JPH0259030A - Heat-resistant hydrophilicity imparted porous membrane and preparation thereof - Google Patents

Heat-resistant hydrophilicity imparted porous membrane and preparation thereof

Info

Publication number
JPH0259030A
JPH0259030A JP63210991A JP21099188A JPH0259030A JP H0259030 A JPH0259030 A JP H0259030A JP 63210991 A JP63210991 A JP 63210991A JP 21099188 A JP21099188 A JP 21099188A JP H0259030 A JPH0259030 A JP H0259030A
Authority
JP
Japan
Prior art keywords
porous membrane
hydrophilic
monomer
membrane
crosslinked polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63210991A
Other languages
Japanese (ja)
Inventor
Kunihiro Aoki
青木 邦廣
Yasushi Ohori
康司 大堀
Kazutami Mitani
和民 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP63210991A priority Critical patent/JPH0259030A/en
Publication of JPH0259030A publication Critical patent/JPH0259030A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/28Polymers of vinyl aromatic compounds
    • B01D71/281Polystyrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction

Abstract

PURPOSE:To impart hydrophilicity and heat resistance to a membrane by successively holding a crosslinked polymer composed of a polymerizable monomer and divinylbenzene and a hydrophilic crosslinked polymer containing a hydrophilic monomer and a crosslinkable monomer to the surface of a porous membrane made of a synthetic resin. CONSTITUTION:A crosslinked polymer consisting of one or more kind of a polymerizable monomer composed of styrene and alpha-methylstyrene and divinylbenze, and a hydrophilic crosslinked polymer containing a hydrophilic monomer and a crosslinkable monomer is successively held on at least a part of the surface of a porous membrane composed of polyethylene or polypropylene and thermally polymerized to obtain a heat-resistant hydrophilic porous membrane. As the hydrophilic monomer, diacetone acrylamide and a monomer having two carboxy groups are used. By this method, heat resistance and hydrophilicity can be imparted to the porous polyethylene or polypropylene porous membrane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は親水性かつ耐熱性に優れた精密濾過用多孔質膜
及びその製法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a porous membrane for precision filtration that has excellent hydrophilicity and heat resistance, and a method for producing the same.

〔従来の技術〕[Conventional technology]

近年産業の発達に伴い、浄水分野、血液処理分野、空気
浄化分野、食品工業分野等におい℃各種の分離膜が使用
されている。たとえば高純度の水或いは高清浄度の空気
を得るために精密濾過膜が利用されている。これらの中
でもポリエチレン等のポリオレフィンからなる精密濾過
膜は低価格で側薬品性に優れ、強伸度、柔軟性といった
膜物性の点でも優れており、特に多用されている。
With the development of industry in recent years, separation membranes of various degrees Celsius have been used in the water purification field, blood treatment field, air purification field, food industry field, etc. For example, microfiltration membranes are used to obtain highly purified water or highly clean air. Among these, precision filtration membranes made of polyolefins such as polyethylene are particularly widely used because they are inexpensive, have excellent chemical properties, and have excellent membrane properties such as strength, elongation, and flexibility.

そして精密濾過膜はその適用範曲は益々増大し、たとえ
ば80〜95℃程度の高温下での使用が強く望まれ℃い
る。また一方精密濾過膜はその用途によっては膜自体が
菌、黴等の微生物により汚染されていることは許されず
、その場合は何等かの方法により滅菌処理が施される。
The scope of application of precision filtration membranes is increasing more and more, and use at high temperatures of, for example, about 80 to 95°C is strongly desired. On the other hand, depending on the use of the microfiltration membrane, it is not acceptable for the membrane itself to be contaminated with microorganisms such as bacteria and mold, and in that case, it must be sterilized by some method.

滅菌法としては、エチレンオキサイド、ホルマリン、過
酸化水素叫の薬剤、γ線のような放射線、水蒸気加熱と
いった方法が挙げられるが、効果と簡便さの点で水蒸気
加熱法が最も望ましく、水蒸気加熱法では通常121℃
で30分間程度の条件が採用されている。
Sterilization methods include ethylene oxide, formalin, hydrogen peroxide, radiation such as gamma rays, and steam heating, but steam heating is the most desirable method in terms of effectiveness and simplicity. Normally 121℃
A condition of approximately 30 minutes is adopted.

しかるにポリエチレン等のポリオレフィンからなる多孔
質膜は熱収縮が著しく、これらの多孔質膜を加熱処理し
あるいは高温下で使用すると形態が変化して水或いは空
気透過性が極端に低下したりして分離膜としての機能が
低下する。
However, porous membranes made of polyolefins such as polyethylene have significant thermal shrinkage, and when these porous membranes are heat-treated or used at high temperatures, their morphology changes and water or air permeability is extremely reduced, resulting in separation. Its function as a membrane decreases.

またこの多孔質膜は疎水性であるためそのままでは水を
透過させることができない。
Furthermore, since this porous membrane is hydrophobic, water cannot pass through it as it is.

ポリオレフィン製多孔質膜の耐熱性を向上させるものと
して特開昭62−33878号公報にはポリオレフィン
中空糸膜の表面に架橋構造を有する耐熱性高分子薄膜を
形成させたものが提案されている。又、特開昭56−5
7836号公報にはポリエチレン多孔質膜にスルホン基
を導入して親水性を付与したものが提案されている。
In order to improve the heat resistance of polyolefin porous membranes, JP-A-62-33878 proposes a method in which a heat-resistant polymer thin film having a crosslinked structure is formed on the surface of a polyolefin hollow fiber membrane. Also, JP-A-56-5
Japanese Patent No. 7836 proposes a polyethylene porous membrane in which sulfone groups are introduced to impart hydrophilicity.

〔発明が解決しようとする訴題〕[The problem that the invention seeks to solve]

しかしながら、特開昭62−33878号公報記載の耐
熱性ポリオレフィン中空糸膜においては、高分子薄膜自
体の耐熱性か不充分である。
However, in the heat-resistant polyolefin hollow fiber membrane described in JP-A-62-33878, the heat resistance of the polymer thin film itself is insufficient.

又、特開昭56−57836号公報記載のポリエチレン
多孔質膜は親水性を有するものの耐熱性が充分でない。
Furthermore, although the polyethylene porous membrane described in JP-A-56-57836 has hydrophilic properties, it does not have sufficient heat resistance.

本発明の目的は、親水性に稜れかつ水蒸気滅菌処理等が
可能な耐熱性に優れたポリエチレン又はポリプロピレン
からなる多孔質膜及びその製造方法を提供することにあ
る。
An object of the present invention is to provide a porous membrane made of polyethylene or polypropylene that is hydrophilic and has excellent heat resistance and can be subjected to steam sterilization, and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨は、ポリエチレン又はポリプロピレンから
なる多孔質膜の少なくとも一部の表面上にスチレン、α
−メチルスチレンからなる一fM 以上の重合性モノマ
ーとジビニルベンゼンとからなる架橋重合体を保持せし
め、更にその上に親水性モノマーと架橋性モノマーとを
含むモノマー類からなる親水性架橋重合体を保扛せしめ
てなる面1熱親水化多孔質膜にあり、更に、ポリエチレ
ン又はポリプロピレンからなる多孔ダ↓膜の少な(とも
一部の表面上にスチレン、α−メチルスチレンからなる
一部・以上の1合性モノマーとジビニルベンゼンとをも
む七ツマー類を保持させた状態で熱重合させ、次いで親
水性モノマーと架橋性モノマーとを含むモノマー類を前
記多孔質膜の少なくとも一部の表面上に保持させた状態
で熱重合させる耐熱親水化多孔質膜の製造方法にある。
The gist of the present invention is that styrene, α, etc.
- Holding a crosslinked polymer consisting of a polymerizable monomer of 1 fM or more consisting of methylstyrene and divinylbenzene, and further holding a hydrophilic crosslinked polymer consisting of monomers containing a hydrophilic monomer and a crosslinking monomer thereon. Surface 1 is a thermally hydrophilized porous membrane formed by coating, and the porous membrane is made of polyethylene or polypropylene. Thermal polymerization is carried out in a state in which a heptamer containing a synthetic monomer and divinylbenzene is held, and then monomers containing a hydrophilic monomer and a crosslinking monomer are held on at least a part of the surface of the porous membrane. The present invention provides a method for producing a heat-resistant hydrophilic porous membrane, which is thermally polymerized in a state where the membrane is heated.

本発明において多孔仰膜としては中空糸膜、平膜、管状
膜等の任意の形態のものを用いることができ、また用途
に応じて種々の細孔径のものを使用することができるが
、好ましい例として、膜厚かおよそ20〜200μm程
度、空孔率がおよそ20〜90%程度、アルコール親水
化法で力水透過率が0.001〜101/m−hr−m
l Hp  程度、細孔径が0.01〜5 μm程度の
ものを挙げることができる。
In the present invention, the porous membrane can be in any form such as a hollow fiber membrane, a flat membrane, or a tubular membrane, and can have various pore diameters depending on the application, but is preferred. For example, the membrane thickness is approximately 20 to 200 μm, the porosity is approximately 20 to 90%, and the water permeability is 0.001 to 101/m-hr-m by alcohol hydrophilization method.
Examples include those having a pore size of about 1 Hp and a pore diameter of about 0.01 to 5 μm.

このような多孔質膜としては溶融賦形後う1[伸する方
法、無機物もしくはエステル等を混入して溶融賦形後延
伸物を抽出する方〃:を始めとして種々の方法によって
得られろ細孔構造のものを用いうるが、その中でも空孔
率か大きくて目詰まりによる性能低下が少な(・という
点から溶融賦形後延伸する方法によって得られる多孔質
膜が好ましく用いられろ。溶融賦形後延伸する方法によ
る多孔質膜とは、ミクロンイプリルと節部とによって形
成されるスリット状の微小空間(空孔)が三次元的に相
互に連通した細孔構造を有する多孔質膜であり、たとえ
ば特公昭5652123号公報、特開昭57−4291
9号公報等に記載された方法によって製造することがで
きる。
Such porous membranes include porous membranes obtained by various methods, including melt-forming and stretching methods, and methods of melt-forming and extracting the stretched material by mixing inorganic substances or esters. Porous membranes with a porous structure can be used, but porous membranes obtained by a method of melt-forming and then stretching are preferably used because they have a large porosity and are less susceptible to deterioration in performance due to clogging. A porous membrane produced by the method of stretching after shaping is a porous membrane having a pore structure in which slit-like micro spaces (pores) formed by micron ipril and knots communicate with each other three-dimensionally. Yes, for example, Japanese Patent Publication No. 5652123, Japanese Patent Application Laid-Open No. 57-4291
It can be manufactured by the method described in Publication No. 9 and the like.

尚、多孔質膜の形態としては単位容積当たりの膜面積が
大きいことから中空糸状のものが好ましく用いられる。
Note that, as the form of the porous membrane, a hollow fiber type is preferably used because the membrane area per unit volume is large.

本発明の多孔質膜は第一層目にスチレン等のに一8性モ
ノマーとジビニルベンセンとからなる耐熱性架橋乗合体
が保持され、次いで第二層目に親水性架橋重合体か保持
されたものである。
In the porous membrane of the present invention, a heat-resistant cross-linked polymer composed of a monomer such as styrene and divinylbenzene is retained in the first layer, and a hydrophilic cross-linked polymer is retained in the second layer. It is something.

以下、前者を面ツ熱性架橋重合体、後者を親水性架橋重
合体といい、両者を合わせて架橋重合体という。
Hereinafter, the former will be referred to as a thermophilic crosslinked polymer, the latter will be referred to as a hydrophilic crosslinked polymer, and both will be referred to as a crosslinked polymer.

本発明の多孔質膜において架&■合体が保持されモ)多
孔質膜の少な(とも一部の表面とは、細孔表面及び外表
面の一部あろ〜・は全部をいう。
In the porous membrane of the present invention, the bridges and ① combinations are maintained.

jl?l]ち、夾角的に而・(熱性と親水性が向上され
るように架橋重合体が保持されていればよく、必ずしも
全ての表面に架橋重合体が保持され″[1,・る必要は
ない。
jl? l] Including, it is sufficient that the crosslinked polymer is retained so that the thermal properties and hydrophilicity are improved, and it is not necessary that the crosslinked polymer is retained on all surfaces. do not have.

表面に保持される架橋重合体の短は、多孔質膜の空孔率
や細孔径にも依存するが、多孔質膜の重量に対しておよ
そ5〜80Mk%程度であることが好ましい。架橋重合
体の保持量がこの範囲より少ないと多孔質膜に充分な耐
熱性と親水性を付与することができず、又、この範囲を
超えろとむしろ細孔容積が減少して流体の透過性能が低
下する場合があるので好ましくない。
Although the length of the crosslinked polymer retained on the surface depends on the porosity and pore diameter of the porous membrane, it is preferably about 5 to 80 Mk% based on the weight of the porous membrane. If the amount of cross-linked polymer retained is less than this range, it will not be possible to impart sufficient heat resistance and hydrophilicity to the porous membrane, and if it exceeds this range, the pore volume will decrease and the fluid permeation performance will deteriorate. This is not preferable because it may cause a decrease in

架橋重合体の保持量は10〜703(量%程度であるこ
とがより好ましく、15〜60][31%程度であるこ
とが特に好ましい。又、耐熱性架橋重合体と親水性架橋
重合体の][C比は特に限定されず目標とする耐熱性、
親水性を達成するために適宜選択可能である。
The retained amount of the crosslinked polymer is preferably about 10 to 703% (more preferably about 15 to 60% by weight, and particularly preferably about 31%). ] [The C ratio is not particularly limited, and the target heat resistance,
It can be selected as appropriate to achieve hydrophilicity.

保持させてなるとは保存中や使用中に容易に脱離しない
程度に架&重合体が細孔表面に強固に結合な(゛シ密尤
されていることをいい、架橋重合体が細孔表面に化学結
合していてもよ(、架橋重合体が微細孔部分にアンカー
効果によって密着されていてもよ(、また、スリット状
の細孔を形成するミクロフィブリルや結節部等を包むよ
うにして架橋重合体が@着架橋されてい丘 ℃もよく、これらの保持状態か混→していてもよい。
Retained means that the cross-linked polymer is tightly bound to the pore surface to the extent that it does not easily detach during storage or use. The cross-linked polymer may be chemically bonded to the micropores (or the cross-linked polymer may be tightly attached to the micropores by an anchor effect), or the cross-linked polymer may be attached to the microfibrils or nodules that form the slit-like pores. The combination may be crosslinked or cross-linked, and these holding states may be mixed.

このようにポリエチレン又はボリグロビレン多孔T)肪
1のへ11.孔六面への架橋重合体の保持状態11−シ
てはイ)テσ、P′、態をとりうるが、架橋ポ合体令・
化学結合させることなくアンカー効果や密着架橋等の如
く物板的に細孔表面上に侍、持させた耐熱親水化多孔質
校は、木材の多孔質膜と比較して機柱的強度の劣化や細
孔栴造の変化が殆どないのでIP、+fK好ましいもの
である。
In this way polyethylene or polyglopylene porous T) fat 11. Retention state of the crosslinked polymer on the six faces of the hole
The heat-resistant and hydrophilic porous film, which has a physical property on the pore surface through anchoring effects and adhesive cross-linking without chemical bonding, has a deterioration in mechanical strength compared to porous wood membranes. IP and +fK are preferable because there is almost no change in porosity or pore size.

耐熱性架橋1重合体をオド成する1(合性モノマーとジ
ビニルベンゼンとの組成比は特に限定されずジビニルベ
ンセンの量がおよそ2′N、量9以上であれはよい。
The composition ratio of the polymerizable monomer and divinylbenzene is not particularly limited, as long as the amount of divinylbenzene is approximately 2'N and the amount is 9 or more.

親水性架部重合体は、化ツマ−成分としての親水性モノ
マーを含有しかつ架橋性七ツマ−を3有′1−る系ρ・
らなる架橋重合体であり工、モノマー成分としてはこれ
らの他に非架橋性七ツマ−が含まれていてもよい。
The hydrophilic cross-linked polymer is a system containing a hydrophilic monomer as a polymer component and having 3 crosslinkable polymers.
In addition to these, the monomer component may contain a non-crosslinked polymer.

親水性七ツマ−としては公知のものを用いることができ
るが、好ましいものとしてジアセトンアクリルアミドあ
るいは無水マレイン酸、無水イタコン酸、無水ハイミッ
ク酸等の酸無水物史にマレイン酸エステルやフマル酸エ
ステル等のエステル化された2つのカルボキシル基を有
する1合性モノマー(以下「カルボキシモノマー」とい
う)を挙げることができる。尚、これらの酸無水物やエ
ステル化合物は加水分解によって容易にカルボキシル基
を有する構造に変えることが可能であるため架橋重合体
に親水性を付与することができる。
Known hydrophilic hexamers can be used, but preferred ones include diacetone acrylamide, acid anhydrides such as maleic anhydride, itaconic anhydride, and hymic anhydride, maleic esters, fumaric esters, etc. Examples include monomer monomers having two esterified carboxyl groups (hereinafter referred to as "carboxy monomers"). Note that these acid anhydrides and ester compounds can be easily changed into a structure having a carboxyl group by hydrolysis, and therefore can impart hydrophilicity to the crosslinked polymer.

架橋性モノマーとしては、親水性モノマーと共重合可能
なビニル結合やアリル結合等の重合性不飽和結合を2個
以上有するモノマー あるいは前記1合性不飽和結合を
1個有しかつ縮合反応等によって化学結合を生成可能な
官能基を少なくとも1個有するモノマーであって親水性
七ツマ−と共通の良溶媒を有するモノマーを挙げろこと
ができ、その例として、N、 N’−メチレンビスアク
リルアミド、N−ヒドロキシメチル(メタ)アクリルア
ミド、トリアリル(イソ)シアヌレート、ジビニルベン
ゼン、2.2−ビス(4−メタクリロイルキシポリエト
キシフェニル)フロパン、エチレンジ(メタ)アクリレ
−ト、ポリエチレングリコールジ(メタ)アクリレート
、トリメチロールプロパントリ(メタ)アクリレート、
ペンクエリスリトールテトラ(メタ)アクリレート、ト
リメチロールエタントリ(メタ)アクリレート、ブタン
ジオールジ(メタ)アクリレート、ヘキサンジメールジ
(メタ)アクリレート、ジアリルフタレート、1.3.
5−トリアクリロイルヘキザンヒドロ式シー3−トリア
ジン等を挙げることができる。
Examples of crosslinkable monomers include monomers having two or more polymerizable unsaturated bonds such as vinyl bonds and allyl bonds that can be copolymerized with hydrophilic monomers, or monomers that have one of the monomerizable unsaturated bonds and can be copolymerized with hydrophilic monomers by condensation reaction, etc. List monomers that have at least one functional group capable of forming a chemical bond and that share a good solvent with hydrophilic monomers. Examples include N, N'-methylenebisacrylamide, N -Hydroxymethyl(meth)acrylamide, triallyl(iso)cyanurate, divinylbenzene, 2,2-bis(4-methacryloyloxypolyethoxyphenyl)furopane, ethylene di(meth)acrylate, polyethylene glycol di(meth)acrylate, tri- methylolpropane tri(meth)acrylate,
Penquerythritol tetra(meth)acrylate, trimethylolethane tri(meth)acrylate, butanediol di(meth)acrylate, hexanedimer di(meth)acrylate, diallyl phthalate, 1.3.
Examples include 5-triacryloylhexanehydro-3-triazine.

又、非架橋性モノマーとしては、親水性モノマーと共1
合可能なビニル結合やアリル結合等の1合性不飽和結合
を1個有1−ろモノマーであって、親水性モノマーと共
通の良溶媒を有するモノマーを摩げろことかでき、その
例としてジメチルアクリルアミド、ビニルピロリドン、
(メタ)アクリル酸、ヒドロキシエチルメタクリレート
、スチレンスルホン酸、スチレンスルホン酸ナトリウム
、スルホエチルメタクリル酸ナトリウム、ビニルピリジ
ン、ビニルメチルエーテル等を挙げることができる。
In addition, as the non-crosslinking monomer, together with the hydrophilic monomer, 1
A monomer having one unsaturated bond such as a vinyl bond or an allyl bond that can be combined with a hydrophilic monomer and a good solvent in common with the hydrophilic monomer can be selected. For example, dimethyl acrylamide, vinylpyrrolidone,
Examples include (meth)acrylic acid, hydroxyethyl methacrylate, styrene sulfonic acid, sodium styrene sulfonate, sodium sulfoethyl methacrylate, vinylpyridine, vinyl methyl ether, and the like.

以下、このような架橋性モノマーと非架橋性七ツマ−を
合わせて共重合性モノマーと総称する。
Hereinafter, such crosslinkable monomers and non-crosslinkable monomers will be collectively referred to as copolymerizable monomers.

親水性架橋重合体を生成する親水性モノマーと共重合性
七ツマ−の組成比としては親水性七ツマー100重量部
に対し共重合性モノマーが0.5〜30011(’u部
程度であることが好ましい。
The composition ratio of the hydrophilic monomer to the copolymerizable heptamer that forms the hydrophilic crosslinked polymer is 0.5 to 30011 parts (approximately 'u parts) per 100 parts by weight of the hydrophilic hetamine. is preferred.

本発明においてはポリエチレン又はポリプロピレン多孔
質膜の細孔表面上に保持されろ重合体が架橋重合体であ
るために、重合体の安定性が良好であって水中での溶出
成分の童が著しく少ないという利点がある。従って、該
多孔質膜は徹量の溶出成分が問題となる水処理分野牛血
液浄化分野等において有効である。
In the present invention, since the polymer retained on the pore surface of the polyethylene or polypropylene porous membrane is a crosslinked polymer, the stability of the polymer is good, and the amount of components eluted in water is extremely small. There is an advantage. Therefore, the porous membrane is effective in the water treatment field, bovine blood purification field, etc., where a thorough amount of eluted components is a problem.

次に本発明の耐熱性と親水性とが付与された多孔質膜の
製造方法について説明する。尚、以下において単に架橋
重合体として説明するが、耐熱性架橋重合体と親水性架
橋重合体はいずれも同様の方法によって多孔質膜の表面
上に保持することができろ。
Next, a method for producing a porous membrane imparted with heat resistance and hydrophilicity according to the present invention will be explained. Although the crosslinked polymer will be explained below simply as a crosslinked polymer, both the heat resistant crosslinked polymer and the hydrophilic crosslinked polymer can be held on the surface of the porous membrane by the same method.

本発明にお(・て架橋重合体を多孔質膜の細孔表面上に
保持させる方法としては、種々の方法を採用することが
できる。例えば、適当な溶媒にモノマー類又は更に必要
に応じて重合開始剤を溶解させた溶液を調製し、多孔質
膜をその溶液中に浸漬する方法、あるいは多孔質膜で膜
モジュールを製作した後この溶液を多孔質膜内に圧入す
る方法等により該溶液を多孔質膜に含浸させた後、溶媒
を揮発除去させる方法が採用できる。溶媒で希釈した溶
液を用いることによって多孔質膜の細孔を塞ぐことなく
多孔質膜の全体にわたってモノマー類をほぼ均一に付着
させることができる。また、該溶液のモノマー類の濃度
や浸漬時間を変化させることによりモノマー類の付着量
が調整できろ。
In the present invention, various methods can be used to retain the crosslinked polymer on the pore surface of the porous membrane. For example, monomers or The solution can be prepared by preparing a solution in which a polymerization initiator is dissolved and immersing the porous membrane in the solution, or by press-fitting the solution into the porous membrane after manufacturing a membrane module using the porous membrane. A method can be adopted in which a porous membrane is impregnated with monomers and then the solvent is removed by evaporation.By using a solution diluted with a solvent, the monomers can be applied almost uniformly throughout the porous membrane without clogging the pores of the porous membrane. Furthermore, the amount of monomers attached can be adjusted by changing the concentration of monomers in the solution and the immersion time.

前記の溶液を調製する場合の溶媒としては、モノマー類
よりも沸点が低く、かつモノマー類を溶解することが可
能な有機溶剤を用いろか、重合開始剤を添加する場合は
1合開始剤をも溶解できる溶媒を用いろことが好ましい
When preparing the above solution, use an organic solvent that has a boiling point lower than that of the monomers and is capable of dissolving the monomers, or, if a polymerization initiator is added, a polymerization initiator. It is preferable to use a solvent that can dissolve it.

このような有機溶媒としてはメタノール、エタノール、
フロパノール、インフーロパノール灼のアルコール類、
アセトン、メチルエテルケトン、メチルイソブチルケト
ン等のケトン類、テトラヒドロフラン、ジオキサン等の
エーテル類、酢酸エチル、クロロホルム等を昂げること
ができろ。
Such organic solvents include methanol, ethanol,
Furopanol, Influopanol caustic alcohols,
You can use ketones such as acetone, methyl ether ketone, and methyl isobutyl ketone, ethers such as tetrahydrofuran and dioxane, ethyl acetate, and chloroform.

有機溶媒の沸点は特に限定され7′、【いが、重合工程
前の溶媒除去が容易であることを考慮するとおよそ10
0℃以下であることが好ましく、およそ80℃以下であ
ることがより好ましい。
The boiling point of organic solvents is particularly limited to 7'; however, considering the ease of solvent removal before the polymerization process, it is approximately 10
Preferably, the temperature is below 0°C, more preferably about 80°C or below.

溶液中におけるモノマー類と溶媒との組成は溶媒の種類
や目標とする架橋重合体の保持i等を考慮して適宜選択
すればよく、モノマー類100重量部に対して溶媒は5
0〜10000重量部程度であればよ<200〜500
 ox重量部程度あることがより好ましい。
The composition of the monomers and the solvent in the solution may be selected appropriately taking into account the type of solvent and the target retention i of the crosslinked polymer, and the proportion of the solvent is 5 parts by weight per 100 parts by weight of the monomers.
As long as it is about 0 to 10,000 parts by weight <200 to 500
It is more preferable that the amount is about ox parts by weight.

これらの溶液を用いて多孔質膜に対して浸漬処理または
圧入処理する際の浸漬時間または圧入時間はおよそ0.
5秒〜30分間程度であり、多孔質膜に対する濡れ特性
が良好な溶液を用いた場合程、より短時間で実施するこ
とができる。
When dipping or press-fitting a porous membrane using these solutions, the dipping time or press-fitting time is approximately 0.
It takes about 5 seconds to 30 minutes, and it can be carried out in a shorter time when a solution with better wetting properties for the porous membrane is used.

このようにしてモノマー類または更に重合開始剤を少な
(とも一部の表面上に保持された多孔質膜は周囲の余分
な液を除去され、更に必要に応じて細孔内部の溶媒を蒸
発除去された後、次の重合工程に移される。
In this way, the monomers or even the polymerization initiator can be removed by evaporation of the surrounding excess liquid, and if necessary, the solvent inside the pores can be removed by evaporation. After that, it is transferred to the next polymerization step.

溶媒の蒸発除去時の温度が高すぎると溶媒が残留してい
る間に1合が部分的に進行し、多孔質膜の細孔表面でな
い細孔内部で重合が起こり、その結果一部の細孔が閉塞
されることがあるので好ましくなく、これを考慮すると
溶媒除去時の温度はおよそ10〜50℃程度であること
が好ましい。
If the temperature during evaporation of the solvent is too high, polymerization will partially proceed while the solvent remains, and polymerization will occur inside the pores of the porous membrane instead of on the pore surface, resulting in some of the pores being removed. This is not preferable since the pores may be blocked, and in consideration of this, the temperature during solvent removal is preferably about 10 to 50°C.

本発明においては熱重合法、光重合法、放射線重合法、
プラズマ1合法等の重合方法を採用することができ、重
合開始剤は公知のものを用いることができる。
In the present invention, thermal polymerization method, photopolymerization method, radiation polymerization method,
A polymerization method such as the plasma 1 method can be employed, and known polymerization initiators can be used.

熱重合法の場合、1合理度は前記1合開始剤の分解温度
以上であり、また多孔質膜の膜構造を変化させることな
くかつ膜基質を損傷しない程度以下の温度とすることが
望ましく、通常は30〜100℃程度の温度を採用する
ことができる。また加熱時間は1合開始剤の種類と加熱
温度に依存するがバッチ法では通常は1分間〜5時間程
度、より好ましくは15分間〜3時間程度である。又、
連続法では熱伝達効率が高いためにより短時間で1゛合
でき、加熱時間は通常10秒間〜60分間程度、より好
ましくは20秒間〜10分間程度である。
In the case of a thermal polymerization method, the degree of rationality is preferably higher than the decomposition temperature of the above-mentioned 1-polymer initiator and lower than the temperature that does not change the membrane structure of the porous membrane and damage the membrane substrate, Usually, a temperature of about 30 to 100°C can be employed. The heating time depends on the type of initiator and the heating temperature, but in a batch method it is usually about 1 minute to 5 hours, more preferably about 15 minutes to 3 hours. or,
In the continuous method, the heat transfer efficiency is high, so that the heating can be carried out in a shorter time, and the heating time is usually about 10 seconds to 60 minutes, more preferably about 20 seconds to 10 minutes.

光重合法の場合、光照射の光源としては紫外線や可視光
線を用いることができ、紫外線源としては低圧水銀灯、
高圧水銀灯、キセノン灯、アーク灯等を用いることがで
きる。
In the case of the photopolymerization method, ultraviolet rays or visible light can be used as the light source for light irradiation, and the ultraviolet ray sources include low-pressure mercury lamps,
High-pressure mercury lamps, xenon lamps, arc lamps, etc. can be used.

光照射条件としてはたとえば水銀灯を光源として用いる
場合は入力を10〜300 W/cra程度とし10〜
50z程度の距離から0.5〜300秒間程度照射する
ことによって0.001〜1Ojou16/(m″程度
より好ましくは0.05〜1j Ou l el /C
Yn”程度のエネルギーを照射する条件が採用される。
As for the light irradiation conditions, for example, when using a mercury lamp as a light source, the input should be about 10 to 300 W/cra and 10 to 300 W/cra.
By irradiating for about 0.5 to 300 seconds from a distance of about 50z, it is possible to achieve a radiation density of about 0.001 to 1 Ojou16/(m'', preferably about 0.05 to 1J Ouel/C).
A condition of irradiating energy of about Yn'' is adopted.

放射線重合の場合はたとえば電子線照射装置を用い、1
20℃以下、より好ましくは100℃以下の温度にて電
子線を10〜50Mrad程度照射することによって実
施することができる。
In the case of radiation polymerization, for example, an electron beam irradiation device is used, and 1
This can be carried out by irradiating electron beams at a temperature of about 10 to 50 Mrad at a temperature of 20° C. or lower, more preferably 100° C. or lower.

尚、これらの重合の際、雰囲気内に酸素が存在すると重
合反応が著しく阻害されるので窒素雰囲気等の不活性ガ
ス雰囲気、あるいは真空等の実質的に酸素が存在しない
状態にて重合させることが望ましい。
In addition, during these polymerizations, the presence of oxygen in the atmosphere will significantly inhibit the polymerization reaction, so it is best to carry out the polymerization in an inert gas atmosphere such as a nitrogen atmosphere, or in a state in which oxygen is substantially absent, such as in a vacuum. desirable.

本発明においては上述のように種々の重合法を採用でき
るが、熱エネルギーによる方法が最も好ましい。熱エネ
ルギーを利用する場合は多孔質膜の細孔部分まで均一温
度に加熱することができるのでモノマー類が保持されて
いる全ての細孔表面上において均一に重合することがで
き、かつ、重合温度を適度に設定することによって膜の
構造を変化させることなくかつ膜基質を劣化させること
なく1合することができる利点がある。一方、光エネル
ギーを利用する場合は光の散乱によって多孔質膜の細孔
部分まで光が十分に到達しにくいという問題及び光の照
射強度を上げると膜基質の劣化が進行しやすいという問
題があり、また放射線エネルギーを利用する場合も膜基
質の劣化が進行しやすいという問題がある。従りてこれ
らの重合方法を採用する場合は膜基質を劣化させないよ
うな重合条件を慎重に選定することが必要である。
In the present invention, various polymerization methods can be employed as described above, but a method using thermal energy is most preferred. When using thermal energy, the pores of the porous membrane can be heated to a uniform temperature, so monomers can be uniformly polymerized on all pore surfaces where monomers are held, and the polymerization temperature can be maintained evenly. By appropriately setting , there is an advantage that the combination can be carried out without changing the structure of the membrane or deteriorating the membrane substrate. On the other hand, when using light energy, there is a problem that light scattering makes it difficult for light to reach the pores of a porous membrane, and that increasing the intensity of light irradiation tends to cause deterioration of the membrane substrate. Also, when using radiation energy, there is a problem in that the membrane substrate tends to deteriorate. Therefore, when employing these polymerization methods, it is necessary to carefully select polymerization conditions that will not deteriorate the membrane substrate.

多孔質膜の表面上に保持されたモノマー類はこれらの重
合手法によりて重合、架橋するので多孔質膜の少なくと
も一部の表面はこれらの架橋重合体によりて被覆される
Since the monomers held on the surface of the porous membrane are polymerized and crosslinked by these polymerization techniques, at least a portion of the surface of the porous membrane is coated with these crosslinked polymers.

架橋重合体が生成された後は、必要に応じて適当な洗浄
溶媒を用い浸漬法や圧入法によって多孔質膜細孔表面や
外表面の周囲に存在する未反応モノマーや遊離したポリ
マー等の不要成分を除去することが望ましい。
After the crosslinked polymer is produced, unreacted monomers and free polymers existing around the pore surface and outer surface of the porous membrane are removed by dipping or press injection using an appropriate cleaning solvent as necessary. It is desirable to remove the components.

このような方法によってまず耐熱性架橋重合体を保持さ
せ、次いで親水性架橋重合体を保持させる。
By such a method, first the heat-resistant crosslinked polymer is retained, and then the hydrophilic crosslinked polymer is retained.

親水性架橋重合体がカルボキシモノマーからなる場合は
、親水性架橋重合体の加水分解を行なってカルボキシル
基を導入し親水性を付与する。多孔質膜の細孔表面に保
持された親水性架橋重合体を均一に加水分解するために
は加熱する方法が好ましいが、その場合はポリオレフィ
ンと保持された架橋重合体の熱的、化学的安定性が問題
となる。このため例えばアルカリ性物質を表面張力の小
さい溶媒系に溶解した溶液中に多孔質膜を浸漬しジカル
ボン酸塩とするのが好ましい。アルカリ性物質としては
水酸化ナトリウム、水酸化カリウム、水酸化リチウムの
ごときアルカリ金属水酸化物や炭酸塩、アンモニア等を
挙げることができ、濃度は0.1〜2規定程度とすれば
よい。又溶媒とし又はメタノール、エタノール、インフ
ロバノール或いはこれらと水の混合溶液を用いることが
できる。浸漬時間は5分以上であればよい。
When the hydrophilic crosslinked polymer is composed of a carboxy monomer, the hydrophilic crosslinked polymer is hydrolyzed to introduce carboxyl groups and impart hydrophilicity. In order to uniformly hydrolyze the hydrophilic crosslinked polymer held on the pore surface of the porous membrane, a heating method is preferable, but in that case, the thermal and chemical stability of the polyolefin and the held crosslinked polymer is Gender becomes an issue. For this reason, for example, it is preferable to immerse the porous membrane in a solution in which an alkaline substance is dissolved in a solvent system with low surface tension to form a dicarboxylic acid salt. Examples of the alkaline substance include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide, carbonates, and ammonia, and the concentration may be about 0.1 to 2N. Further, as a solvent, methanol, ethanol, inflobanol, or a mixed solution of these and water can be used. The immersion time may be 5 minutes or more.

〔実施例〕〔Example〕

以下実施例により本発明を具体的に説明する。 The present invention will be specifically explained below using Examples.

尚、実施例においては多孔質膜としていずれも浴融賦形
後延伸して得られるミクロフィブリルと節部とで形成さ
れるスリット状の空間(空孔)が3次元的に連通した多
孔質膜を用いた。
In addition, in the examples, porous membranes in which slit-like spaces (pores) formed by microfibrils obtained by bath melting and stretching and knots are three-dimensionally connected are used as porous membranes. was used.

架橋重合体の保持量は沸騰キシレン還流下、多孔質膜を
溶解させる溶解分別法により求め多孔質膜に対する重量
%で表示した。加熱収縮率は多孔質膜を121 ’Cの
水蒸気中で30分間処理し、処理前の長さを基準として
測定した。又アルコール親水化法での水透過率及び架橋
重合体保持後の水透過率及び透水圧は有効膜面積が16
3 cm”  の試験膜モジュールを用い、次の方法に
よって測定した。
The amount of the crosslinked polymer retained was determined by a dissolution fractionation method in which the porous membrane was dissolved under reflux of boiling xylene and expressed as weight % with respect to the porous membrane. The heat shrinkage rate was measured by treating the porous membrane in steam at 121'C for 30 minutes and using the length before treatment as a reference. In addition, the water permeability in the alcohol hydrophilization method and the water permeability and water permeability after retaining the crosslinked polymer are determined by the effective membrane area of 16
The measurement was carried out using a 3 cm" test membrane module according to the following method.

(1)  アルコール親水化法での水透過率試験膜モジ
ュールの一方(中空糸膜の場合は中空糸膜の内側)から
エタノールを25d/ tnlnの流量で15分間圧大
して多孔質膜の細孔内部まで充分にエタノールで湿潤さ
せた後、水を100m1/minの流量で15分間流Q
、細孔内部に存在するエタノールを水で置換する。続い
て試験膜モジュールの一方(中空糸の場合は中空糸の内
側)から25℃の水を流して膜間差圧が50龍H/  
における透過水量を測定し、その値から水透過率(1/
m・hr−龍H7)を求める。
(1) Water permeability test using alcohol hydrophilization method Pressurize ethanol from one side of the membrane module (inside the hollow fiber membrane in the case of a hollow fiber membrane) at a flow rate of 25 d/tnln for 15 minutes to test the inside of the pores of the porous membrane. After thoroughly moistening with ethanol until
, the ethanol present inside the pores is replaced by water. Next, water at 25°C was poured from one side of the test membrane module (inside the hollow fiber in the case of a hollow fiber) until the transmembrane pressure difference reached 50 H/H.
Measure the amount of permeated water at , and calculate the water permeability (1/
Find m・hr−Ryu H7).

(2)架橋重合体保持後の水透過率 架橋重合体を保持させた多孔質膜で製作した試験膜モジ
ュールの一方(中空糸膜の場合は中空糸膜の内側)から
圧力2 kg7cm”の水を3時間圧入した後、該試験
膜モジュールの一方から25℃の水を流して膜間差圧が
50snH/ における透過水量を測定しその値から水
透過率(J/m−hr−mHp)を求める。
(2) Water permeability after retaining cross-linked polymer Water at a pressure of 2 kg 7 cm" was applied from one side of the test membrane module (inside of the hollow fiber membrane in the case of a hollow fiber membrane) made of a porous membrane retaining cross-linked polymer. was injected for 3 hours, water at 25°C was poured from one side of the test membrane module, the amount of permeated water was measured at a transmembrane pressure of 50 snH/, and the water permeability (J/m-hr-mHp) was calculated from that value. demand.

(3)透水圧 試験膜モジュールの一方(中空糸膜の場合は中空糸の内
側)から1分間毎に0.1 kg/cm”の割合で水圧
を上げながら25℃の水、を供給し、積算透水量が30
1dと501になる時の水圧を測定する。続いて横軸に
水圧をまた縦軸に透過水量をプロットし、プロットした
2点を結ぶ直線が横軸と交わる点の圧力値を求めその値
を透水圧とする。
(3) Water permeability test Supplying water at 25°C from one side of the membrane module (inside of the hollow fiber in the case of a hollow fiber membrane) while increasing the water pressure at a rate of 0.1 kg/cm every minute, Cumulative water permeability is 30
Measure the water pressure when it reaches 1d and 501. Next, the water pressure is plotted on the horizontal axis and the amount of permeated water is plotted on the vertical axis, and the pressure value at the point where the straight line connecting the two plotted points intersects with the horizontal axis is determined, and that value is taken as the permeable pressure.

実施例1〜5 多孔質膜として空孔率65%、膜厚70μm、破断伸度
67%、加熱収縮率41%、透水圧12.5 kJ/c
m”、アルコール親水化法による水透過率が1.21/
rrl・hr ’ IXHJIIであるポリエチレン製
多孔質膜を用いた。
Examples 1 to 5 Porous membrane: porosity 65%, membrane thickness 70 μm, elongation at break 67%, heat shrinkage rate 41%, water permeability pressure 12.5 kJ/c
m”, water permeability by alcohol hydrophilization method is 1.21/
A polyethylene porous membrane of rrl.hr' IXHJII was used.

この多孔質膜を第1表に示す濃度のスチレン、ジビニル
ベンゼン及び0.2TLi%の過酸化ベンゾイルを溶解
したアセトン溶液中に10秒間浸漬した後、室温下で3
0分間風乾してアセトンを揮発させ、次いで60℃の窒
素雰囲気中で60分間加熱して七ツマー類を重合させ耐
熱性架橋重合体を細孔表面に保持させた多孔IX膜を得
た。
This porous membrane was immersed for 10 seconds in an acetone solution containing styrene, divinylbenzene, and 0.2TLi% benzoyl peroxide at the concentrations shown in Table 1, and then left at room temperature for 3 hours.
The mixture was air-dried for 0 minutes to volatilize acetone, and then heated in a nitrogen atmosphere at 60° C. for 60 minutes to polymerize the heptamers, thereby obtaining a porous IX membrane in which a heat-resistant crosslinked polymer was retained on the pore surface.

続いて第1表に示す濃度のジアセトンアクリルアミド、
N−ヒドロキシメチルアクリルアミド及び0.2 N量
%の過酸化ベンゾイルを溶解したアセトン溶液中に10
秒間浸漬した後、窒素中にとり出し5分間風乾した。続
いてこの多孔質膜を窒素雰囲気中において60℃で60
分間加熱処理し、ついで水/エタノール指6 / 50
 (部)混合溶媒に10分間浸漬し、更に温水中で2分
間超音波洗浄することにより不要成分を洗浄除去した。
Subsequently, diacetone acrylamide at the concentration shown in Table 1,
10% in acetone solution containing N-hydroxymethylacrylamide and 0.2% N benzoyl peroxide.
After being immersed for seconds, it was taken out into nitrogen and air-dried for 5 minutes. Subsequently, this porous membrane was heated at 60°C for 60 minutes in a nitrogen atmosphere.
Heat treated for minutes, then water/ethanol 6/50
(Part) Unnecessary components were washed and removed by immersing the sample in a mixed solvent for 10 minutes and then ultrasonically cleaning it in warm water for 2 minutes.

次に熱風乾燥により溶媒を除去し架橋重合体が保持され
た多孔質膜を得た。
Next, the solvent was removed by hot air drying to obtain a porous membrane in which the crosslinked polymer was retained.

このようにして得られた多孔質膜の重合体保持量、破断
伸度、水透過率、透水圧及び加熱収縮率を測定し、第1
表に示した。又、加熱収縮率測定に用いた水蒸気の凝縮
水をUV吸光光度旧で評価したところ溶出成分は検出さ
れたかりた。
The polymer retention amount, breaking elongation, water permeability, water permeability pressure and heat shrinkage rate of the porous membrane thus obtained were measured.
Shown in the table. Furthermore, when the condensed water of the water vapor used to measure the heating shrinkage rate was evaluated using UV absorbance, no eluted components were detected.

実施例6〜8 実施例1と同様の多孔質膜を用い、実施例1〜3と同様
にして耐熱性架橋重合体を保持させた。続いて第1表に
示す濃度の無水マレイン酸、ジビニルベンゼン及びo、
2mt%の過酸化ベンゾイルを溶解したアセトン溶液中
に10秒間浸漬した後、室温下で30分間風乾してアセ
トンを揮発させ、次いで60℃の窒素雰囲気中で60分
間加熱してモノマー類を重合させ架橋重合体な細孔表面
に保持させた多孔質膜を得た。続いてこれらの多孔質膜
を水酸化す) IJウムの濃度が0.1規定のエタノー
ル液中に3時間浸漬し、更に流水中で30分間洗浄した
Examples 6 to 8 Using the same porous membrane as in Example 1, heat-resistant crosslinked polymers were retained in the same manner as in Examples 1 to 3. Subsequently, maleic anhydride, divinylbenzene and o at the concentrations shown in Table 1,
After immersing it in an acetone solution containing 2 mt% benzoyl peroxide for 10 seconds, it was air-dried at room temperature for 30 minutes to volatilize the acetone, and then heated in a nitrogen atmosphere at 60°C for 60 minutes to polymerize the monomers. A porous membrane was obtained in which a crosslinked polymer was retained on the pore surface. Subsequently, these porous membranes were hydroxylated.) They were immersed in an ethanol solution with an IJium concentration of 0.1 N for 3 hours, and then washed in running water for 30 minutes.

このようにして得られた多孔質膜の特性を測定し第1表
に示した。又、加熱収縮率測定に用いた水蒸気の凝縮水
をUV吸光光度計で評価したところ溶出成分は検出され
ながった。
The properties of the porous membrane thus obtained were measured and are shown in Table 1. Further, when the condensed water of the water vapor used for measuring the heat shrinkage rate was evaluated using a UV absorption photometer, no eluted components were detected.

実施例9及び10 多孔質膜として空孔率70%、膜厚55μm、内径、2
70μ簿、破断伸度43%、加熱収縮率45%、透水圧
5. Okg/ari”、アルコール親水化法による水
透過率が4.51 / i −hr−111H/である
ポリエチレン製多孔質中空糸膜を用いた。
Examples 9 and 10 As a porous membrane, the porosity was 70%, the membrane thickness was 55 μm, and the inner diameter was 2
70 μm, breaking elongation 43%, heat shrinkage 45%, water permeability 5. A porous hollow fiber membrane made of polyethylene having a water permeability of 4.51/i-hr-111H/ by an alcohol hydrophilization method was used.

この多孔質膜を連続的に供給しながら第1表に示す濃度
のスチレン、ジビニルベンゼン及び濃度0.2:3(’
M%のビス−(4−1−ブチルシクロヘキシル)バーオ
キシジカーボネー)((11ヌーリー(株)!!!バー
カドックス16)を溶解したアセトン溶液中に12秒間
浸漬した後、31/ minの流量で窒素を流している
85℃の加熱函中を100分間走させて七ツマー類を1
合させ耐熱性架橋重合体を細孔表面に保持させた多孔質
膜を得た。続いてこの多孔質膜を連続的に供給しながら
第1表に示す濃度のジアセトンアクリルアミド、N−ヒ
ドロキシメチルアクリルアミド及び濃度0.2Nt%の
ビス−(4−t −ブチルシクロヘキシル)パーオキシ
カーボネート(化薬ヌーリー(株)製バーカドックス1
6)を溶解したアセトン溶液中に12秒間浸漬した後、
1017 minの流量で窒素を流している函中な1分
間走行させアセトンを風乾し、次いで3 / / m1
nの流量で窒素を流している80℃の加熱函中を2分間
走行させて七ツマー類を重合させた。続いてこの中空糸
膜を水/エタノール=50750部の混合溶媒を入れた
槽中な1分間、次いで60℃の温水をオーバーフローさ
せている水槽中を5分間走行させて洗浄し、更に熱風雰
囲気中で乾燥することによって本発明の耐熱親水化多孔
質膜を得た。
While continuously supplying this porous membrane, styrene and divinylbenzene at the concentrations shown in Table 1 and a concentration of 0.2:3 ('
After immersing for 12 seconds in an acetone solution containing M% bis-(4-1-butylcyclohexyl)beroxydicarbonate ((11 Nouri Co., Ltd.!!! Berkadox 16)), One seven-mer was run for 100 minutes in a heating box at 85°C with nitrogen flowing at a flow rate.
A porous membrane with a heat-resistant crosslinked polymer retained on the pore surface was obtained. Subsequently, while continuously feeding this porous membrane, diacetone acrylamide, N-hydroxymethyl acrylamide at the concentrations shown in Table 1, and bis-(4-t-butylcyclohexyl) peroxycarbonate (at a concentration of 0.2 Nt%) were added. VARCADOX 1 manufactured by Kayaku Nouri Co., Ltd.
6) After being immersed in an acetone solution for 12 seconds,
The acetone was air-dried by running for 1 minute in a box with nitrogen flowing at a flow rate of 1017 min, then 3 / / m1
The heptamers were polymerized by running for 2 minutes in a heated box at 80° C. through which nitrogen was flowing at a flow rate of n. Next, this hollow fiber membrane was washed by running it in a tank containing a mixed solvent of water/ethanol = 50,750 parts for 1 minute, then running it in a water tank with overflowing hot water at 60°C for 5 minutes, and then running it in a hot air atmosphere. The heat-resistant hydrophilized porous membrane of the present invention was obtained by drying the membrane.

このようにして得られた多孔質膜の特性を第1表に示し
た。
The properties of the porous membrane thus obtained are shown in Table 1.

実施例11 実施例10と同様の多孔質膜を用いて実施例10と同様
にしてスチレンとジビニルベンゼンを重合させた。続い
てこの多孔質膜を連続的に供給しながら第1表に示す濃
度のジビニルベンゼン、無水マレイン酸及び濃度0.2
!i%のビス=(4−t−ブチルシクロヘキシル)パー
オキシジカーボネート(化薬ヌーリー(株)製パー力ド
ックス16)を溶解したアセトン溶液中に12秒間浸漬
した後、31/min  の流量で窒素を流し℃いる8
5℃の加熱函中を5分間走行させて七ツマー類を重合さ
せ架橋重合体を細孔表面に保持させた多孔質膜を得た。
Example 11 Styrene and divinylbenzene were polymerized in the same manner as in Example 10 using the same porous membrane as in Example 10. Subsequently, this porous membrane was continuously fed with divinylbenzene at the concentrations shown in Table 1, maleic anhydride, and a concentration of 0.2.
! i% of bis=(4-t-butylcyclohexyl) peroxydicarbonate (Parryoku Dox 16 manufactured by Kayaku Nouri Co., Ltd.) was immersed in an acetone solution for 12 seconds, and then nitrogen was added at a flow rate of 31/min. ℃8
The mixture was run in a heated box at 5° C. for 5 minutes to polymerize the heptamers to obtain a porous membrane in which the crosslinked polymer was retained on the pore surface.

続いてこれらの多孔質膜を水酸化ナトリウムの濃度が0
.5規定のエタノール/水(95/ 5 vo1%)混
合溶液中に5分間浸漬し、更に水中で30分間洗浄する
ことによって本発明の多孔質膜を得た。
These porous membranes were then treated with sodium hydroxide at a concentration of 0.
.. The porous membrane of the present invention was obtained by immersing it in a 5N ethanol/water (95/5 vol. 1%) mixed solution for 5 minutes and washing it in water for 30 minutes.

このようにして得られた多孔質膜の特性を第1表に示し
た。
The properties of the porous membrane thus obtained are shown in Table 1.

実施例12 実施例11において無水マレイン酸の代b’)に第1表
に示す量の7マル酸ジn−ブチルな用(・、それ以外は
実施例11と同様にし″′C第1表の結果を得た。
Example 12 In Example 11, di-n-butyl 7malate was used in the amount shown in Table 1 in place of maleic anhydride (b'), and the rest was the same as in Example 11. I got the result.

比較例1 実施例1と同様にしてスチレンとジビニルベンゼンの架
橋重合体を保持させた多孔質膜を得て特性を評価し第1
表の結果を得た。この膜の透水圧は10 kg/crn
”と非常に太きかった。
Comparative Example 1 A porous membrane holding a crosslinked polymer of styrene and divinylbenzene was obtained in the same manner as in Example 1, and its characteristics were evaluated.
Obtained the results in the table. The permeability pressure of this membrane is 10 kg/crn
”It was very thick.

比較例2 実施例1において耐熱性架橋重合体を保持させる工程を
実施しないで、その他の条件は実施例1と同様にして親
水性架橋重合体を保持させた多孔質膜を得た。この多孔
質膜は透水圧は小さかったが、加熱収縮率が25%と高
かった。
Comparative Example 2 A porous membrane in which a hydrophilic crosslinked polymer was retained was obtained in the same manner as in Example 1 except that the step of retaining the heat resistant crosslinked polymer in Example 1 was not carried out. This porous membrane had a low permeability pressure, but a high heat shrinkage rate of 25%.

〔発明の効果〕〔Effect of the invention〕

本発明の多孔質膜は親水性を有しており未処理のポリエ
チレン又はポリプロピレン多孔質膜と比較すると透水圧
が著しく小さい。又、121℃の水蒸気処理後において
も収縮率が小さ(て形態変化が殆どなく優れた耐熱性を
有している。
The porous membrane of the present invention has hydrophilic properties and has significantly lower water permeability pressure than untreated polyethylene or polypropylene porous membranes. Furthermore, even after steam treatment at 121° C., the shrinkage rate is small (there is almost no change in shape) and it has excellent heat resistance.

本発明の方法によればポリエチレン又はポリプロピレン
多孔質膜に耐熱性と親水性を付与することができる。
According to the method of the present invention, heat resistance and hydrophilicity can be imparted to a polyethylene or polypropylene porous membrane.

本発明の多孔質膜は医療、食品工業、発酵工業等の水蒸
気滅菌処理が必要な膜分離用途への適用が可能であり、
多糖類精製、発電所の復水処理等の高温水処理への適用
が可能である。また細胞培養、ノンプレンクロマトグラ
フィ、タンパク質吸着への適用も可能である。
The porous membrane of the present invention can be applied to membrane separation applications that require steam sterilization, such as in the medical, food, and fermentation industries.
It can be applied to high-temperature water treatment such as polysaccharide purification and condensate treatment at power plants. It can also be applied to cell culture, non-preneant chromatography, and protein adsorption.

Claims (1)

【特許請求の範囲】 1)ポリエチレン又はポリプロピレンからなる多孔質膜
の少なくとも一部の表面上にスチレン、α−メチルスチ
レンからなる一種以上の重合性モノマーとジビニルベン
ゼンとからなる架橋重合体を保持せしめ、更にその上に
親水性モノマーと架橋性モノマーを含むモノマー類から
なる親水性架橋重合体を保持せしめてなる耐熱親水化多
孔質膜。 2)親水性モノマーがジアセトンアクリルアミドである
特許請求の範囲第1項記載の耐熱親水化多孔質膜。 3)親水性モノマーがカルボキシル基を2個有するモノ
マーである特許請求の範囲第1項記載の耐熱親水化多孔
質膜。 4)ポリエチレン又はポリプロピレンからなる多孔質膜
の少なくとも一部の表面上にスチレン、α−メチルスチ
レンからなる一種以上の重合性モノマーとジビニルベン
ゼンを含むモノマー類を保持させた状態で熱重合させ、
次いで親水性モノマー、架橋性モノマーを含むモノマー
類を前記多孔質膜の少なくとも一部の表面上に保持させ
た状態で熱重合させる耐熱親水化多孔質膜の製造方法。
[Scope of Claims] 1) A crosslinked polymer consisting of one or more polymerizable monomers consisting of styrene or α-methylstyrene and divinylbenzene is retained on the surface of at least a portion of a porous membrane consisting of polyethylene or polypropylene. A heat-resistant, hydrophilic porous membrane further comprising a hydrophilic crosslinked polymer made of monomers including a hydrophilic monomer and a crosslinkable monomer. 2) The heat-resistant hydrophilized porous membrane according to claim 1, wherein the hydrophilic monomer is diacetone acrylamide. 3) The heat-resistant hydrophilic porous membrane according to claim 1, wherein the hydrophilic monomer is a monomer having two carboxyl groups. 4) thermally polymerizing one or more polymerizable monomers such as styrene and α-methylstyrene and monomers containing divinylbenzene while retaining them on the surface of at least a portion of a porous membrane made of polyethylene or polypropylene;
A method for producing a heat-resistant hydrophilic porous membrane, which comprises then thermally polymerizing monomers including a hydrophilic monomer and a crosslinking monomer while retaining them on at least a portion of the surface of the porous membrane.
JP63210991A 1988-08-25 1988-08-25 Heat-resistant hydrophilicity imparted porous membrane and preparation thereof Pending JPH0259030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63210991A JPH0259030A (en) 1988-08-25 1988-08-25 Heat-resistant hydrophilicity imparted porous membrane and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63210991A JPH0259030A (en) 1988-08-25 1988-08-25 Heat-resistant hydrophilicity imparted porous membrane and preparation thereof

Publications (1)

Publication Number Publication Date
JPH0259030A true JPH0259030A (en) 1990-02-28

Family

ID=16598514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63210991A Pending JPH0259030A (en) 1988-08-25 1988-08-25 Heat-resistant hydrophilicity imparted porous membrane and preparation thereof

Country Status (1)

Country Link
JP (1) JPH0259030A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642097A (en) * 1992-06-05 1994-02-15 Misawa Homes Co Ltd Curved surface roof structure and curved surface roof unit
EP0566754B1 (en) * 1992-02-07 1995-09-20 Mitsubishi Rayon Co., Ltd Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
JP2003532746A (en) * 1999-02-25 2003-11-05 ポール・コーポレーション Film with negative charge
JP2007289927A (en) * 2006-03-29 2007-11-08 Toray Ind Inc Composite separation membrane and method for manufacturing the same
JP2009034999A (en) * 2001-04-27 2009-02-19 Millipore Corp Cross-linked multipolymer coating
CN111393709A (en) * 2020-03-11 2020-07-10 宁波水艺膜科技发展有限公司 Preparation method of long-acting hydrophilic polytetrafluoroethylene microporous membrane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0566754B1 (en) * 1992-02-07 1995-09-20 Mitsubishi Rayon Co., Ltd Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
JPH0642097A (en) * 1992-06-05 1994-02-15 Misawa Homes Co Ltd Curved surface roof structure and curved surface roof unit
JP2003532746A (en) * 1999-02-25 2003-11-05 ポール・コーポレーション Film with negative charge
JP2009034999A (en) * 2001-04-27 2009-02-19 Millipore Corp Cross-linked multipolymer coating
JP2007289927A (en) * 2006-03-29 2007-11-08 Toray Ind Inc Composite separation membrane and method for manufacturing the same
CN111393709A (en) * 2020-03-11 2020-07-10 宁波水艺膜科技发展有限公司 Preparation method of long-acting hydrophilic polytetrafluoroethylene microporous membrane
CN111393709B (en) * 2020-03-11 2022-05-20 宁波水艺膜科技发展有限公司 Preparation method of long-acting hydrophilic polytetrafluoroethylene microporous membrane

Similar Documents

Publication Publication Date Title
US5232642A (en) Process of making porous polypropylene hollow fiber membrane of large pore diameter
US5294338A (en) Porous polyethylene hollow fiber membrane of large pore diameter, production process thereof, and hydrophilized porous polyethylene hollow fiber membranes
US5209849A (en) Hydrophilic microporous polyolefin membrane
CA1290630C (en) Hydrophilized porous membrane and production process thereof
KR101580702B1 (en) Composite separation membrane
JP3168036B2 (en) Large-pore porous polyethylene hollow fiber membrane, method for producing the same, and hydrophilic porous polyethylene hollow fiber membrane
JPH0259030A (en) Heat-resistant hydrophilicity imparted porous membrane and preparation thereof
US5330830A (en) Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
US4876289A (en) Hydrophilized porous membrane and production process thereof
JPS63190602A (en) Hydrophilic porous membrane and its manufacture
JP3130996B2 (en) Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane
JPH0768141A (en) Hollow fiber membrane and humidifying method using the same membrane
JPH07304888A (en) Method for making porous material made of fluororesin hydrophilic
WO1989004198A1 (en) Porous membrane and process for its production
JPS62163703A (en) Hydrophilic porous membrane and its production
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JPH04358529A (en) Heat-resistant hydrophilic porous membrane and preparation thereof
JPH03193125A (en) Heat-resistant porous membrane and manufacture thereof
JP2004154613A (en) Manufacturing method of functional porous membrane
JPS6086132A (en) Hydrophilic treatment of porous membrane
JPS62253638A (en) Modification of polyolefin based porous substrate
JPH022861A (en) Porous membrane and production thereof
JPH0365225A (en) Hydrophilic, porous membrane and its manufacturing method
JPH0369673A (en) Heat-resistant hydrophilic porous polyolefin hollow fiber
JPS63311961A (en) Anticoagulant porous membrane