JPS639537B2 - - Google Patents

Info

Publication number
JPS639537B2
JPS639537B2 JP2534083A JP2534083A JPS639537B2 JP S639537 B2 JPS639537 B2 JP S639537B2 JP 2534083 A JP2534083 A JP 2534083A JP 2534083 A JP2534083 A JP 2534083A JP S639537 B2 JPS639537 B2 JP S639537B2
Authority
JP
Japan
Prior art keywords
plasma
polymer
membrane
film
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2534083A
Other languages
Japanese (ja)
Other versions
JPS59149932A (en
Inventor
Toshio Masuoka
Okihiko Hirasa
Masao Suda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP2534083A priority Critical patent/JPS59149932A/en
Publication of JPS59149932A publication Critical patent/JPS59149932A/en
Publication of JPS639537B2 publication Critical patent/JPS639537B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、プラズマ重合により、厚み方向に対
し非対称組織構造をもつ高分子複合膜の製造方
法、さらに詳しくいえば、プラズマ重合により形
成されたポリマーの濃度が基体ポリマーの一方の
面から内部に向つて次第に減少した組織構造をも
つ一体化した、複合膜を製造する方法に関するも
のである。 従来、表面エネルギーの小さい高分子膜、例え
ばポリエチレン、ポリプロピレン、テフロンなど
の高分子膜においては、これらの高分子膜にコー
テイング、ラミネート、印刷などを行う際に、そ
の表面を処理し、表面エネルギーを大きくした
り、表面を極性にしたりして接着性や印刷適性を
向上させる方法、あるいは高分子膜の帯電防止性
を改善するために、その表面を処理して親水化を
図る方法などがしばしば行われている。 この高分子膜の表面処理方法として、その表面
を酸化するために、例えばコロナ放電処理、湿式
クロム酸処理、火炎処理、熱風処理、オゾンや紫
外線照射処理などの方法が、あるいは表面を凹凸
化するために、例えばサンドブラストや溶剤処理
などの方法が行われてきた。 さらに、高分子膜の一方又は両方の表面に、プ
ラズマ重合により所定の物性を有するポリマー被
覆を形成させる方法も知られている(特開昭55−
131026号公報)。この方法は、基体を損傷するこ
となく、比較的薄い被覆層を均一に表面に形成し
うる上に、プラズマ重合させるモノマーを適当に
選択することにより、所望の物性の表面被覆を任
意に形成することができる点で有利な方法であ
る。 しかしながら、この方法で形成される被覆層
は、異質の基体ポリマーの上に、単に物理的結合
力あるいは弱い化学的結合力により積層している
だけなので、水中で使用したり、あるいは大気中
でも長期間使用するうちに剥離を生じるという欠
点がある。 本発明者らは、プラズマ重合による高分子膜の
表面被覆に伴う上記の欠点を克服し、基体を強固
に結合した被覆層を形成させる方法を開発するた
めに、鋭意研究を重ねた結果、高分子膜の裏面か
らプラズマ重合性モノマーを浸透させながら表面
でプラズマ処理することにより、プラズマ重合ポ
リマーが基体ポリマーと一体的に結合した複合膜
が得られることを見出し、この知見に基づき、本
発明をなすに至つた。 すなわち、本発明は、高分子膜基体の裏面から
プラズマ重合性モノマーをガス状で浸透させなが
ら、表面において低温プラズマ処理を行うことに
より、プラズマ重合ポリマーの濃度が表面から裏
面に向つて漸次減少した、組織構造のプラズマ重
合ポリマーと基体ポリマーとが一体化した複合膜
を形成させることを特徴とする厚み方向に非対称
な組織構造をもつ高分子複合膜の製造方法を提供
するものである。 本発明により得られる高分子複合膜は、プラズ
マ処理された表面は、ほとんど100%のプラズマ
重合ポリマーから成り、裏面に向うに従つて次第
にその濃度が減少しながら基体ポリマーと相互に
浸透して一体化した組織構造を有するものであ
る。 本発明方法において用いる高分子膜は、多孔性
膜であつても均質膜であつてもよく、さらにラミ
ネート膜であつてもよいが、プラズマ重合モノマ
ーが拡散透過しうるものであることが必要であ
る。また、この膜を形成するポリマーとしては、
例えばポリスチレン、ポリ酢酸ビニル、シリコン
ゴム、ポリ塩化ビニル、テフロン、ポリエチレン
テレフタレート、ポリプロピレン、ポリエチレ
ン、ナイロン、セルロース、ポリサルフオン、ポ
リアクリロニトリル、ポリブタジエン又はこれら
の共重合体などが挙げられる。 本発明方法において用いるプラズマ重合性モノ
マーは、減圧下に加熱することなどによつて揮発
しうるもの、あるいはすでに気体であるものに限
られており、このようなものとしては、例えば揮
発性ビニル化合物、ピリジン、酢酸エチル、フエ
ノール、ベンズアルデヒド、テトラメチルジシロ
キサン、ピロール、アンモニアなどが挙げられ
る。これらは単独で用いてもよいし、あるいは2
種以上混合して用いてもよい。 また、本発明方法においては、プラズマ中に、
例えば水素、アルゴン、ヘリウムなどの非プラズ
マ重合気体を一定流量導入しながら処理を行つて
もよく、この処理によつて膜の位置におけるプラ
ズマ強度、プラズマからの薄膜堆積(通常のプラ
ズマ重合における薄膜)の制御が可能となる。 本発明方法を実施するに当り、例えば第1図に
示すような膜保持機構に改造を加えたはん用の低
温プラズマ処理装置を用いることができる。この
図において、円形の高分子膜9はo―リングによ
つて膜ホルダー1に保持されており、恒温槽付き
モノマー容器(又はガスボンベ)3からのモノマ
ー気体導入部に在る一定圧力のモノマー気体10
によつて押されている。そのため場合によつては
高分子膜は粗い網で補強する。一方プラズマはラ
ジオ波発振器5により供給されたラジオ波電力に
よつてラジオ波コイル6の部分で励起され、8に
まで拡がる。さらに必要に応じ膜形成条件を整え
るために非プラズマ重合性気体導入管7から非プ
ラズマ重合性気体を供給する。モノマー気体10
は高分子膜9内を拡散し、該高分子膜のプラズマ
接触表面にプラズマ重合ポリマーと高分子膜ポリ
マーとが相互に浸透して成る薄い層が形成され、
非対称化学構造をもつ高分子膜が得られる。 本発明の非対称化学構造をもつ高分子膜の形成
方法は、従来のプラズマ処理方法に比べて、 (1) モノマー気体の反応率が高い (2) モノマー本来の化学構造が保存されやすい (3) 高分子膜の損傷が少ない (4) 処理効果の及ぶ表面層の厚さが比較的厚く、
かつモノマー気体の圧力や膜温度によつてその
厚さを制御しうる (5) 処理層はプラズマ重合ポリマーとマトリツク
スがほとんど一体になつていて相互浸透したよ
うな構造を有しており、水中でも剥離や溶出が
ない などの優れた特徴を有しており、例えば高分子膜
の接着性、印刷適性、帯電防止性などの改善に利
用することができる。 次に実施例によつて本発明をさらに詳細に説明
する。 実施例 1 厚さ0.5mmのシリコンゴム膜を第1図に示す装
置に装着したのち、まず膜の両側を十分脱気し、
次いでプラズマ処理容器側真空コツクを閉じ、モ
ノマー気体として常温(25℃)でアリルアミン蒸
気を導入する。なおプラズマ容器側8には最初
30μmHgの圧力でアルゴンガスを流しておく。 次に、あらかじめマツチングを取つておいたコ
イル6にラジオ波(13.5MHz)電力40Wを供給
しプラズマを生成させる。 反応器内の圧力はしばらくすると上昇し始め、
84μmHgぐらいになる。これは膜を通過してくる
モノマー気体の分解によるものである。 処理時間8分間及び40分間の2種類の処理を行
い、得られた処理シリコンゴム膜のプラズマに接
していた側の表面の性質について、水の接触角及
びポンタシルカミン染色性を求めて調べた。 なお、比較のために、第1図において10の側を
真空にしたまま、導入管7からアリルアミン蒸気
を前記と同じ圧力で導入して40分間処理を行い、
前記と同様に処理シリコンゴム膜の表面の性質を
調べた(従来法)。 これらの結果を第1表に示す。
The present invention provides a method for producing a polymer composite membrane having an asymmetric structure in the thickness direction by plasma polymerization, and more specifically, the concentration of the polymer formed by plasma polymerization is directed inward from one surface of the base polymer. The present invention relates to a method of manufacturing a monolithic, composite membrane with a progressively reduced texture. Conventionally, for polymer films with low surface energy, such as polyethylene, polypropylene, and Teflon films, when coating, laminating, printing, etc. are performed on these polymer films, the surface is treated to reduce the surface energy. In order to improve adhesion and printability by increasing the size or polarizing the surface, or to improve the antistatic properties of a polymer film, methods are often used to treat the surface to make it hydrophilic. It is being said. As a surface treatment method for this polymer film, methods such as corona discharge treatment, wet chromic acid treatment, flame treatment, hot air treatment, ozone or ultraviolet irradiation treatment are used to oxidize the surface, or to make the surface uneven. For this purpose, methods such as sandblasting and solvent treatment have been used. Furthermore, a method is also known in which a polymer coating having predetermined physical properties is formed on one or both surfaces of a polymer membrane by plasma polymerization (Japanese Unexamined Patent Application Publication No. 1983-1998-1).
Publication No. 131026). This method not only allows a relatively thin coating layer to be uniformly formed on the surface of the substrate without damaging it, but also allows the arbitrary formation of a surface coating with desired physical properties by appropriately selecting monomers to be plasma polymerized. This is an advantageous method in that it allows However, the coating layer formed by this method is simply laminated on a different base polymer by physical bonding force or weak chemical bonding force, so it cannot be used underwater or even in the atmosphere for long periods of time. It has the disadvantage that it peels off during use. The present inventors have conducted intensive research in order to overcome the above-mentioned drawbacks associated with surface coating of polymer membranes by plasma polymerization and to develop a method for forming a coating layer that firmly bonds the substrate. It was discovered that by plasma-treating the surface of a molecular membrane while infiltrating a plasma-polymerizable monomer from the back side, a composite membrane in which a plasma-polymerized polymer is integrally bonded to a base polymer can be obtained.Based on this knowledge, the present invention was developed. I arrived at the eggplant. That is, in the present invention, the plasma polymerizable monomer is infiltrated in a gaseous state from the back side of the polymer membrane substrate, and low-temperature plasma treatment is performed on the surface, so that the concentration of the plasma polymerizable polymer gradually decreases from the front side to the back side. The present invention provides a method for producing a polymer composite membrane having an asymmetric texture in the thickness direction, which is characterized by forming a composite membrane in which a plasma-polymerized polymer having a texture and a base polymer are integrated. In the polymer composite membrane obtained by the present invention, the plasma-treated surface consists of almost 100% plasma polymerized polymer, and the concentration gradually decreases toward the back surface, interpenetrating with the base polymer and integrating it. It has a structured organizational structure. The polymer membrane used in the method of the present invention may be a porous membrane, a homogeneous membrane, or even a laminate membrane, but it is necessary that the plasma polymerized monomer can diffuse through it. be. In addition, the polymer that forms this film is
Examples include polystyrene, polyvinyl acetate, silicone rubber, polyvinyl chloride, Teflon, polyethylene terephthalate, polypropylene, polyethylene, nylon, cellulose, polysulfone, polyacrylonitrile, polybutadiene, and copolymers thereof. The plasma-polymerizable monomers used in the method of the present invention are limited to those that can be volatilized by heating under reduced pressure, or those that are already gaseous. Examples of such monomers include volatile vinyl compounds, etc. , pyridine, ethyl acetate, phenol, benzaldehyde, tetramethyldisiloxane, pyrrole, ammonia and the like. These may be used alone or in combination.
You may use a mixture of two or more species. Furthermore, in the method of the present invention, in the plasma,
For example, the treatment may be performed while introducing a constant flow rate of a non-plasma polymerization gas such as hydrogen, argon, helium, etc., and this treatment can reduce the plasma intensity at the film location, thin film deposition from the plasma (thin film in normal plasma polymerization), etc. control becomes possible. In carrying out the method of the present invention, a general-purpose low-temperature plasma processing apparatus having a modified membrane holding mechanism as shown in FIG. 1 can be used, for example. In this figure, a circular polymer membrane 9 is held on a membrane holder 1 by an O-ring, and monomer gas at a constant pressure is supplied from a monomer gas inlet from a monomer container (or gas cylinder) 3 with a constant temperature bath. 10
is pressed by. Therefore, in some cases, the polymer membrane is reinforced with a coarse mesh. On the other hand, the plasma is excited at the radio wave coil 6 by the radio wave power supplied by the radio wave oscillator 5, and spreads to the radio wave coil 8. Furthermore, a non-plasma polymerizable gas is supplied from the non-plasma polymerizable gas introduction pipe 7 in order to adjust the film forming conditions as necessary. Monomer gas 10
diffuses within the polymer membrane 9, and a thin layer is formed on the plasma-contact surface of the polymer membrane by mutual penetration of the plasma-polymerized polymer and the polymer membrane polymer,
A polymer membrane with an asymmetric chemical structure is obtained. Compared to conventional plasma treatment methods, the method of forming a polymer film with an asymmetric chemical structure of the present invention has the following advantages: (1) The reaction rate of the monomer gas is high (2) The original chemical structure of the monomer is easily preserved (3) Less damage to the polymer membrane (4) The thickness of the surface layer, which is affected by the treatment, is relatively thick;
Moreover, its thickness can be controlled by controlling the pressure of the monomer gas and the membrane temperature. It has excellent characteristics such as no peeling or elution, and can be used, for example, to improve the adhesion, printability, antistatic properties, etc. of polymer films. Next, the present invention will be explained in more detail with reference to Examples. Example 1 After attaching a silicone rubber membrane with a thickness of 0.5 mm to the apparatus shown in Figure 1, first thoroughly deaerate both sides of the membrane.
Next, the vacuum chamber on the plasma processing vessel side is closed, and allylamine vapor is introduced as a monomer gas at room temperature (25°C). In addition, on the plasma container side 8, there is a
Flow argon gas at a pressure of 30 μmHg. Next, 40 W of radio wave (13.5 MHz) power is supplied to the coil 6, which has been matched in advance, to generate plasma. The pressure inside the reactor begins to rise after a while,
It will be about 84μmHg. This is due to the decomposition of the monomer gas passing through the membrane. Two types of treatment were performed, one for 8 minutes and one for 40 minutes, and the properties of the surface of the resulting treated silicone rubber membrane on the side that was in contact with the plasma were investigated by determining the contact angle of water and the stainability of Pontasilcamine. . For comparison, allylamine vapor was introduced from the inlet tube 7 at the same pressure as above and treated for 40 minutes while the side 10 in Fig. 1 was kept in a vacuum.
The surface properties of the treated silicone rubber film were investigated in the same manner as above (conventional method). These results are shown in Table 1.

【表】 本発明方法で40分間処理したシリコンゴム膜の
プラズマに接している側の表面を光学顕微鏡で観
測すると、処理層は極表面に非常に酸性染料(ポ
ンタシルカミン)によく染まる層と、その下の比
較的厚い薄いピンクに染まる層の2層構造になつ
ており、層の厚みはそれぞれ3μ、20μ程度であつ
た。また、染色性は、界面活性剤水溶液及びメタ
ノールで洗浄したのち、1週間水中に浸漬しても
保持されていた。さらにアセトン中に長時間浸漬
して膨潤させたが、染色性は不変であつた。 なお、プラズマと接していない表面は何ら染色
性も接触角変化もみられなかつた。 実施例 2 ポリエチレンテレフタレート(PET)膜を用
い、プラズマ重合モノマー気体としてアリルアミ
ン及びピリジン蒸気を常温でそれぞれ導入し、実
施例1と同様にしてプラズマ処理を20分間行つ
た。 なお、PET膜厚55μ、ラジオ波電力15W、であ
り、プラズマ容器側の初期圧力はそれぞれ14μm
Hg、27μmHgであつた。 得られた処理PET膜のプラズマに接していた
側の表面の性質について、実施例1と同様にして
調べた。また比較のために実施例1に示すような
従来法の処理をピリジンを用いて行い、得られた
処理PET膜について、同様にその表面の性質を
調べた。これらの結果を第2表に示す。
[Table] When the surface of the silicone rubber film treated for 40 minutes using the method of the present invention in contact with plasma was observed using an optical microscope, it was found that the treated layer was a layer on the extreme surface that was highly stained by an acidic dye (pontasilcamine). It had a two-layer structure, with a relatively thick pale pink layer underneath, and the thickness of the layers was about 3μ and 20μ, respectively. Furthermore, the dyeability was maintained even after washing with an aqueous surfactant solution and methanol and then immersing in water for one week. Furthermore, the dyeing property remained unchanged even though it was immersed in acetone for a long time to cause swelling. Note that no staining or contact angle change was observed on the surface that was not in contact with the plasma. Example 2 Using a polyethylene terephthalate (PET) membrane, allylamine and pyridine vapors were introduced as plasma polymerization monomer gases at room temperature, and plasma treatment was performed for 20 minutes in the same manner as in Example 1. The PET film thickness is 55 μm, the radio wave power is 15 W, and the initial pressure on the plasma container side is 14 μm.
Hg was 27μmHg. The properties of the surface of the obtained treated PET film on the side that was in contact with the plasma were investigated in the same manner as in Example 1. For comparison, a conventional treatment as shown in Example 1 was performed using pyridine, and the surface properties of the resulting treated PET film were similarly investigated. These results are shown in Table 2.

【表】 この表から判るように、ピリジン、アリルアミ
ンを用いて本発明方法で処理したPET膜は、水
の接触角については未処理膜とあまり変らなかつ
たが、ポンタシルカミン染色性はみられた。 また、ピリジンを用いて従来法で処理した
PET膜は、何ら染色性を示さず、その上処理中
の膜の着色(黄変)が著しかつた。 さらに、本発明方法によつて処理したPET膜
の表面を光学顕微鏡で観測すると、処理層の厚さ
はシリコンゴム膜の場合よりもかなり薄く、数μ
程度であつた。おそらくこの層の薄さが染色によ
る着色がかなり淡くなる理由であると考えられ
る。また、処理層は一層のみより成るようにみえ
たが、光学顕微鏡では観測不可能な薄い層が存在
するかどうかは不明である。 実施例 3 シリコンゴム膜(0.5mm厚)を用い、モノマー
気体としてビニルメチルエーテル及び酢酸ビニル
蒸気を常温でそれぞれ導入し、実施例1と同様に
してプラズマ処理を30分間行つた。 なお、ラジオ波電力15W、プラズマ容器側初期
圧力はそれぞれ15μmHg、13μmHgであつた。 得られた処理シリコンゴム膜は、従来法で処理
した膜にみられた黄変はまつたく認められなかつ
た。さらに、本来シリコンゴムのもつ表面粘着性
は著しく減じ、処理面はさらつとした感触に変化
していた。 また、酢酸ビニルを用いた処理膜の反射赤外ス
ペクトルは、カルボニル基の吸収の増加を示して
おり、明らかにポリマーの生成が認められた。 実施例 4 テフロン多孔膜を用い、実施例1と同様にして
アルゴン27μmHg、ピリジン10μmHg、ラジオ波
電力20Wの条件でプラズマ処理を行つた。ただし
プラズマ励起は0.5秒ON―5秒OFFの繰り返し
様式で行い、連続してプラズマに接触させないよ
うにした。 また、比較のために膜両側を真空にして従来法
によるプラズマ処理を行つた。 第2図にテフロン膜表面の走査電子顕微鏡写真
を示す。第2図Aは未処理テフロン膜表面、Bは
本発明方法により処理したテフロン膜表面、Cは
従来法により処理したテフロン膜表面である。 この写真から分るように、プラズマ処理したも
のは未処理のものに比べて、プラズマ重合膜の付
着により各繊維が太くなつている。また、本発明
方法で処理した膜の表面は、元の表面組織がよく
保たれているのに対し、従来法による処理では処
理層の不均一性やひずみ力による変形が著しい。
これは、前者においては各繊維の周囲にほぼ均等
にプラズマ重合膜が生成しているため、この膜に
よるひずみ力がつり合つて変形を防いでいるもの
と思われ、一方従来法の処理では、プラズマ重合
膜の生成が表面に出ている部分に偏つているため
と推定される。
[Table] As can be seen from this table, the PET film treated by the method of the present invention using pyridine and allylamine did not differ much from the untreated film in terms of water contact angle, but pontasilcamine staining was not observed. Ta. In addition, conventionally treated with pyridine
The PET membrane did not exhibit any staining properties, and furthermore, the membrane was significantly colored (yellowing) during processing. Furthermore, when the surface of the PET film treated by the method of the present invention was observed using an optical microscope, the thickness of the treated layer was considerably thinner than that of the silicone rubber film, and was several μm thick.
It was moderately hot. The thinness of this layer is probably the reason why the dyeing results in a much lighter color. Also, although the treated layer appeared to consist of only one layer, it is unclear whether there is a thin layer that cannot be observed with an optical microscope. Example 3 Using a silicone rubber membrane (0.5 mm thick), vinyl methyl ether and vinyl acetate vapor were introduced as monomer gases at room temperature, and plasma treatment was performed for 30 minutes in the same manner as in Example 1. Note that the radio wave power was 15 W, and the initial pressure on the plasma container side was 15 μmHg and 13 μmHg, respectively. The obtained treated silicone rubber film showed no yellowing that was observed in the film treated by the conventional method. Furthermore, the surface tackiness that silicone rubber originally had was significantly reduced, and the treated surface had a smooth feel. In addition, the reflection infrared spectrum of the film treated with vinyl acetate showed an increase in absorption of carbonyl groups, clearly indicating the formation of polymer. Example 4 Using a Teflon porous membrane, plasma treatment was performed in the same manner as in Example 1 under the conditions of argon 27 μmHg, pyridine 10 μmHg, and radio frequency power 20W. However, plasma excitation was performed in a repeating manner of 0.5 seconds ON and 5 seconds OFF to avoid continuous contact with plasma. For comparison, a conventional plasma treatment was performed with both sides of the film in a vacuum. FIG. 2 shows a scanning electron micrograph of the Teflon membrane surface. FIG. 2A shows the surface of an untreated Teflon film, B shows the surface of the Teflon film treated by the method of the present invention, and C shows the surface of the Teflon film treated by the conventional method. As can be seen from this photo, each fiber in the plasma-treated fibers is thicker than the untreated fibers due to the plasma polymerized film attached. Further, the surface of the film treated by the method of the present invention retains its original surface structure well, whereas the treatment by the conventional method causes significant non-uniformity of the treated layer and deformation due to strain force.
This is thought to be because in the former case, a plasma polymerized film is formed almost evenly around each fiber, so the strain forces caused by this film balance out and prevent deformation.On the other hand, in the conventional treatment, It is presumed that this is because the plasma polymerized film is concentrated on the surface area.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の1
例を示すものであつて、第1図Aは装置の断面説
明図、Bは該装置における膜ホルダーの断面拡大
図である。 図中符号1は膜ホルダー、3は恒温槽付きモノ
マー容器、5はラジオ波発振器、6はラジオ波コ
イル、7は非プラズマ重合性気体導入管、8はプ
ラズマ反応器、9はo―リングによつて保持され
た円形高分子膜、10はモノマー気体導入部であ
る。 第2図はテフロン多孔膜表面の走査電子顕微鏡
写真であつて、第2図Aは未処理テフロン膜表
面、Bは本発明方法により処理して成るテフロン
膜表面、Cは従来法により処理して成るテフロン
膜表面の1例である。
FIG. 1 shows one of the apparatuses for carrying out the method of the present invention.
To illustrate an example, FIG. 1A is an explanatory cross-sectional view of the apparatus, and FIG. 1B is an enlarged cross-sectional view of a membrane holder in the apparatus. In the figure, 1 is a membrane holder, 3 is a monomer container with a constant temperature bath, 5 is a radio wave oscillator, 6 is a radio wave coil, 7 is a non-plasma polymerizable gas introduction tube, 8 is a plasma reactor, and 9 is an O-ring. The circular polymer membrane is thus held, and 10 is a monomer gas introduction part. Figure 2 is a scanning electron micrograph of the surface of a Teflon porous membrane, in which A is the untreated Teflon membrane surface, B is the Teflon membrane surface treated by the method of the present invention, and C is the Teflon membrane surface treated by the conventional method. This is an example of a Teflon film surface made of

Claims (1)

【特許請求の範囲】[Claims] 1 高分子膜基体の裏面からプラズマ重合性モノ
マーをガス状で浸透させながら、表面において低
温プラズマ処理を行うことにより、プラズマ重合
ポリマーの濃度が表面から裏面に向つて漸次減少
した、組織構造のプラズマ重合ポリマーと基体ポ
リマーとが一体化した複合膜を形成させることを
特徴とする厚み方向に非対称な組織構造をもつ高
分子複合膜の製造方法。
1. By performing low temperature plasma treatment on the surface while infiltrating the plasma polymerizable monomer in gaseous form from the back surface of the polymer membrane substrate, a plasma structure is created in which the concentration of the plasma polymerized polymer gradually decreases from the front surface to the back surface. A method for producing a polymer composite membrane having an asymmetric tissue structure in the thickness direction, characterized by forming a composite membrane in which a polymerized polymer and a base polymer are integrated.
JP2534083A 1983-02-16 1983-02-16 Formation of polymer membrane having asymmetric chemical structure Granted JPS59149932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2534083A JPS59149932A (en) 1983-02-16 1983-02-16 Formation of polymer membrane having asymmetric chemical structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2534083A JPS59149932A (en) 1983-02-16 1983-02-16 Formation of polymer membrane having asymmetric chemical structure

Publications (2)

Publication Number Publication Date
JPS59149932A JPS59149932A (en) 1984-08-28
JPS639537B2 true JPS639537B2 (en) 1988-02-29

Family

ID=12163173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2534083A Granted JPS59149932A (en) 1983-02-16 1983-02-16 Formation of polymer membrane having asymmetric chemical structure

Country Status (1)

Country Link
JP (1) JPS59149932A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5977190B2 (en) * 2013-03-29 2016-08-24 住友理工株式会社 Surface modifying member and method for manufacturing the same, microchannel device and method for manufacturing the same

Also Published As

Publication number Publication date
JPS59149932A (en) 1984-08-28

Similar Documents

Publication Publication Date Title
US4824690A (en) Pulsed plasma process for treating a substrate
US5019260A (en) Filtration media with low protein adsorbability
US5069926A (en) Method for modifying the surface of a polymer article
Gil'Man Low-temperature plasma treatment as an effective method for surface modification of polymeric materials
KR20000034954A (en) Fluorinated resins having a surface with high wettability
JPS62262705A (en) Hydrophilic porous membrane, its production and serum separator using said membrane
US4775474A (en) Membranes containing microporous structure
KR100855663B1 (en) Surface modification method of pvdf membrane with high flux properties
KR20110031743A (en) Surface modification method of pvdf membrane with improved hydrophilicity
JPH07247377A (en) Production of fluororesin with modified surface
JP2000273229A (en) Production of hydrophilized hydrophobic substrate
JPS639537B2 (en)
EP1492630B1 (en) Preparation of superabsorbent materials by plasma modification
JP2999365B2 (en) Method for hydrophilizing porous body made of fluororesin
Kiamehr Modification of a Highly Permeable Thin-Film-Based Nanofiltration Membrane (PVC) to Increase Efficiency and Separation by Air Plasma Treatment
JP3227005B2 (en) Modification method of fluororesin surface
JP3942704B2 (en) Hydrophilization method for fluororesin porous membrane
Nagasawa et al. Photo-induced sol–gel synthesis of polymer-supported silsesquioxane membranes
JPS5833002B2 (en) Method for manufacturing filter media for water separation
JPS61149226A (en) Gas permselective composite membrane and preparation thereof
Liao et al. Surface graft polymerization of acrylamide onto plasma activated nylon microfiber artificial leather for improving dyeing properties
JPH05295656A (en) Production of coated fabric
JPS6075320A (en) Permeselective composite membrane for gas and its preparation
JPH03139534A (en) Surface modification of polymeric structure
JP2508656B2 (en) Manufacturing method of gas separation membrane