JP3047596B2 - Axial laser oscillator - Google Patents

Axial laser oscillator

Info

Publication number
JP3047596B2
JP3047596B2 JP3748192A JP3748192A JP3047596B2 JP 3047596 B2 JP3047596 B2 JP 3047596B2 JP 3748192 A JP3748192 A JP 3748192A JP 3748192 A JP3748192 A JP 3748192A JP 3047596 B2 JP3047596 B2 JP 3047596B2
Authority
JP
Japan
Prior art keywords
laser
resonator
gas
discharge
laser oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3748192A
Other languages
Japanese (ja)
Other versions
JPH05235439A (en
Inventor
勤 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP3748192A priority Critical patent/JP3047596B2/en
Publication of JPH05235439A publication Critical patent/JPH05235439A/en
Application granted granted Critical
Publication of JP3047596B2 publication Critical patent/JP3047596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は切断加工機などに用いる
レーザ出力を安定化し、かつ小形化した軸流形レーザ発
振器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an axial-flow laser oscillator having a stabilized laser output used in a cutting machine or the like and having a reduced size.

【0002】[0002]

【従来の技術】以下に従来の軸流形レーザ発振器につい
て説明する。図4において、2a,2bは共振器保持
板、3は出力鏡、4は全反射鏡、5a,5bはガス接続
ブロック、6a,6bと7a,7bは放電管6と放電管
7の各取付フランジ、9は給気ダクト、11は送風機、
13は共振ベース、15は集合ブロック、16は集合ブ
ロック支持碍子、17a,17bは排気ダクト、18は
ガラス冷却器、19は共振器ベースである。12は共振
器のレーザ光軸を示す。
2. Description of the Related Art A conventional axial flow laser oscillator will be described below. In FIG. 4, 2a and 2b are resonator holding plates, 3 is an output mirror, 4 is a total reflection mirror, 5a and 5b are gas connection blocks, and 6a, 6b and 7a and 7b are discharge tube 6 and discharge tube 7 mounting. Flange, 9 is an air supply duct, 11 is a blower,
13 is a resonance base, 15 is a collective block, 16 is a collective block support insulator, 17a and 17b are exhaust ducts, 18 is a glass cooler, and 19 is a resonator base. Reference numeral 12 denotes a laser optical axis of the resonator.

【0003】上記各構成要素よりなる軸流形レーザ発振
器について、各構成要素の関係と動作を説明する。図4
に示すように、共振器ベース13の両端に共振器保持板
2a,2bを取付け、また出力鏡3,全反射鏡4,接続
ブロック5,放電管6,7,集合ブロック15を同軸上
に並べ、集合ブロック15を支持碍子16で共振器ベー
ス13上に固定し、放電管6と放電管7を取付フランジ
6a,6bと取付フランジ7a,7bにより接続フラン
ジ5と集合ブロック15に取付けている。気体レーザ媒
質は、送風機11により給気ダクト9から共振器保持板
2a,2bに取付けた接続ブロック5a,5bを通して
2本の放電管6と放電管7に等分して供給され、図示し
ていないが高電圧電源が発生する高電圧を印加した放電
電極による放電により励起されてレーザ光を出力する。
放電管3と放電管7を通過して放電加熱された気体レー
ザ媒質は共振器の中央の集合ブロック15で1本に集め
られて排気ダクト17aより排気される。排気された気
体レーザ媒質は、排気ダクト17aに接続されているガ
ス冷却器18で冷却された後、排気ダクト17bを通し
て再び送風機11に戻される。
[0003] The relationship between the components and the operation of the axial flow laser oscillator comprising the above components will be described. FIG.
As shown in the figure, the resonator holding plates 2a and 2b are attached to both ends of the resonator base 13, and the output mirror 3, the total reflection mirror 4, the connection block 5, the discharge tubes 6, 7, and the assembly block 15 are arranged coaxially. The assembly block 15 is fixed on the resonator base 13 with the support insulator 16, and the discharge tube 6 and the discharge tube 7 are attached to the connection flange 5 and the assembly block 15 by the attachment flanges 6a, 6b and the attachment flanges 7a, 7b. The gas laser medium is equally divided and supplied from the air supply duct 9 by the blower 11 to the two discharge tubes 6 and 7 through the connection blocks 5a and 5b attached to the resonator holding plates 2a and 2b. However, it is excited by discharge by a discharge electrode to which a high voltage generated by a high voltage power supply is applied, and outputs a laser beam.
The gas laser medium that has been discharged and heated by passing through the discharge tube 3 and the discharge tube 7 is collected into one by the collective block 15 at the center of the resonator, and is exhausted from the exhaust duct 17a. The exhausted gas laser medium is cooled by the gas cooler 18 connected to the exhaust duct 17a, and then returned to the blower 11 again through the exhaust duct 17b.

【0004】一般に、この種の軸流形レーザ発振器は、
集合ブロックで一端放電管を出た気体レーザ媒質を一つ
にまとめたうえで、排気ダクトによりガス冷却器と集合
ブロックを接続した構成とされており、加熱された気体
レーザ媒質を集合排気する配管を通してからレーザ共振
器から離して取付けたガス冷却器に接続されている。
In general, this type of axial-flow laser oscillator is
The gas laser medium that has once exited the discharge tube at the collecting block is combined into a single unit, and the gas cooler and the collecting block are connected by an exhaust duct. The piping collectively discharges the heated gas laser medium. Through and connected to a gas cooler mounted separately from the laser resonator.

【0005】従来の軸流形レーザ発振器では、ガス冷却
器18を共振器の傍らに置き、共振器や送風機11とガ
ス冷却器18を排気ダクト17a,17bにて接続して
いる。そのため、排気ダクト17a,17bを含めた発
振器の寸法は共振器それ自体と比べてより大形化する。
また、さらに、加熱された気体レーザ媒質が、レーザ光
軸12上に置かれた集合ブロック15や、ガス冷却器1
8と集合ブロック15をつなぐ排気ダクト17aを加熱
するため、発振器を起動したときや、レーザ出力を調整
のため放電入力を変化させたときにこれらの配管の温度
変化による膨脹収縮が生じたり、表面温度が上昇してい
るため輻射熱によっても共振器ベース13を暖めて共振
器ベース13の温度分布を不均一にする。
In a conventional axial flow laser oscillator, a gas cooler 18 is placed beside a resonator, and the resonator and the blower 11 are connected to the gas cooler 18 by exhaust ducts 17a and 17b. Therefore, the size of the oscillator including the exhaust ducts 17a and 17b is larger than that of the resonator itself.
Further, the heated gas laser medium is further provided with an assembly block 15 placed on the laser optical axis 12 and a gas cooler 1.
When the oscillator is started to heat the exhaust duct 17a connecting the collecting block 8 and the collecting block 15, or when the discharge input is changed to adjust the laser output, expansion and contraction due to the temperature change of these pipes occurs, Since the temperature has risen, the resonator base 13 is also warmed by radiant heat to make the temperature distribution of the resonator base 13 non-uniform.

【0006】[0006]

【発明が解決しようとする課題】上述のように従来の構
成では、各配管の膨脹収縮や共振器ベースの温度分布の
不均一が生じて、レーザ共振器のレーザ光軸が狂い出力
が変動するという問題点、さらに形状が大形化するとい
う問題点を有していた。
As described above, in the conventional configuration, the expansion and contraction of each pipe and the non-uniform temperature distribution of the resonator base occur, so that the laser optical axis of the laser resonator is out of order and the output fluctuates. In addition, there is a problem that the shape becomes larger.

【0007】本発明は、上記従来の問題点を解決するも
ので、レーザ出力を安定化し、小形化した軸流形レーザ
発振器を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned conventional problems and to provide a downsized axial-flow laser oscillator with stabilized laser output.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
に本発明の軸流形レーザ発振器は、ガス冷却器は共振器
のレーザ光軸上に位置させて共振器ベースに固定し、そ
の両側面にレーザ光が通過する孔をあけて放電管を取付
けた構成、および共振器ベースは両端面を塞いだ中空管
で形成し、その内部空間は、ガス冷却器の気体レーザ媒
質の出口と連通させ、かつ排気ダクトと連通させた構成
としたものである。
In order to achieve this object, an axial flow type laser oscillator according to the present invention is arranged such that a gas cooler is located on a laser optical axis of a resonator and fixed to a resonator base, and both sides thereof are provided. A structure in which a discharge tube is attached with a hole through which laser light passes on the surface, and a cavity base is formed by a hollow tube whose both end surfaces are closed, and the internal space is provided with the outlet of the gas laser medium of the gas cooler. It is configured to communicate with the exhaust duct.

【0009】[0009]

【作用】この構成により、共振器とガス冷却器と送風機
をつなぐ排気ダクトを短縮することとなり、また放電励
起して加熱された気体レーザ媒質を放電管を出た直後に
冷却して排気ダクトの温度上昇や輻射熱による共振器ベ
ースの温度上昇をなくすることとなる。
With this configuration, the length of the exhaust duct connecting the resonator, the gas cooler, and the blower is shortened, and the gas laser medium heated by discharge excitation and cooled immediately after exiting the discharge tube is cooled. This eliminates a rise in temperature of the resonator base due to a rise in temperature or radiant heat.

【0010】[0010]

【実施例】以下本発明の一実施例について図面を参照し
ながら説明する。
An embodiment of the present invention will be described below with reference to the drawings.

【0011】本発明の一実施例を示す図1ないし図3で
は、従来例と同一部分に同一番号を付して説明は省略す
る。
In FIGS. 1 to 3 showing one embodiment of the present invention, the same parts as those of the conventional example are denoted by the same reference numerals, and the description will be omitted.

【0012】図1ないし図3に示すように、放電管6ま
たは7は、一端を接続ブロック5aまたは5bに取付フ
ランジ6aまたは7aにより取付けられ、他端を取付フ
ランジ6bまたは7bによりガス冷却器8の両面にあけ
たレーザ光および気体レーザ媒質を通す貫通孔8aまた
は8bに取付けられ、出力鏡3および全反射鏡4と合わ
せて共振器のレーザ光軸12と同軸となるように配設さ
れている。
As shown in FIGS. 1 to 3, the discharge tube 6 or 7 has one end attached to the connection block 5a or 5b by an attachment flange 6a or 7a, and the other end attached to the gas cooler 8 by an attachment flange 6b or 7b. Is attached to the through hole 8a or 8b through which the laser light and the gas laser medium opened on both sides pass, and is arranged so as to be coaxial with the laser optical axis 12 of the resonator together with the output mirror 3 and the total reflection mirror 4. I have.

【0013】ガス冷却器8は貫通孔8a,8bの下部に
ガスと水の熱交換コア14を装着し、ケーシングを熱交
換コア14の前後の共振器の光軸方向に延ばした所の下
面に冷却ガスの出口8c,8dを形設して、熱交換コア
14の上面より入った高温の気体レーザ媒質を冷やし、
冷却ガスの出口8c,8dより排出させる。
The gas cooler 8 is provided with a gas and water heat exchange core 14 below the through holes 8a and 8b, and a casing is provided on the lower surface where the casing extends in the optical axis direction of the resonator before and after the heat exchange core 14. The cooling gas outlets 8c and 8d are formed to cool the high-temperature gas laser medium entering from the upper surface of the heat exchange core 14,
The cooling gas is discharged from outlets 8c and 8d.

【0014】共振器ベース1は共振器の光軸に垂直な面
の断面が矩形の内部空間1aを有し、光軸方向の両端面
を塞いだ中空管で形成され、両側面の光軸に沿った上下
の稜線には断面板厚と同等厚の壁を設けて鉛直方向の荷
重による曲げ剛性を高めている。共振器ベース1の上面
の平面上にガス冷却器8を密着して固定し、ガス冷却器
8の冷却ガスの出口8c,8dと同一ピッチで同一の孔
径である共振器ベース1の冷却ガスの入口1b,1cを
あけ、出口8cと8dを入口1bと1cにそれぞれ一致
させてガス冷却器8を共振器ベース1に固定している。
共振器ベース1の下面には冷却ガスの出口1dを設け、
送風機11と共振器ベース1を接続する排気ダクト10
を取付けている。
The resonator base 1 has a rectangular internal space 1a whose section perpendicular to the optical axis of the resonator has a rectangular cross section, and is formed by a hollow tube whose both end faces in the optical axis direction are closed. The upper and lower ridge lines along the are provided with walls having the same thickness as the cross-sectional plate thickness to increase the bending rigidity due to the vertical load. The gas cooler 8 is closely fixed on the plane of the upper surface of the resonator base 1, and has the same pitch and the same hole diameter as the cooling gas outlets 8 c and 8 d of the gas cooler 8. The gas cooler 8 is fixed to the resonator base 1 by opening the inlets 1b and 1c and making the outlets 8c and 8d coincide with the inlets 1b and 1c, respectively.
A cooling gas outlet 1d is provided on the lower surface of the resonator base 1,
Exhaust duct 10 connecting blower 11 and resonator base 1
Is installed.

【0015】以上のように構成された軸流形レーザ発振
器について、以下その動作を説明する。放電管6,7内
へは、気体レーザ媒質が従来例で説明したと同様に送風
機11により給気ダクト9より接続ブロック5a,5b
を通じて等分に供給され、高電圧源の発生する高電圧を
印加した放電電極間でグロー放電を起こすことにより励
起されてレーザ光を発振する。発振されたレーザ光は、
出力鏡3および全反射鏡4の間を増幅して往復し、最後
は出力鏡3から外へ取り出される。放電管6,7内で温
度上昇した気体レーザ媒質は、図3の矢印で示したよう
にガス冷却器8の熱交換コア14で回収され、冷却され
て出口8c,8dと共振器ベース1の入口1b,1cを
経て共振器ベース1の内部空間1aに入り、出口1dよ
り排気ダクト10を通過して送風機11に戻り、再び給
気ダクト9を通じて放電管6,7へ送られる。
The operation of the axial-flow type laser oscillator configured as described above will be described below. Into the discharge tubes 6 and 7, the gas laser medium is connected to the connection blocks 5 a and 5 b by the air supply duct 9 by the blower 11 in the same manner as described in the conventional example.
And a laser beam is oscillated by generating glow discharge between discharge electrodes to which a high voltage generated by a high voltage source is applied. The oscillated laser light is
The light is amplified and reciprocated between the output mirror 3 and the total reflection mirror 4 and finally taken out of the output mirror 3. The gas laser medium whose temperature has risen in the discharge tubes 6 and 7 is recovered by the heat exchange core 14 of the gas cooler 8 as shown by the arrow in FIG. 3, is cooled, and is cooled by the outlets 8 c and 8 d and the resonator base 1. The gas enters the internal space 1a of the resonator base 1 through the inlets 1b and 1c, passes through the exhaust duct 10 from the outlet 1d, returns to the blower 11, and is sent again to the discharge tubes 6 and 7 through the air supply duct 9.

【0016】したがって、レーザ共振器から出た気体レ
ーザ媒質をガス冷却器8を通過させて送風機11に戻す
配管は排気ダクト10の他にはなく、ガス冷却器8はレ
ーザ共振器の内部に組み込まれているので、従来例のよ
うに、放電管6,7を出た高温の気体レーザ媒質により
放電管6,7より送風機11までの配管を加熱膨脹させ
ることなく、かつ気体レーザ媒質からの輻射熱が生じな
い。また、ガス冷却器8を出た冷却された気体レーザ媒
質が共振器ベース1の内部を通過するので共振器ベース
1の温度分布の不均一を生ずることがない。したがっ
て、発振器の運転中のレーザ共振器のレーザ光軸の狂い
が生じない。
Accordingly, there is no pipe other than the exhaust duct 10 for passing the gas laser medium out of the laser resonator through the gas cooler 8 and returning to the blower 11, and the gas cooler 8 is incorporated inside the laser resonator. Therefore, unlike the conventional example, the pipes from the discharge tubes 6 and 7 to the blower 11 are not heated and expanded by the high-temperature gas laser medium exiting the discharge tubes 6 and 7, and the radiant heat from the gas laser medium is not increased. Does not occur. Further, since the cooled gas laser medium exiting the gas cooler 8 passes through the inside of the resonator base 1, the temperature distribution of the resonator base 1 does not become uneven. Therefore, the laser optical axis of the laser resonator does not become out of order during the operation of the oscillator.

【0017】以上のように本実施例によれば、ガス冷却
器8を共振器のレーザ光軸上に配設して共振器ベース1
に固定し、両面からレーザ光が通過する孔をあけて放電
管6,7を取付け、共振器ベース1として内部空間1a
の両端を塞いだ中空管を用い、ガス冷却器8の気体レー
ザ媒質の出口を共振器ベース1の内部空間1aと連通さ
せ、かつ内部空間1aを排気ダクト10と連通させた構
成により、レーザ発振中のレーザ光軸の狂いを抑制して
出力を安定に保つことができる。また、ガス冷却器8を
レーザ共振器のレーザ光軸内に組み込み、ガス冷却器8
とレーザ共振器と送風機11を結ぶ排気ダクト10を短
縮できるので発振器全体の形状を小形化できる。
As described above, according to the present embodiment, the gas cooler 8 is disposed on the laser optical axis of the resonator and the resonator base 1 is provided.
And the discharge tubes 6 and 7 are attached by making holes through which laser light passes from both sides.
The laser tube has a configuration in which an outlet of the gas laser medium of the gas cooler 8 is communicated with the internal space 1a of the resonator base 1 and the internal space 1a is communicated with the exhaust duct 10 using a hollow tube whose both ends are closed. The output of the laser can be kept stable by suppressing the deviation of the laser optical axis during oscillation. Further, the gas cooler 8 is incorporated in the laser optical axis of the laser resonator,
Since the exhaust duct 10 connecting the laser resonator and the blower 11 can be shortened, the overall shape of the oscillator can be reduced.

【0018】[0018]

【発明の効果】以上の実施例の説明からも明らかなよう
に本発明は、ガス冷却器は共振器のレーザ光軸上に位置
させて共振器ベースに固定し、その両側面にレーザ光が
通過する孔をあけて放電管を取付けた構成、および共振
器ベースは両端面を塞いだ中空管で形成し、その内部空
間はガス冷却器の気体レーザ媒質の出口と連通させ、か
つ排気ダクトと連通させた構成により、レーザ出力を安
定化し、小形化した優れた軸流形レーザ発振器を実現で
きるものである。
As is clear from the above description of the embodiment, according to the present invention, the gas cooler is located on the laser optical axis of the resonator and fixed to the resonator base, and the laser light is applied to both side surfaces thereof. A structure in which a discharge tube is attached with a hole through it, and a cavity base is formed by a hollow tube whose both end faces are closed, the internal space of which is communicated with the outlet of the gas laser medium of the gas cooler, and an exhaust duct With this configuration, the laser output is stabilized, and a compact and excellent axial flow laser oscillator can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の軸流形レーザ発振器の概念
を示す正面略図
FIG. 1 is a schematic front view showing the concept of an axial-flow laser oscillator according to an embodiment of the present invention.

【図2】同軸流形レーザ発振器のガス冷却器とその周辺
の側面断面略図
FIG. 2 is a schematic side sectional view of a gas cooler of a coaxial flow type laser oscillator and its periphery.

【図3】同軸流形レーザ発振器のガス冷却器とその周辺
の正面断面略図
FIG. 3 is a schematic front sectional view of a gas cooler of a coaxial flow type laser oscillator and its periphery.

【図4】従来の軸流形レーザ発振器の概念を示す正面略
FIG. 4 is a schematic front view showing the concept of a conventional axial-flow laser oscillator.

【符号の説明】[Explanation of symbols]

1 共振器ベース 1a 内部空間 6,7 放電管 8 ガス冷却器 10 排気ダクト 12 レーザ光軸 DESCRIPTION OF SYMBOLS 1 Resonator base 1a Internal space 6, 7 Discharge tube 8 Gas cooler 10 Exhaust duct 12 Laser beam axis

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−235440(JP,A) 特開 平4−133483(JP,A) 特開 昭62−216384(JP,A) 特開 昭61−14783(JP,A) 特開 昭61−27693(JP,A) 特開 平5−110177(JP,A) 特開 昭58−166785(JP,A) 実開 昭61−1863(JP,U) 実開 昭58−175887(JP,U) 実開 昭58−37166(JP,U) (58)調査した分野(Int.Cl.7,DB名) H01S 3/041 H01S 3/03 - 3/038 H01S 3/097 - 3/0977 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-235440 (JP, A) JP-A-4-133483 (JP, A) JP-A-62-216384 (JP, A) JP-A-61-216 14783 (JP, A) JP-A-61-27693 (JP, A) JP-A-5-110177 (JP, A) JP-A-58-166785 (JP, A) Japanese Utility Model Laid-Open No. 61-1863 (JP, U) Japanese Utility Model Showa 58-175887 (JP, U) Japanese Utility Model Showa 58-37166 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) H01S 3/041 H01S 3/03-3/038 H01S 3/097-3/0977

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 放電電極を有する複数の放電管と、その
両端に出力鏡と全反射鏡を取付けた共振器保持板を共振
器ベース上に配設したレーザ発振器と、気体レーザ媒質
の送風機と、前記レーザ発振器と前記送風機を接続する
給気ダクトおよび排気ダクトと、ガス冷却器と、高電圧
電源を備え、前記放電管内の前記気体レーザ媒質を前記
高電圧電源に接続された前記放電電極の放電により励起
してレーザ光を発生させる軸流形レーザ発振器であっ
て、前記ガス冷却器は、前記レーザ共振器のレーザ光軸
上に位置させて前記共振器ベースに固定し、その両側面
に前記レーザ共振器のレーザ光軸と同軸にレーザ光が通
過する孔をあけて前記放電管を取付けた構成、および前
記共振器ベースは、両端面を塞いだ中空管で形成し、そ
の内部空間を前記ガス冷却器の気体レーザ媒質の出口と
連通させ、かつ前記排気ダクトと連通させた構成とした
軸流形レーザ発振器。
1. A laser oscillator having a plurality of discharge tubes having discharge electrodes, a resonator holding plate having output mirrors and total reflection mirrors mounted on both ends thereof on a resonator base, and a blower of a gas laser medium. An air supply duct and an exhaust duct connecting the laser oscillator and the blower, a gas cooler, a high voltage power supply, and the discharge electrode connected to the high voltage power supply with the gas laser medium in the discharge tube. An axial flow type laser oscillator that generates laser light by being excited by electric discharge, wherein the gas cooler is located on the laser optical axis of the laser resonator, fixed to the resonator base, and provided on both side surfaces thereof. A configuration in which the discharge tube is mounted by making a hole through which laser light passes coaxially with the laser optical axis of the laser resonator, and the resonator base is formed by a hollow tube whose both end faces are closed, and an internal space thereof is formed. The gas An axial-flow laser oscillator configured to communicate with an outlet of a gas laser medium of a cooler and with the exhaust duct.
JP3748192A 1992-02-25 1992-02-25 Axial laser oscillator Expired - Fee Related JP3047596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3748192A JP3047596B2 (en) 1992-02-25 1992-02-25 Axial laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3748192A JP3047596B2 (en) 1992-02-25 1992-02-25 Axial laser oscillator

Publications (2)

Publication Number Publication Date
JPH05235439A JPH05235439A (en) 1993-09-10
JP3047596B2 true JP3047596B2 (en) 2000-05-29

Family

ID=12498716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3748192A Expired - Fee Related JP3047596B2 (en) 1992-02-25 1992-02-25 Axial laser oscillator

Country Status (1)

Country Link
JP (1) JP3047596B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895030B1 (en) 2000-05-30 2005-05-17 Matsushita Electric Industrial Co., Ltd. Laser oscillating device

Also Published As

Publication number Publication date
JPH05235439A (en) 1993-09-10

Similar Documents

Publication Publication Date Title
US4500998A (en) Gas laser
US4625317A (en) Internal mirror laser
JP3022016B2 (en) Axial laser oscillator
JP3047596B2 (en) Axial laser oscillator
US4771436A (en) Gas laser oscillator having a gas flow smoothing device to smooth gas flow in the electrical discharge region
US4823349A (en) Resonator module and blower module assembly
JP2005515492A (en) Cooling mirror for laser light
JP3139103B2 (en) Axial laser oscillator
JPS6310916B2 (en)
JPS6342533Y2 (en)
JP3427338B2 (en) Microwave-excited gas laser oscillator
JP2008004584A (en) Laser oscillator
JP3259161B2 (en) Gas laser oscillation device
JPS6420682A (en) Gas laser apparatus excited by high frequency discharge
JP2715862B2 (en) Laser oscillator
JPH05160469A (en) Laser oscillator
JPS63299183A (en) Laser generator
JPH05167131A (en) Gas laser oscillator
JP3664030B2 (en) Discharge excitation gas laser device
JPS6310232Y2 (en)
JP2908808B2 (en) High-speed axial flow laser oscillator
JPH0327582A (en) Transverse gas laser oscillator
JPH0744034Y2 (en) High frequency excitation gas laser device
JPH01293680A (en) Gas laser apparatus
JPS61125181A (en) Laser oscillator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees