * 1990-04-27 1992-01-14 Herutsu Kogyo Kk Cooling method of solid-state laser material
JPH11289123A (en) * 1998-02-17 1999-10-19 Trw Inc Method and apparatus for minimizing thermo-optical path difference for stimulated emission medium in solid-phase laser
US7502396B2 (en) 2003-08-28 2009-03-10 Hamamatsu Photonics K.K. Solid-state laser apparatus
WO2005031928A1 (en) * 2003-09-25 2005-04-07 Hamamatsu Photonics K.K. Solid state laser
JP2006196882A (en) * 2004-12-14 2006-07-27 Hamamatsu Photonics Kk Optical amplifier, laser oscillator, and mopa laser equipment
KR20160009735A (en) * 2014-07-16 2016-01-27 한국원자력연구원 Solid laser apparatus for thermal lens compensation
CN105215555A (en) * 2015-10-26 2016-01-06 惠州市杰普特电子技术有限公司 Laser mark printing device
CN109217084A (en) * 2017-06-30 2019-01-15 中国科学院上海光学精密机械研究所 The control method and high energy repetition capacitance laser of high energy repetition capacitance laser

Also Published As

Publication number Publication date
JP2681278B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
US4852109A (en) Temperature control of a solid state face pumped laser slab by an active siderail
US5386427A (en) Thermally controlled lenses for lasers
US5394427A (en) Housing for a slab laser pumped by a close-coupled light source
US4949346A (en) Conductively cooled, diode-pumped solid-state slab laser
KR940002413B1 (en) Integrating laser diode pumped laser apparatus
US4563763A (en) Method and apparatus for cooling a slab laser
JPH01268080A (en) Solid-state laser device
JP2001244526A (en) Semiconductor laser excitation solid-state laser device
US6021151A (en) Laser oscillation apparatus
US5299213A (en) Solid state laser apparatus
US5781573A (en) High power solid state laser and method of increasing power using same
JP2005152972A (en) Laser beam machining apparatus
JPH088477A (en) Solid state laser device
JPH1187813A (en) Solid laser oscillator
JP2588931B2 (en) Solid state laser
JPH053355A (en) Solid-state laser medium
Baker et al. Power scaling of thin Nd: glass and Nd: YAG slab lasers, face-pumped by laser diodes
JPH0728071B2 (en) Solid-state laser device
JP7572172B2 (en) Laser Oscillator
JPH10284775A (en) Solid-state laser
JP2022013224A (en) Laser oscillator
JP3767213B2 (en) Laser oscillator
JPH0677563A (en) Solid laser
JPH0685357A (en) Solid laser oscillator
Nester Dynamic optical properties of CW Nd: YAlG lasers

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees