JP3942704B2 - Hydrophilization method for fluororesin porous membrane - Google Patents

Hydrophilization method for fluororesin porous membrane Download PDF

Info

Publication number
JP3942704B2
JP3942704B2 JP27566697A JP27566697A JP3942704B2 JP 3942704 B2 JP3942704 B2 JP 3942704B2 JP 27566697 A JP27566697 A JP 27566697A JP 27566697 A JP27566697 A JP 27566697A JP 3942704 B2 JP3942704 B2 JP 3942704B2
Authority
JP
Japan
Prior art keywords
porous membrane
water
laser light
concentration
ultraviolet laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27566697A
Other languages
Japanese (ja)
Other versions
JPH11106553A (en
Inventor
忠玄 田中
清貴 宮外
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurashiki Spinning Co Ltd
Original Assignee
Kurashiki Spinning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurashiki Spinning Co Ltd filed Critical Kurashiki Spinning Co Ltd
Priority to JP27566697A priority Critical patent/JP3942704B2/en
Publication of JPH11106553A publication Critical patent/JPH11106553A/en
Application granted granted Critical
Publication of JP3942704B2 publication Critical patent/JP3942704B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、化学的および物理的に不活性なフッ素樹脂製多孔質膜の親水化法に関する。
【0002】
【従来の技術】
フッ素樹脂は他の樹脂類に比べて、耐熱性、耐薬品性において優れているために、多様な用途を有しているが、その不活性な表面に起因して、接着性や親水性が乏しい欠点がある。
【0003】
このような問題の解決策として種々の方法が提案されており、そのひとつの方法として紫外線レーザー照射方法がある。紫外線レーザーを照射する方法として、(i)エキシマレーザー光を直接照射する方法(特公平3−57143号公報)、(ii)低温プラズマスパッタエッチングによって処理する方法(特公昭58−21928号、特開平2−127442号および特公平3−58375号公報)、(iii)光吸収性物質を予め混練した後、紫外レーザー光を照射する方法(特開平5−125208号公報)、(iv)無機珪素化合物の存在下で紫外レーザー光を照射する方法(特開平6−172560号公報)、(v)紫外線吸収性化合物およびフッ素系界面活性剤を含有する水性前処理液を付着させ、乾燥後、紫外レーザー光を照射する方法(特開平7−270749号公報)、(vi)水、酸またはアルコール等の水素化合物中に浸漬したフッ素樹脂にArFエキシマレーザー光を照射する方法(第54回応用物理学会学術講演会(1993年9月28日)、講演予稿集、第3分冊、第608頁)および(vii)水または過酸化水素水の液中または液面上のフッ素系樹脂フィルムにエキシマレーザー光を照射する方法(特開平5−306346号公報)等が挙げられる。
【0004】
しかしながら、これらの改質法には次の様な問題点がある。方法(i)の場合には、フッ素樹脂表面の接着性と濡れ性を十分に改良できないという難点がある。さらに、方法(ii)の場合には、処理面の化学組成が変化しないために、高い接着強度が得難く、比較的高い接着強度を得るためには、狭い範囲の処理条件下において長期間の処理をおこなわなければならず、工業的処理技術としては不十分である。方法(iii)の場合には、光吸収性物質を含まないフッ素樹脂成形体の表面改質には適用できないという難点がある。また、方法(iv)においては、多孔質膜の表面改質をおこなう場合には、無機珪素化合物が微孔内に残留するという問題がある。方法(v)の場合には、接着性はかなり改良されるが、濡れ性が十分に改良されないという欠点がある。さらにまた、方法(vi)および(vii)においては、多孔質膜の表面改質をおこなう場合には、浸漬液による光の散乱や吸収等によって、微孔内部までの十分な親水化が困難であるという問題がある。このため該方法によって表面改質された多孔質膜、例えばPTFE膜を用いて水性薬液を効率よく濾過することはできない。
【0005】
特開平7−304888号公報には、フッ素樹脂製多孔質膜に予め表面張力の低い水溶性溶剤を含浸させ、次いで過酸化水素水または水溶性有機溶剤の水溶液で置換したのち紫外線レーザー光を照射する方法が開示されている。この方法により、微孔内部までも十分に親水化することができた。しかしこの方法では過酸化水素水または水溶性有機溶剤を含浸させるに先立ってメタノール等の低表面張力の水溶性溶剤で処理しておく必要があり、工程がやっかいであった。
【0006】
【発明が解決しようとする課題】
この発明は、上記諸問題を解決し、特に、紫外レーザー光の少量の照射量でフッ素樹脂製多孔質膜の微孔内部表面までも十分に親水化し得る方法を提供するためになされたものである。
【0007】
【課題を解決するための手段】
本発明は、水溶性ケトンを多孔質膜内部に含浸することのできる濃度の水溶液としてフッ素樹脂製多孔質膜に含浸させ、次いでこれに水を含浸させて多孔質膜中の水溶性ケトンの濃度を調整した後紫外レーザー光を照射するフッ素樹脂製多孔質膜の親水化方法に関する。
詳しくは、本発明は、紫外レーザー光照射時の多孔質膜内部の水溶性ケトンの調整された濃度が、使用する紫外レーザー光の波長における吸光度として0.1〜10、好ましくは0.1〜6である上記フッ素樹脂製多孔質膜の親水化方法に関する。
また、本発明は水溶性ケトンがアセトンまたはメチルエチルケトンである、特にアセトンである上記フッ素樹脂製多孔質膜の親水化方法に関する。
【0008】
本発明の適用対象となるフッ素樹脂製多孔質膜は、含フッ素有機高分子化合物から製造される多孔質成形体、例えば、膜、シート、パイプ、編物、織物、不織布およびその他の任意の形態を有する多孔質成形体である。該成形体の基材樹脂としては、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−ヘキサフルオロプロピレン−パーフルオロアルコキシエチレン三元共重合体(EPE)、テトラフルオロエチレン−エチレン共重合体(ETFE)、ポリクロロトリフルオロエチレン(PCTFE)、トリフルオロクロロエチレン−エチレン共重合体(ECTFE)、ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)、およびこれらの任意の2種以上の混合樹脂が例示される。
【0009】
本発明の特徴は、特開平7−304888号公報に記載の発明のように最初に表面張力の低い水溶性溶剤を含浸させて多孔質膜内部を濡らした後、第2の工程として紫外線照射に使用する液体でこれを置換するという繁雑な工程を要することなく、ただの1種類の液体を含浸したまま紫外レーザー光照射処理し、多孔質膜内部の微孔の表面まで均一に親水化できるところにある。
また本発明のもうひとつの特徴は、従来よりも低い紫外線照射エネルギーで従来と同等の親水性付与効果が得られることである。
【0010】
即ち本発明は、水溶性溶剤として特に水溶性ケトンを選び、それを特定の高濃度範囲で用いてフッ素樹脂製多孔質膜に含浸する場合には、従来のような表面張力の低い水溶性溶剤による前処理含浸を必要とせず、前処理含浸工程を有する従来の方法と同等の効果が得られることを発見したことに基づく。
本発明に使用しうる水溶性ケトンとしては、好ましくはアセトンまたはメチルエチルケトンである。特に好ましくはアセトンである。
多孔質膜に含浸する段階での上記水溶性ケトンの濃度は多孔質膜の材質および細孔の大きさによって若干変動するが、アセトンおよびメチルエチルケトンの場合、好ましくは約85〜100重量%である。また紫外レーザー光照射時の多孔質膜内部の水溶性ケトンの濃度は、使用する紫外レーザー光の波長における吸光度として0.1〜10が好ましい。例えばこれはアセトンの場合、光源としてKrFを使用する場合は、0.05〜5重量%に相当する。より好ましくは吸光度として0.1〜6、特に好ましくは0.5〜5となる濃度である。
この濃度範囲に調整された水溶性ケトンを含んだフッ素樹脂製多孔質膜に紫外レーザー光を照射する場合には、後で具体的に示すように従来よりもかなり低い照射量で既に満足すべき親水化効果が得られる。したがって本発明は使用エネルギー経済性の面でも優れている。
【0011】
一般的には、沸点が50〜100℃の水溶性ケトンを用いる場合には、紫外レーザー照射による親水化処理効率が高く、処理後の溶剤除去も容易であるが、沸点が100℃よりも高い水溶性ケトンを用いる場合には、処理後のケトン除去が困難となる。
【0012】
水溶性ケトンを含浸したフッ素樹脂性多孔質膜に紫外レーザー光を照射して水溶化処理するに当たっては、均一で高い親水化処理効果を得るために、これに水を含浸させて多孔質膜中の水溶性ケトン水溶液の濃度を、使用する紫外レーザー光の波長における吸光度が0.1〜10、好ましくは0.1〜6、特に好ましくは0.5〜5となるように調整する。吸光度が0.1よりも低い場合には十分な親水化処理効果は得難く、また、10よりも高くなると、水溶液による光エネルギーの吸収が大きくなり、微孔内部までの十分な親水化処理が困難となる。多孔質膜中の水溶性ケトン水溶液の濃度を調整するためにこれに水を含浸させる方法としては、同じケトンの極く低濃度の水溶液中に浸漬するのが好ましい。
ここで、吸光度とは次式で定義される量である:
吸光度≡log10(I0/I)=εcd
ε:ケトンの吸光係数
c:ケトン水溶液の濃度(モル/dm3
d:透過光路長さ(cm)
0:溶媒単独の光透過強度
I:その溶液の光透過強度
即ち、本発明で、吸光度がxとなる濃度とは、dが1cmの測定セルで測定した場合に吸光度がxとなるような濃度を意味する。ただし、dが1cmでは透過光量が少なすぎて吸光度の測定が困難であるような高い濃度の場合は、dが0.2cmの測定セルを使用して得られた吸光度を5倍したものを本発明の吸光度とした。
【0013】
上記の水溶性ケトンの水溶液をフッ素樹脂製多孔質膜に含浸させる方法は特に限定的ではなく、浸漬法、噴霧法および塗布法等を該多孔体の形態や寸法等に応じて適宜採用すればよいが、浸漬法が一般的である。水溶性ケトンまたはその水溶液の含浸温度は、多孔質膜微孔内への水溶液の拡散速度の観点からは10〜40℃が好ましい。含浸温度が10℃よりも低い場合には、微孔内部へ水溶液を十分に拡散させるのに比較的長い時間が必要となり、また、40℃よりも高くなると、水溶性ケトンの蒸発速度が高くなり、好ましくない。
【0014】
上記の含浸処理に付したフッ素樹脂製多孔質膜は含浸されている水溶性ケトンの濃度を上記範囲に調整したのち以下の紫外レーザー光照射処理に付される。紫外レーザー光としては、波長が190nm〜400nm以下のものが望ましく、アルゴンイオンレーザー光、クリプトンイオンレーザー光、N2レーザー光、色素レーザー光、およびエキシマレーザー光等が例示されるが、エキシマレーザー光が好適である。特に、高出力が長時間にわたって安定して得られるKrFエキシマレーザー光(波長:248nm)、ArFエキシマレーザー光(波長:193nm)およびXeClエキシマレーザー光(308nm)が好ましい。エキシマレーザー光照射は、通常、室温、大気中でおこなうが、窒素雰囲気中でおこなうのが好ましい。また、エキシマレーザー光の照射条件は、フッ素樹脂の種類および所望の表面改質の程度によって左右されるが、一般的な照射条件は次の通りである。
フルエンス:約10mJ/cm2/パルス以上
入射エネルギー:約0.1J/cm2以上
【0015】
特に好適なKrFエキシマレーザー光、ArFエキシマレーザー光およびXeClエキシマレーザー光の常用される照射条件は次の通りである。
r
フルエンス:50〜500mJ/cm2/パルス
入射エネルギー:0.25〜3.0J/cm2
r
フルエンス:10〜200mJ/cm2/パルス
入射エネルギー:0.1〜3.0J/cm2
e l
フルエンス:50〜500mJ/cm2/パルス
入射エネルギー:3.0〜30.0J/cm2
【0016】
【実施例】
以下、本発明を実施例によって説明する。
実施例 1〜5
PTFE製多孔膜(平均孔径:0.1μm、厚み:0.05mm)をプラスチック製フィルターホルダーにセットする。次に該多孔膜をプレウエットするために、表1に示す濃度の水溶性ケトンをフィルターホルダーに接続したシリンジで50ml濾過する。さらに、多孔膜中の水溶性ケトンの濃度を紫外レーザー照射を有効なものとする濃度に置換するために、表1に記載の濃度のケトン水溶液をシリンジを用いて同様に100ml濾過し、含浸した。フィルターホルダーより該多孔膜を取り出し、下記の照射条件で紫外レーザー光を照射した。
光源:KrF(波長 248nm)
フルエンス:100mJ/cm2/パルス
入射エネルギー:0.5〜1.0J/cm2
【0017】
PTFE多孔膜を濡らすことのできる濃度のアセトン中に、PTFE製多孔膜(平均孔径:0.1μm、厚み:0.05mm)を液温20℃で15分間浸漬した。次ぎに多孔膜中の水溶性ケトンの濃度を紫外線レーザー照射を有効なものとする表1記載の濃度に調整するために、水を交換しながら、オーバーフロー槽中に20時間浸漬した。20時間後に引き上げた後、実施例1〜5と同じ照射条件で紫外レーザ光を照射した。
【0018】
照射処理した多孔質膜の濡れ性は、乾燥させた後、JIS K6768に規定された濡れ指数標準液で測定した。即ち、表面張力が順を追って変化する一連の混合液を該多孔質膜に順次滴下していき、該多孔質膜を濡らすと判定される混合液の最高の表面張力を濡れ指数として評価した。結果を表1に示す。これらの濡れ指数は、紫外レーザー光を照射しないPTFE製多孔質膜の値(30dyn/cm未満)に比べて著しく大きい。このことは、本発明によってフッ素樹脂表面の濡れ性が大幅に改善されたことを示す。
なお、照射処理した多孔質膜の表面を、X線光電子分光法によって分析したところ、極性基であるカルボキシル基等の生成が認められ、これが親水性向上に寄与しているものと思われる。また電子顕微鏡観察の結果、多孔質膜組織に破壊や変形は見られなかった。
【0019】
比較例 1〜4
含浸液の種類、含浸時の濃度および紫外レーザー光照射時の濃度を表1に記したように選んだ以外は実施例1と同様の処理を行い、濡れ指数を評価した。比較例3および4の場合は、処理液であるアセチルアセトンおよびシクロヘキサンの毒性が無視できず、またこれらは沸点が高いためこれらを多孔質膜中から除去するために長時間を要した。
【0020】
比較例
PTFE多孔膜を濡らすことのできる濃度のエタノール中に、PTFE製多孔膜(平均孔径:0.1μm、厚み:0.05mm)を液温25℃で15分間浸漬した。次ぎにエタノール含浸多孔質膜中のエタノールを除くために、水を交換しながら水中に20時間浸漬した。多孔質膜中の水を紫外レーザー光照射を有効なものとする溶液に置換するために、所定濃度に調整した過酸化水素水溶液槽中に浸漬した。20時間後に引き上げた後、種々の照射量で紫外レーザー光を照射した。比較例1〜5の結果を表1に示す。
【0021】
【表1】

Figure 0003942704
【0022】
実施例 7、8比較例6
実施例1、5および比較例3のそれぞれアセトン、メチルエチルケトンおよびアセチルアセトンを実施例1で使用したと同じPTFE製多孔質膜に含浸し、次いで水溶性ケトンの濃度が照射紫外線光の波長に於ける吸光度がそれぞれ1.0、1.5および20となるように希釈した後、PTFE膜に照射量を変動して種々の照射量で紫外線レーザー処理した。照射処理した多孔質膜の親水性を実施例1と同様に濡れ指数で評価した。
照射量および濡れ指数を表2に記載した。また各ケトンについての照射量と濡れ指数との関係を図1に示した。
なお照射光源としてはKrFを用いた。
アセチルアセトンの場合は本発明の特徴である低照射量での効果が不十分であった。
【0023】
【表2】
Figure 0003942704
【0024】
【発明の効果】
本発明によれば、簡単な工程で、フッ素樹脂の特性である優れた耐熱性、耐薬品性等を損なうことなく、化学的および物理的に不活性なフッ素樹脂製多孔質膜の微孔内部までも十分に親水化させることができ、これによって、フッ素樹脂製多孔質膜の付加価値は一層増大する。
紫外レーザー照射のための含浸液として水溶性ケトンを使用することにより、本発明では、ただ1種類の液を使用する簡単な工程で優れた効果が得られ、また特に含浸液としてアセトンを用いることにより、より少ない照射量で効果的な親水性改良効果が得られる。
本発明の親水性多孔質膜は、例えば水溶液の濾過に好適であり、更に優れた機能性を生かして透析膜などの生体関連材料等今後広範囲な分野での用途が期待できる。
【図面の簡単な説明】
【図1】 各種の水溶性ケトンを含浸したフッ素樹脂製多孔質膜の、紫外レーザー照射量と処理後のフッ素樹脂製多孔質膜の濡れ指数の関係を示すグラフ。
【符号の説明】
1:アセトン(●)、 2:メチルエチルケトン(▲)、
3:アセチルアセトン(■)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for hydrophilizing a chemically and physically inert fluororesin porous membrane.
[0002]
[Prior art]
Fluororesin is superior in heat resistance and chemical resistance compared to other resins, so it has a variety of uses, but due to its inert surface, it has adhesiveness and hydrophilicity. There are poor shortcomings.
[0003]
Various methods have been proposed as a solution to such a problem, and one method is an ultraviolet laser irradiation method. As a method of irradiating an ultraviolet laser, (i) a method of directly irradiating an excimer laser beam (Japanese Patent Publication No. 3-57143), (ii) a method of processing by low-temperature plasma sputter etching (Japanese Patent Publication No. 58-21919, No. 2-127442 and Japanese Patent Publication No. 3-58375), (iii) a method in which a light-absorbing substance is previously kneaded and then irradiated with ultraviolet laser light (Japanese Patent Laid-Open No. 5-125208), (iv) an inorganic silicon compound (V) An aqueous pretreatment liquid containing an ultraviolet absorbing compound and a fluorosurfactant is attached, dried, and then irradiated with an ultraviolet laser. A method of irradiating light (Japanese Patent Laid-Open No. 7-270749), (vi) ArF is applied to a fluororesin immersed in a hydrogen compound such as water, acid or alcohol. Method of irradiating a laser beam (The 54th Annual Conference of the Japan Society of Applied Physics (September 28, 1993), Proceedings of the Lecture, Volume 3, Page 608) and (vii) in water or hydrogen peroxide solution Alternatively, a method of irradiating a fluororesin film on the liquid surface with excimer laser light (Japanese Patent Laid-Open No. 5-306346) can be used.
[0004]
However, these reforming methods have the following problems. In the case of the method (i), there is a drawback that the adhesion and wettability of the fluororesin surface cannot be sufficiently improved. Furthermore, in the case of the method (ii), since the chemical composition of the treated surface does not change, it is difficult to obtain a high adhesive strength, and in order to obtain a relatively high adhesive strength, Processing must be performed, which is insufficient as an industrial processing technique. In the case of the method (iii), there is a drawback that it cannot be applied to the surface modification of a fluororesin molded article not containing a light absorbing substance. Further, in the method (iv), when the surface modification of the porous film is performed, there is a problem that the inorganic silicon compound remains in the micropores. In the case of the method (v), the adhesion is considerably improved, but the wettability is not sufficiently improved. Furthermore, in the methods (vi) and (vii), when surface modification of the porous membrane is performed, it is difficult to sufficiently hydrophilize the micropores due to light scattering and absorption by the immersion liquid. There is a problem that there is. For this reason, an aqueous chemical solution cannot be efficiently filtered using a porous film whose surface is modified by the method, for example, a PTFE film.
[0005]
In JP-A-7-304888, a fluororesin porous membrane is impregnated with a water-soluble solvent having a low surface tension in advance, and then substituted with an aqueous solution of hydrogen peroxide or a water-soluble organic solvent, and then irradiated with ultraviolet laser light. A method is disclosed. By this method, even inside the micropores could be sufficiently hydrophilized. However, this method requires treatment with a low surface tension water-soluble solvent such as methanol prior to impregnation with hydrogen peroxide or a water-soluble organic solvent, and the process is troublesome.
[0006]
[Problems to be solved by the invention]
The present invention was made to solve the above problems, and in particular, to provide a method capable of sufficiently hydrophilizing even the microporous inner surface of a fluororesin porous membrane with a small amount of ultraviolet laser light irradiation. is there.
[0007]
[Means for Solving the Problems]
The present invention impregnates a porous film made of a fluororesin as an aqueous solution having a concentration capable of impregnating the inside of the porous membrane with water-soluble ketone, and then impregnates the porous membrane with water to give a concentration of the water-soluble ketone in the porous membrane. It is related with the hydrophilization method of the fluororesin porous membrane which irradiates an ultraviolet laser beam after adjusting.
Specifically, in the present invention, the adjusted concentration of the water-soluble ketone inside the porous film at the time of ultraviolet laser irradiation is 0.1 to 10, preferably 0.1 to the absorbance at the wavelength of the ultraviolet laser light to be used. 6 is a hydrophilization method of the porous fluororesin membrane.
The present invention also relates to a method for hydrophilizing the fluororesin porous membrane, wherein the water-soluble ketone is acetone or methyl ethyl ketone, particularly acetone.
[0008]
The porous membrane made of a fluororesin to which the present invention is applied is a porous molded body produced from a fluorine-containing organic polymer compound, for example, a membrane, a sheet, a pipe, a knitted fabric, a woven fabric, a nonwoven fabric, and any other form. It is a porous molded body having. As the base resin of the molded product, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene -Hexafluoropropylene-perfluoroalkoxyethylene terpolymer (EPE), tetrafluoroethylene-ethylene copolymer (ETFE), polychlorotrifluoroethylene (PCTFE), trifluorochloroethylene-ethylene copolymer (ECTFE) ), Polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), and any two or more mixed resins thereof.
[0009]
The feature of the present invention is that, as in the invention described in Japanese Patent Application Laid-Open No. 7-304888, after impregnating a water-soluble solvent having a low surface tension to wet the inside of the porous membrane, the second step is to irradiate with ultraviolet rays. Without the complicated process of substituting this with the liquid to be used, it is possible to uniformly hydrophilize even the surface of the micropores inside the porous membrane by irradiating with ultraviolet laser light while impregnating just one kind of liquid. It is in.
Another feature of the present invention is that a hydrophilicity imparting effect equivalent to that of the prior art can be obtained with a lower UV irradiation energy than that of the prior art.
[0010]
That is, in the present invention, when a water-soluble ketone is selected as a water-soluble solvent and used in a specific high concentration range to impregnate a fluororesin porous membrane, a conventional water-soluble solvent having a low surface tension is used. It is based on the discovery that an effect equivalent to that of a conventional method having a pretreatment impregnation step can be obtained without the need for pretreatment impregnation by the above.
The water-soluble ketone that can be used in the present invention is preferably acetone or methyl ethyl ketone. Particularly preferred is acetone.
The concentration of the water-soluble ketone at the stage of impregnating the porous membrane varies slightly depending on the material of the porous membrane and the pore size, but in the case of acetone and methyl ethyl ketone, it is preferably about 85 to 100% by weight. The concentration of the water-soluble ketone inside the porous film upon irradiation with ultraviolet laser light is preferably 0.1 to 10 as the absorbance at the wavelength of the ultraviolet laser light to be used. For example, in the case of acetone, this corresponds to 0.05 to 5% by weight when KrF is used as a light source. More preferably, the absorbance is 0.1 to 6, particularly preferably 0.5 to 5.
When irradiating an ultraviolet laser beam to a fluororesin porous membrane containing a water-soluble ketone adjusted to this concentration range, it should already be satisfied with a considerably lower dose than in the past, as will be specifically shown later. A hydrophilic effect is obtained. Therefore, the present invention is also excellent in terms of energy consumption.
[0011]
In general, when a water-soluble ketone having a boiling point of 50 to 100 ° C. is used, the hydrophilization treatment efficiency by ultraviolet laser irradiation is high and the solvent removal after the treatment is easy, but the boiling point is higher than 100 ° C. When using a water-soluble ketone, it is difficult to remove the ketone after the treatment.
[0012]
When the fluororesin porous membrane impregnated with water-soluble ketone is irradiated with ultraviolet laser light for water solubilization treatment, in order to obtain a uniform and high hydrophilization treatment effect, it is impregnated with water to The concentration of the water-soluble ketone aqueous solution is adjusted so that the absorbance at the wavelength of the ultraviolet laser light to be used is 0.1 to 10, preferably 0.1 to 6, particularly preferably 0.5 to 5. When the absorbance is lower than 0.1, it is difficult to obtain a sufficient hydrophilic treatment effect. When the absorbance is higher than 10, the absorption of light energy by the aqueous solution increases, and sufficient hydrophilic treatment to the inside of the micropores is achieved. It becomes difficult. In order to adjust the concentration of the water-soluble ketone aqueous solution in the porous membrane, it is preferable to immerse it in an extremely low concentration aqueous solution of the same ketone.
Here, the absorbance is an amount defined by the following formula:
Absorbance ≡log 10 (I 0 / I) = εcd
ε: Absorption coefficient of ketone c: Concentration of aqueous ketone solution (mol / dm 3 )
d: Transmitted light path length (cm)
I 0 : Light transmission intensity of the solvent alone I: Light transmission intensity of the solution, that is, the concentration at which the absorbance is x in the present invention is such that the absorbance is x when measured in a measuring cell with 1 cm of d. Mean concentration. However, if the concentration is so high that the amount of transmitted light is too small when d is 1 cm and it is difficult to measure the absorbance, the absorbance obtained using a measuring cell with d of 0.2 cm is multiplied by 5 times. It was set as the absorbance of the invention.
[0013]
The method of impregnating the fluororesin porous membrane with the aqueous solution of the water-soluble ketone is not particularly limited, and an immersion method, a spray method, a coating method, and the like may be appropriately employed depending on the form and size of the porous body. Although it is good, a dipping method is common. The impregnation temperature of the water-soluble ketone or the aqueous solution thereof is preferably 10 to 40 ° C. from the viewpoint of the diffusion rate of the aqueous solution into the porous membrane micropores. When the impregnation temperature is lower than 10 ° C, a relatively long time is required to sufficiently diffuse the aqueous solution into the micropores. When the impregnation temperature is higher than 40 ° C, the evaporation rate of the water-soluble ketone increases. It is not preferable.
[0014]
The fluororesin porous membrane subjected to the above impregnation treatment is subjected to the following ultraviolet laser light irradiation treatment after adjusting the concentration of the water-soluble ketone impregnated to the above range. As the ultraviolet laser light, those having a wavelength of 190 nm to 400 nm or less are desirable, and examples include argon ion laser light, krypton ion laser light, N 2 laser light, dye laser light, and excimer laser light. Is preferred. In particular, KrF excimer laser light (wavelength: 248 nm), ArF excimer laser light (wavelength: 193 nm), and XeCl excimer laser light (308 nm) that can stably obtain a high output for a long time are preferable. Excimer laser light irradiation is usually performed at room temperature in the air, but is preferably performed in a nitrogen atmosphere. The irradiation conditions of excimer laser light depend on the type of fluororesin and the desired degree of surface modification, but the general irradiation conditions are as follows.
Fluence: about 10 mJ / cm 2 / pulse or more Incident energy: about 0.1 J / cm 2 or more
Particularly suitable irradiation conditions for KrF excimer laser light, ArF excimer laser light, and XeCl excimer laser light are as follows.
K r F
Fluence: 50 to 500 mJ / cm 2 / pulse incident energy: 0.25 to 3.0 J / cm 2
A r F
Fluence: 10 to 200 mJ / cm 2 / pulse incident energy: 0.1 to 3.0 J / cm 2
X e C l
Fluence: 50 to 500 mJ / cm 2 / pulse incident energy: 3.0 to 30.0 J / cm 2
[0016]
【Example】
Hereinafter, the present invention will be described by way of examples.
Example 1-5
A PTFE porous membrane (average pore diameter: 0.1 μm, thickness: 0.05 mm) is set in a plastic filter holder. Next, in order to pre-wet the porous membrane, 50 ml of water-soluble ketone having a concentration shown in Table 1 is filtered with a syringe connected to a filter holder. Further, in order to replace the concentration of the water-soluble ketone in the porous membrane with a concentration that makes ultraviolet laser irradiation effective, 100 ml of a ketone aqueous solution having the concentration shown in Table 1 was similarly filtered and impregnated using a syringe. . The porous film was taken out from the filter holder and irradiated with ultraviolet laser light under the following irradiation conditions.
Light source: KrF (wavelength 248 nm)
Fluence: 100 mJ / cm 2 / pulse incident energy: 0.5 to 1.0 J / cm 2
[0017]
A PTFE porous membrane (average pore diameter: 0.1 μm, thickness: 0.05 mm) was dipped in acetone at a concentration capable of wetting the PTFE porous membrane at a liquid temperature of 20 ° C. for 15 minutes. Next, in order to adjust the concentration of the water-soluble ketone in the porous film to the concentration described in Table 1 that makes ultraviolet laser irradiation effective, the porous membrane was immersed in an overflow tank for 20 hours while exchanging water. After pulling up after 20 hours, ultraviolet laser light was irradiated under the same irradiation conditions as in Examples 1-5.
[0018]
The wettability of the irradiation-treated porous film was measured with a wetting index standard solution defined in JIS K6768 after drying. That is, a series of mixed liquids whose surface tension changed in order was dropped onto the porous film in order, and the highest surface tension of the mixed liquid determined to wet the porous film was evaluated as a wetting index. The results are shown in Table 1. These wetting indices are significantly larger than the value (less than 30 dyn / cm) of a PTFE porous membrane that is not irradiated with ultraviolet laser light. This indicates that the wettability of the fluororesin surface is greatly improved by the present invention.
In addition, when the surface of the irradiated porous film was analyzed by X-ray photoelectron spectroscopy, formation of a carboxyl group or the like as a polar group was observed, which seems to contribute to the improvement of hydrophilicity. Further, as a result of observation with an electron microscope, the porous membrane structure was not broken or deformed.
[0019]
Comparative Examples 1-4
Except for selecting the type of impregnation liquid, the concentration at the time of impregnation, and the concentration at the time of ultraviolet laser light irradiation as shown in Table 1, the same treatment as in Example 1 was performed to evaluate the wetting index. For Comparative Examples 3 and 4 are not negligible toxicity of acetylacetone and cyclohex Roh down a processing solution, and these took a long time to remove since high boiling point of these porous membrane.
[0020]
Comparative example 5
A PTFE porous membrane (average pore diameter: 0.1 μm, thickness: 0.05 mm) was immersed in ethanol at a concentration capable of wetting the PTFE porous membrane at a liquid temperature of 25 ° C. for 15 minutes. Next, in order to remove ethanol in the ethanol-impregnated porous membrane, it was immersed in water for 20 hours while changing water. In order to replace the water in the porous membrane with a solution that is effective for ultraviolet laser light irradiation, the porous membrane was immersed in a hydrogen peroxide aqueous solution adjusted to a predetermined concentration. After pulling up after 20 hours, ultraviolet laser light was irradiated at various doses. The results of Comparative Examples 1 to 5 are shown in Table 1.
[0021]
[Table 1]
Figure 0003942704
[0022]
Example 7, 8 Comparative Example 6
The same PTFE porous membrane as used in Example 1 was impregnated with acetone, methyl ethyl ketone and acetylacetone of Examples 1 and 5 and Comparative Example 3, respectively, and then the concentration of the water-soluble ketone was the absorbance at the wavelength of the irradiated ultraviolet light. Were diluted to 1.0, 1.5 and 20, respectively, and then the PTFE film was subjected to ultraviolet laser treatment at various doses by varying the dose. The hydrophilicity of the irradiated porous membrane was evaluated by the wetting index in the same manner as in Example 1.
The irradiation amount and the wetting index are shown in Table 2. The relationship between the irradiation amount and the wetting index for each ketone is shown in FIG.
Note that KrF was used as the irradiation light source.
In the case of acetylacetone, the effect at a low dose, which is a feature of the present invention, was insufficient.
[0023]
[Table 2]
Figure 0003942704
[0024]
【The invention's effect】
According to the present invention, the inside of micropores of a porous film made of a fluororesin that is chemically and physically inert without damaging the excellent heat resistance, chemical resistance, etc., which are characteristics of the fluororesin, in a simple process. Can be sufficiently hydrophilized, and this further increases the added value of the fluororesin porous membrane.
By using a water-soluble ketone as an impregnation liquid for ultraviolet laser irradiation, the present invention provides an excellent effect in a simple process using only one kind of liquid, and particularly uses acetone as the impregnation liquid. Thus, an effective hydrophilic improvement effect can be obtained with a smaller dose.
The hydrophilic porous membrane of the present invention is suitable for, for example, filtration of aqueous solutions, and can be expected to be used in a wide range of fields such as bio-related materials such as dialysis membranes by taking advantage of superior functionality.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the ultraviolet laser irradiation amount and the wet index of a fluororesin porous membrane after treatment of a fluororesin porous membrane impregnated with various water-soluble ketones.
[Explanation of symbols]
1: acetone (●), 2: methyl ethyl ketone (▲),
3: Acetylacetone (■).

Claims (4)

アセトンおよび / またはメチルエチルケトン、アセトンおよび / またはメチルエチルケトン100%溶液または多孔質膜内部に含浸することのできる濃度85重量%以上の水溶液としてフッ素樹脂製多孔質膜に含浸させ、次いでこれに水もしくはアセトンおよび / またはメチルエチルケトンの低濃度水溶液を含浸させて多孔質内部のアセトンおよび / またはメチルエチルケトンの濃度を、使用する紫外レーザー光の波長における吸光度として0.1〜10に調整した後紫外レーザー光を照射するフッ素樹脂製多孔質膜の親水化方法。 Acetone and / or methyl ethyl ketone is impregnated into a fluororesin porous membrane as a 100% solution of acetone and / or methyl ethyl ketone or an aqueous solution having a concentration of 85% by weight or more that can be impregnated inside the porous membrane, and then impregnated with water or acetone And / or impregnating a low-concentration aqueous solution of methyl ethyl ketone to adjust the concentration of acetone and / or methyl ethyl ketone in the porous to 0.1 to 10 as the absorbance at the wavelength of the ultraviolet laser light to be used, and then irradiating with ultraviolet laser light A method for hydrophilizing a fluororesin porous membrane. 紫外レーザー光照射時の多孔質膜内部の水溶性ケトンの調整された濃度が、使用する紫外レーザー光の波長における吸光度として0.1〜6である請求項1記載のフッ素樹脂製多孔質膜の親水化方法。  2. The fluororesin porous membrane according to claim 1, wherein the adjusted concentration of the water-soluble ketone inside the porous membrane upon irradiation with ultraviolet laser light is 0.1 to 6 as absorbance at the wavelength of the ultraviolet laser light used. Hydrophilization method. 水溶性ケトンがアセトンである請求項1または記載のフッ素樹脂製多孔質膜の親水化方法。Hydrophilizing method of fluororesin porous membrane is 2, wherein the water-soluble ketones claim 1 or acetone. 紫外レーザー光の波長が190nm〜400nmである請求項1〜のいずれかに記載のフッ素樹脂製多孔質膜の親水化方法。The method for hydrophilizing a fluororesin porous membrane according to any one of claims 1 to 3 , wherein the wavelength of the ultraviolet laser light is 190 nm to 400 nm.
JP27566697A 1997-10-08 1997-10-08 Hydrophilization method for fluororesin porous membrane Expired - Lifetime JP3942704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27566697A JP3942704B2 (en) 1997-10-08 1997-10-08 Hydrophilization method for fluororesin porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27566697A JP3942704B2 (en) 1997-10-08 1997-10-08 Hydrophilization method for fluororesin porous membrane

Publications (2)

Publication Number Publication Date
JPH11106553A JPH11106553A (en) 1999-04-20
JP3942704B2 true JP3942704B2 (en) 2007-07-11

Family

ID=17558666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27566697A Expired - Lifetime JP3942704B2 (en) 1997-10-08 1997-10-08 Hydrophilization method for fluororesin porous membrane

Country Status (1)

Country Link
JP (1) JP3942704B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003903507A0 (en) * 2003-07-08 2003-07-24 U. S. Filter Wastewater Group, Inc. Membrane post-treatment
JP4863970B2 (en) 2007-11-16 2012-01-25 富士フイルム株式会社 Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
JP2010058026A (en) * 2008-09-02 2010-03-18 Fujifilm Corp Crystalline polymer microporous membrane, method for manufacturing the same, and filter for filtration
JP5399087B2 (en) * 2009-01-29 2014-01-29 富士フイルム株式会社 Crystalline polymer microporous membrane, method for producing the same, and filter for filtration
JP5220698B2 (en) 2009-07-06 2013-06-26 富士フイルム株式会社 Crystalline polymer microporous membrane, method for producing the same, and filter for filtration

Also Published As

Publication number Publication date
JPH11106553A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP4398860B2 (en) UV-treated film
JP5350327B2 (en) Spatially controlled modified porous membrane
Song et al. Surface modification of polysulfone membranes by low‐temperature plasma–graft poly (ethylene glycol) onto polysulfone membranes
JP5491402B2 (en) Hydrophilic porous substrate
TWI394653B (en) Atmospheric pressure microwave plasma treated porous membranes
JP5359868B2 (en) Composite separation membrane
NL8004988A (en) HYDROFILE MONOMER-TREATED MICROPOROUS FILMS.
US4678813A (en) Hydrophilized porous polyolefin membrane and production process thereof
JP6896642B2 (en) How to remove water from asymmetric composite membranes and feed streams
EP1711245A1 (en) Method for wetting hydrophobic porous polymeric membranes to improve water flux without alcohol treatment
JP3942704B2 (en) Hydrophilization method for fluororesin porous membrane
US4775474A (en) Membranes containing microporous structure
JP2999365B2 (en) Method for hydrophilizing porous body made of fluororesin
KR20090133100A (en) Hydrophilizing method for water-treatment membrane and water-treatment membrane
JPH0765270B2 (en) Method for functionalizing hollow fiber membranes
JP3176740B2 (en) Surface modification method of fluororesin using ultraviolet laser light
JPH0317531B2 (en)
JPH08155230A (en) Electret filter and its preparation
KR101734841B1 (en) Fabrication Method for the Hydrophilic Porous Supporters by Radiation Grafting of Hydrophilic Monomer and Hydrophilic Porous Supporters Thereby
JPH0768141A (en) Hollow fiber membrane and humidifying method using the same membrane
JPH0259030A (en) Heat-resistant hydrophilicity imparted porous membrane and preparation thereof
JP2000290407A (en) Hydrophilization of porous material made of fluororesin
CA2138056A1 (en) Hydrophilic ptfe membrane
WO2019151272A1 (en) Method for producing hydrophilic porous membrane
WO2019151271A1 (en) Hydrophilic porous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061031

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term