JPH0369673A - Heat-resistant hydrophilic porous polyolefin hollow fiber - Google Patents

Heat-resistant hydrophilic porous polyolefin hollow fiber

Info

Publication number
JPH0369673A
JPH0369673A JP20448089A JP20448089A JPH0369673A JP H0369673 A JPH0369673 A JP H0369673A JP 20448089 A JP20448089 A JP 20448089A JP 20448089 A JP20448089 A JP 20448089A JP H0369673 A JPH0369673 A JP H0369673A
Authority
JP
Japan
Prior art keywords
hollow fiber
porous polyolefin
heat
weight
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20448089A
Other languages
Japanese (ja)
Inventor
Kunihiro Aoki
青木 邦廣
Kazutami Mitani
和民 三谷
Shiruyoshi Matsumoto
松本 鶴義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP20448089A priority Critical patent/JPH0369673A/en
Publication of JPH0369673A publication Critical patent/JPH0369673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To provide the subject hollow fiber having excellent heat resistance and hydrophilicity by adhering a specific polymer coating film to the surface of a porous polyethylene hollow fiber wherein fine pores formed among many fibrils are communicated through the inner and outer walls of the hollow fiber. CONSTITUTION:A porous polyolefin hollow fiber wherein fine pores formed among many fibrils arranged in the longitudinal direction of the polyolefin hollow fiber are communicated through the inner and outer walls of the hollow fiber are immersed in a treating solution containing 95-5wt.% of a compound of the formula (n is 10-100; R' is H or CH3) and 5-95wt.% of a monomer having at least two double bonds copolymerizable with the compound of the formula to adhere the coating film of the polymer of the monomers to the surface of the hollow fiber, thereby providing a porous polyolefin hollow fiber having excellent heat resistance and hydrophilicity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性及び親水性に優れた多孔質ポリオレフィ
ン中空糸に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a porous polyolefin hollow fiber having excellent heat resistance and hydrophilicity.

〔従来の技術〕[Conventional technology]

従来より1医療用、医薬品用、食品工業用、精密工業用
、理化学実験用々どの分野に訃いて用いられる純水製造
装置として、コロイド状物質や細菌類を含有しない純水
製造装置、更には発熱性物質を含有しない純水製造装置
など多種多様の装置が提案されている。例えば、医療用
分野にかける無菌水製造装置としては、蒸留法による装
置、煮沸滅菌装置、紫外線殺菌装置aどかあるが、エネ
μギー費や設備費が高く、滅菌が不充分なものがあシ、
またコロイド状物質や細菌類は除去できるが、発熱性物
質(パイロジエン)は除去できないなどの欠点を有する
装置もある。
Conventionally, as a pure water production device used in various fields such as medical, pharmaceutical, food industry, precision industry, and physical and chemical experiments, we have developed a pure water production device that does not contain colloidal substances or bacteria, and also A wide variety of devices have been proposed, including devices for producing pure water that do not contain pyrogens. For example, sterile water production equipment used in the medical field includes equipment using distillation methods, boiling sterilizers, and ultraviolet sterilizers, but the energy and equipment costs are high, and sterilization is insufficient. ,
Additionally, some devices have drawbacks, such as being able to remove colloidal substances and bacteria, but not pyrogenic substances (pyrogienes).

この様な現状から、従来装置の欠点を解決するため、発
熱性物質を除去できる孔径が0.01〜1μmの微小空
孔が中空糸内壁面よシ外壁面へ連通しているフイプIJ
 /7を有する多孔質ポリオレフィン中空糸膜が特開昭
57−42919号公報で提案されている。
Given this current situation, in order to solve the drawbacks of conventional devices, we developed a fiber IJ in which micropores with a pore diameter of 0.01 to 1 μm that can remove exothermic substances communicate from the inner wall surface of the hollow fiber to the outer wall surface.
A porous polyolefin hollow fiber membrane having a diameter of /7 has been proposed in JP-A-57-42919.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように多孔質ポリオレフィン中空糸を用いた膜モ
ジュールは種々の利点を有しているが、疎水性である為
アμコール等の親水化剤を用いた親水化処理をしなけれ
ば充分なF水性能が得られず、また水を長時間濾過した
後、該モジュールを洗浄するために水を抜き取シ、多孔
質ポリオレフィン中空糸表面を空気と接触させて乾燥す
ると、p水性が著しく低下するという問題がある。さら
に熱水を濾過した場合は糸が著しく収縮したシ、軟化に
よシ糸のつぶれが生じ、炉水性の低下が起こる。
As mentioned above, membrane modules using porous polyolefin hollow fibers have various advantages, but because they are hydrophobic, they cannot be fully hydrophilized unless treated with a hydrophilic agent such as Aμcol. F water performance is not obtained, and after water has been filtered for a long time, the water is removed to clean the module, and when the surface of the porous polyolefin hollow fibers is dried by contacting with air, the P water property decreases significantly. There is a problem with doing so. Furthermore, when hot water is filtered, the threads shrink significantly and become crushed due to softening, resulting in a decrease in reactor water properties.

本発明の目的は耐熱性及び親水性に優れた多孔質ポリオ
レフィン中空糸を提供することにある。
An object of the present invention is to provide a porous polyolefin hollow fiber having excellent heat resistance and hydrophilicity.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の要旨は、中空糸のほぼ長手方向に配列した多数
のフィブリル相互間に形成きれている微小空孔が中空糸
の内壁面と外壁面との間を連通している多孔質ポリオレ
フィン中空糸であって、該フイプVtVの表面に95〜
5重量%の(A)式 (但し、nは10〜100、Rは炭素数12以上のアル
キル基、アクリロイル基もしくはメタクリロイμ基であ
りs R′は水素又はメチμ基である)。
The gist of the present invention is to provide a porous polyolefin hollow fiber in which micropores formed between a large number of fibrils arranged substantially in the longitudinal direction of the hollow fiber communicate between the inner wall surface and the outer wall surface of the hollow fiber. 95 to 95 on the surface of the fip VtV.
5% by weight of the formula (A) (where n is 10 to 100, R is an alkyl group having 12 or more carbon atoms, an acryloyl group or a methacryloyl μ group, and s R' is hydrogen or a methacryloyl μ group).

で示される化合物と5〜95重量%の、前記化合物と共
重合可能な二重結合を少なくとも2個以上有する単量体
を5含む少々くとも2種類以上の化合物の混合物が熱重
合固着されてなる耐熱親水化多孔質ポリオレフィン中空
糸にある。
A mixture of at least two or more compounds containing the compound represented by 5 to 95% by weight of a monomer having at least two or more double bonds copolymerizable with the compound is fixed by thermal polymerization. It is a heat-resistant, hydrophilic porous polyolefin hollow fiber.

本発明に用いられる微小空孔が中空糸内壁面よう外壁面
へ連通している多孔質ポリオレフィン中空糸は特開昭5
7−42919号公報等で示した製法によシ得られる。
The porous polyolefin hollow fiber used in the present invention, in which micropores are connected to the inner and outer wall surfaces of the hollow fiber, was disclosed in Japanese Patent Application Laid-open No. 5
It can be obtained by the manufacturing method disclosed in Japanese Patent No. 7-42919.

(A)式で示される化合物の量が95重t%を超えると
、皮膜の形成性が悪くセリ、物理的耐久性も低く慶る。
If the amount of the compound represented by formula (A) exceeds 95% by weight, the film formation properties will be poor, and the physical durability will be low.

また、5重量%未満では、親水性力(不十分となり、水
フラックスが低くなる。
Moreover, if it is less than 5% by weight, the hydrophilic power will be insufficient and the water flux will be low.

又、(A)式の化合物にかいてポリエチレングリコ−〃
鎖の重合度nは10〜100の範囲である。nが10未
満では親水性能が充分でなく、100以上では粘度が高
くなり、多孔質層の微小空孔がふさがって、フラックス
の低下を招くので好ましくない。また、Rがアルキル基
の場合その炭素数はポリオレフィンとの親和性を得るた
めに12以上であるのがよい。上記化合物は単独で用い
ても良好な親水性能を発現するが、95〜5重量%の添
加量として被膜形成性を向上させる第2戒分が添加され
る。
Also, in the compound of formula (A), polyethylene glycol
The degree of polymerization n of the chains ranges from 10 to 100. If n is less than 10, the hydrophilic performance will not be sufficient, and if n is more than 100, the viscosity will increase, and the micropores in the porous layer will be blocked, resulting in a decrease in flux, which is not preferable. Further, when R is an alkyl group, the number of carbon atoms is preferably 12 or more in order to obtain affinity with polyolefin. Although the above compound exhibits good hydrophilic properties even when used alone, the second command is added in an amount of 95 to 5% by weight to improve film forming properties.

第2戒分としては上記の(A)式で示される第1戒分と
共重合可能な二重結合を少なくとも2個以上有する単量
体が用いられ、例えばジメタクリμ酸エチジングリコー
p1メタクリル酸アリル、2−メタクリロキシエチルマ
レイン酸、ジメタクリN酸−1,3−ブチレングリコ−
μ、トリメタクリル酸トリメチロールプロパン、テトフ
メタクリμ酸ペンタエリスリトー〃等が挙げられる。こ
の第2戒分を5〜95重量%添加することで、被膜形成
能が著しく向上し、親水性能を損うことなしに均一な重
合体被膜を得ることができる。
As the second component, a monomer having at least two or more double bonds copolymerizable with the first component represented by the above formula (A) is used, such as dimethacrylic acid ethidine glycol p1 methacrylic acid Allyl, 2-methacryloxyethylmaleic acid, dimethacrylic acid-1,3-butylene glyco-
μ, trimethylolpropane trimethacrylate, pentaerythritome tetofmethacrylate μ, and the like. By adding 5 to 95% by weight of this second component, the film forming ability is significantly improved, and a uniform polymer film can be obtained without impairing the hydrophilic performance.

多孔質ポリオレフィン中空糸のフィブリ〃表面に上記の
化合物を重合固着させる方法としては、メタノ−p等の
ポリオレフィンに対して濡れ易い溶媒に上記の少なくと
も2種類以上の化合物を溶解した溶液中へ、多孔質ポリ
オレフィン中空糸を浸漬した後、風乾等によう溶媒を除
去して重合を行なう。重合手段としては基材となるポリ
オレフィン中空糸の特徴である大きな破断伸度を損なわ
ない為には、熱による重合が好ましい。
As a method for polymerizing and fixing the above compounds on the fibril surface of porous polyolefin hollow fibers, the above compounds are dissolved in a solution of at least two or more of the above compounds in a solvent that easily wets polyolefins such as methanol. After soaking the hollow fibers of a polyolefin, the solvent is removed by air drying or the like to carry out polymerization. As the polymerization method, thermal polymerization is preferred in order not to impair the high elongation at break, which is a characteristic of the polyolefin hollow fibers serving as the base material.

重合開始剤としてはラジカル重合開始剤として知られて
いる種Aの過酸化物、アゾ系化合物、レドックス系開始
剤を用いることができる。その例として、2.2′−ア
ゾビスインブチロニトリμ、2.21−アゾビスシクロ
プロビルプロビオニトリル、2.2′−アゾビス−2,
4−ジメチμバレロニトリル、2.2′−アゾビス−2
,S3−トリメチルブチロニトリル等のアゾ系化合物、
アセチルパーオキサイド、プロピオニルパーオキサイド
、ブチリμパーオキサイド、イソブチリルパーオキサイ
ド、サクシニμパーオ警サイド、ペンシイ〃パーオキサ
イド、ベンシイμイソブチリμパーオキサイド、β−ア
リロキシプロピオニμパーオキサイド、ヘキサノイ〃パ
ーオキサイド、5−ブロモベンゾイルパーオキサイド等
の過酸化物、過硫酸カリウム、過硫酸アンモニウム等の
過硫酸塩等を挙げることが出来る。
As the polymerization initiator, a type A peroxide, an azo compound, or a redox initiator known as a radical polymerization initiator can be used. Examples include 2,2'-azobisinbutyronitrile, 2,21-azobiscycloprobilprobionitrile, 2,2'-azobis-2,
4-dimethymuvaleronitrile, 2,2'-azobis-2
, azo compounds such as S3-trimethylbutyronitrile,
Acetyl peroxide, propionyl peroxide, butyryl peroxide, isobutyryl peroxide, succini μ peroxide, pencil peroxide, bency μ isobutyl peroxide, β-allyloxypropionyl peroxide, hexanoyl peroxide , peroxides such as 5-bromobenzoyl peroxide, and persulfates such as potassium persulfate and ammonium persulfate.

又、重合開始剤は、モノマー類100重量部に対して住
001〜100重量部程度であればよく、(LO1〜3
0重量部程度であることがよう好ましい。
Further, the polymerization initiator may be about 001 to 100 parts by weight based on 100 parts by weight of the monomers (LO1 to 3).
It is preferable that the amount is about 0 parts by weight.

重合温度は前記重合触媒の分解温度以上であシ、またポ
リオレフィン多孔質膜の膜構造を変化させることなくか
つ膜基質を損傷しない程度以下の温度とすることが望!
シ<、通常は30〜100℃程度の温度を採用すること
ができる。
The polymerization temperature should be higher than the decomposition temperature of the polymerization catalyst, and preferably lower than the temperature that does not change the membrane structure of the porous polyolefin membrane and damage the membrane substrate!
Usually, a temperature of about 30 to 100°C can be employed.

また加熱時間は重合触媒の種類と加熱温度に依存するが
通常は1分間〜5時間程度よシ好渣しくは15分間〜5
時間程度である。
The heating time depends on the type of polymerization catalyst and the heating temperature, but is usually about 1 minute to 5 hours, preferably 15 minutes to 5 hours.
It takes about an hour.

上記の処理を行なうことで多孔質ポリオレフィン中空糸
のフィブリN表面へ良好□親水性能を付与することが可
能となる。また、固着された重合体被膜は、高度に架橋
された耐熱性を有する被膜であり1中空糸内部にも同時
に架橋構造が導入されるため、熱水を濾過した場合の軟
化による糸のつぶれや熱収縮を抑制することが可能とな
る。
By carrying out the above treatment, it becomes possible to impart good hydrophilic properties to the fibril N surface of the porous polyolefin hollow fiber. In addition, the fixed polymer coating is a highly crosslinked and heat resistant coating, and a crosslinked structure is also introduced inside the hollow fibers, so the fibers will not collapse due to softening when hot water is filtered. It becomes possible to suppress thermal contraction.

〔実施例〕〔Example〕

以下実施例により本発明の詳細な説明する。 The present invention will be explained in detail below with reference to Examples.

実施例1 破断伸度が60%の多孔質ポリエチレン中空糸(三菱レ
イヨン株式会社製EHF )を、アクリル酸アルコキシ
ポリエチレングリコ−p化合物(A式にかいて、n=3
0、只の炭素数12)5 重量部、シアクリル酸テトフ
エチレジンリコ−/L’5重量部及びペンシイμパーオ
キサイド住05重量部をメタノ−1v90重量部で溶解
した20°Cの溶液中に30秒間浸漬した後、10分間
風乾してメタノ−μを除去した。
Example 1 A porous polyethylene hollow fiber (EHF manufactured by Mitsubishi Rayon Co., Ltd.) with a breaking elongation of 60% was mixed with an acrylic acid alkoxypolyethylene glyco-p compound (n = 3 in formula A).
0, only carbon number 12) 5 parts by weight, cyacrylic acid tetophethyl resin lyco-/L' 5 parts by weight and Pencil μ peroxide 05 parts by weight were dissolved in 1v 90 parts by weight of methanol at 20 °C. After immersing for 30 seconds, the methanol-μ was removed by air drying for 10 minutes.

引き続き中空糸を密閉容器に移し空気を窒素に置換し7
0°Cに昇温し2時間その温度に保持することによう重
合反応を行ない多孔質ポリエチレン中空糸の積層フィブ
リ〃構造表面へ重合体被膜を固着した。
Next, transfer the hollow fiber to a sealed container and replace the air with nitrogen.7
The temperature was raised to 0°C and maintained at that temperature for 2 hours to carry out a polymerization reaction, thereby fixing a polymer film to the surface of the laminated fibrillar structure of porous polyethylene hollow fibers.

この様にして製造された耐熱親水化多孔質ポリエチレン
中空糸膜の破断伸度は50%であった。
The elongation at break of the heat-resistant hydrophilic porous polyethylene hollow fiber membrane produced in this manner was 50%.

次に、上記の耐熱親水化多孔質ポリエチレン中空糸10
0本をU字型に束ね、中空糸の開口部分を樹脂で固め、
樹脂包埋部の長さ45I、中空糸有効長10αの膜モジ
ュールを製作した。
Next, the above heat-resistant and hydrophilized porous polyethylene hollow fiber 10
Bundle the fibers into a U-shape, harden the opening of the hollow fibers with resin,
A membrane module with a resin-embedded part length of 45I and a hollow fiber effective length of 10α was manufactured.

参考例として上記の耐熱親水化処理していない多孔質ポ
リエチレン中空糸を用い、前記と同じ方法で通常の膜モ
ジュールを製作した。
As a reference example, a normal membrane module was manufactured in the same manner as above using the porous polyethylene hollow fibers that had not been subjected to the heat-resistant hydrophilic treatment.

上記の耐熱親水化多孔質ポリエチレン中空糸使用モジュ
ー〃の透水圧及び透水量を測定した結果、(L O5k
g五/ls”の低い圧力で水の濾過が開始され、水圧1
に9#151”での透水量は13(n15I!l1m1
nであった。
As a result of measuring the water permeability pressure and water permeability of the above heat-resistant hydrophilized porous polyethylene hollow fiber module, (L O5k
Water filtration is started at a low pressure of 5 g/ls”, and the water pressure is 1
The water permeability at 9 #151” is 13 (n15I!l1m1
It was n.

これに対し、参考例として作製した耐熱親水化処理して
いない多孔質ポリエチレン中空糸使用のモジュールは、
透水圧が著しく大きく、圧力3kll多/ls”を加え
ても水は全く濾過されなかった。更に、上記の耐熱親水
化多孔質ポリエチレン中空糸使用のモジュールに透水圧
1kl!−7国2の圧力で80°Cの熱水を1時間濾過
した後、熱水を抜き取シ、真空乾燥機にて60°Cで2
4hr乾燥した後、再び透水圧及び透水量を測定したと
ころ、熱水を濾過し乾燥したにもかかわらず、性能低下
は認められなかった。
On the other hand, a module using porous polyethylene hollow fibers that was not heat-resistant and hydrophilized was prepared as a reference example.
The water permeability pressure was extremely high, and no water was filtered at all even when a pressure of 3 kll/ls was applied.Furthermore, the water permeability pressure of the above module using heat-resistant, hydrophilized porous polyethylene hollow fibers was 1 kl! After filtering hot water at 80°C for 1 hour, the hot water was extracted and dried at 60°C in a vacuum dryer for 2 hours.
After drying for 4 hours, the water permeation pressure and water permeation amount were measured again, and no deterioration in performance was observed even though the hot water was filtered and dried.

比較例1 実施例1と同様にして多孔質ポリエチレン中空糸を、ア
クリル酸アルコキシポリエチレングリコ−〃化合物(A
式にかいて、n=30、Rの炭素数12)5重量部及び
ジアクリル酸テトフエチジングリスーfi15重量部を
メタノ−IL/90重量部で溶解した20℃の溶液中に
、30秒間浸漬した後、10分間風乾してメタノールを
除去した。
Comparative Example 1 Porous polyethylene hollow fibers were prepared in the same manner as in Example 1 using an acrylic acid alkoxypolyethylene glyco compound (A
In the formula, n = 30, carbon number of R is 12) 5 parts by weight and 15 parts by weight of diacrylic acid tetophethidine grease were dissolved in 90 parts by weight of methano-IL/20°C. It was immersed for 30 seconds in a solution at 20 ° C. Thereafter, methanol was removed by air drying for 10 minutes.

引続き、電子線照射装置(日新ハイポμテージ、キュア
トロンEBC−2QQ−20−15)を用いて、20 
Mradの線量にて電子線を照射し、多孔質ポリエチレ
ン中空糸の積層構造表面へ重合体被膜を固着した。
Subsequently, using an electron beam irradiation device (Nissin Hypotage, Curetron EBC-2QQ-20-15),
An electron beam was irradiated at a dose of Mrad to fix the polymer film to the surface of the laminated structure of porous polyethylene hollow fibers.

この様にして作成された中空糸の破断伸度は10%であ
った。
The elongation at break of the hollow fiber thus produced was 10%.

実施例2 実施例1と同様の多孔質ポリエチレン中空糸をポリエチ
レングリコールジアクリレー)(A式においてn=30
、Rはアクリロイμ基)5重量部及びトリメタクリル酸
トリメチローμプロパン5重量部及び2.2′−アゾビ
スインブチロ二) IJ /L’ 0.1重量部をアセ
トン90重量部で溶解した20゛Cの溶液中に10秒間
浸漬した後、10分間風乾してアセトンを除去した。引
き続き窒素中90°Cにおいて5分間重合することによ
シ耐熱親水化ポリエチレン多孔質膜を得た。
Example 2 The same porous polyethylene hollow fiber as in Example 1 was made of polyethylene glycol diacrylate (n = 30 in formula A).
, R is an acryloyl μ group), 5 parts by weight of trimethylo μpropane trimethacrylate, and 0.1 part by weight of 2.2'-azobisinbutyrodi) IJ/L' were dissolved in 90 parts by weight of acetone. The acetone was removed by immersing it in a solution at 20°C for 10 seconds and then air drying it for 10 minutes. Subsequently, polymerization was carried out in nitrogen at 90° C. for 5 minutes to obtain a heat-resistant, hydrophilized polyethylene porous membrane.

このIw熱熱水水化中空糸破断伸度は55%であった。The elongation at break of this Iw hot water hydrated hollow fiber was 55%.

次に、上記耐熱親水化ポリエチレン中空糸を用いて実施
例1と同様の膜モジューμを製作し透水圧及び透水量を
測定したところ11 kg/z”の低い圧力で水の、透
過が開始され、水圧1ゆ/α2での透水量は12 CC
/ cm”・minであった。
Next, a membrane module μ similar to that in Example 1 was manufactured using the heat-resistant hydrophilized polyethylene hollow fibers, and the water permeation pressure and water permeation amount were measured, and water permeation started at a low pressure of 11 kg/z''. , water permeability at water pressure 1 Yu/α2 is 12 CC
/cm”・min.

また80℃の熱水濾過及び乾燥に対しても性能低下は認
められなかった。
Further, no deterioration in performance was observed even after hot water filtration and drying at 80°C.

実施例3 前記多孔質ポリエチレン中空糸E)(Fをポリエチレン
グリコールジメタクリレート(A式にかいてn=25.
Rはメタクリロイμ基)10時の糸のつぶれや収縮が少
ないものである。
Example 3 The porous polyethylene hollow fiber E) (F is polyethylene glycol dimethacrylate (n = 25.
(R is a methacryloyl μ group) 10: The yarn is less likely to collapse or shrink.

85重量部で溶解した20℃の溶液中に5秒間浸漬した
後5分間風乾してエタノ−〃を除去した。引き続き窒素
中80℃で5分間重合することによシ耐熱親水化ポリエ
チレン多孔質膜を得た。この耐熱親水化中空糸の破断伸
度は55%であった。
The ethanol was removed by immersing it in a solution of 85 parts by weight at 20° C. for 5 seconds and air drying for 5 minutes. Subsequently, polymerization was carried out in nitrogen at 80° C. for 5 minutes to obtain a heat-resistant hydrophilized polyethylene porous membrane. The elongation at break of this heat-resistant, hydrophilized hollow fiber was 55%.

次に、上記耐熱親水化ポリエチレン中空糸を用いて実施
例1と同様のモジュールを製作し透水圧及び透水量を測
定したところl 1 kg / am ”の低い圧力で
水の透過され水圧1・−/ m ”での透水量はI S
 a、 / am”・winであった。
Next, a module similar to that in Example 1 was fabricated using the heat-resistant hydrophilized polyethylene hollow fibers, and the water permeation pressure and water permeation amount were measured. Water permeated at a low pressure of 1 kg/am", and the water pressure was 1.- / m” water permeability is IS
It was a win.

また80℃の熱水濾過及び乾燥に対しても性能低下は認
められなかった。
Further, no deterioration in performance was observed even after hot water filtration and drying at 80°C.

〔発明の効果〕〔Effect of the invention〕

Claims (1)

【特許請求の範囲】 中空糸のほぼ長手方向に配列した多数のフイプリル相互
間に形成されている微小空孔が中空糸の内壁面と外壁面
との間を連通している多孔質ポリオレフィン中空糸であ
つて、フイプリルの表面に95〜5重量%の(A)式で
示される化合物と5〜95重量%の(A)式の化合物と
共重合可能な二重結合を少なくとも2個以上有する単量
体とを含む少なくとも2種以上の化合物の混合物が熱重
合固着されてなる耐熱親水化多孔質ポリオレフィン中空
糸。 ▲数式、化学式、表等があります▼・・・・・(A) (但し、nは10〜100、Rは炭素数12以上のアル
キル基、アクリロイル基もしくはメタクリロイル基であ
り、R′は水素又はメチル基である)
[Claims] A porous polyolefin hollow fiber in which micropores formed between a large number of fibrils arranged substantially in the longitudinal direction of the hollow fiber communicate between the inner wall surface and the outer wall surface of the hollow fiber. A monomer having at least two or more double bonds copolymerizable with 95 to 5% by weight of the compound represented by formula (A) and 5 to 95% by weight of the compound of formula (A) on the surface of fipril. 1. A heat-resistant, hydrophilic porous polyolefin hollow fiber comprising a mixture of at least two or more kinds of compounds, including a polymer and a polymer, which are thermally polymerized and fixed. ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・(A) (However, n is 10 to 100, R is an alkyl group having 12 or more carbon atoms, an acryloyl group, or a methacryloyl group, and R' is hydrogen or methyl group)
JP20448089A 1989-08-07 1989-08-07 Heat-resistant hydrophilic porous polyolefin hollow fiber Pending JPH0369673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20448089A JPH0369673A (en) 1989-08-07 1989-08-07 Heat-resistant hydrophilic porous polyolefin hollow fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20448089A JPH0369673A (en) 1989-08-07 1989-08-07 Heat-resistant hydrophilic porous polyolefin hollow fiber

Publications (1)

Publication Number Publication Date
JPH0369673A true JPH0369673A (en) 1991-03-26

Family

ID=16491225

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20448089A Pending JPH0369673A (en) 1989-08-07 1989-08-07 Heat-resistant hydrophilic porous polyolefin hollow fiber

Country Status (1)

Country Link
JP (1) JPH0369673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330830A (en) * 1992-02-07 1994-07-19 Mitsubishi Rayon Co., Ltd. Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
JP2008296928A (en) * 2007-05-29 2008-12-11 Echigo Seika Co Ltd Round rice cake for decoration
JPWO2021161800A1 (en) * 2020-02-14 2021-08-19

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5330830A (en) * 1992-02-07 1994-07-19 Mitsubishi Rayon Co., Ltd. Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
EP0566754B1 (en) * 1992-02-07 1995-09-20 Mitsubishi Rayon Co., Ltd Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
JP2008296928A (en) * 2007-05-29 2008-12-11 Echigo Seika Co Ltd Round rice cake for decoration
JPWO2021161800A1 (en) * 2020-02-14 2021-08-19
WO2021161800A1 (en) * 2020-02-14 2021-08-19 東洋濾紙株式会社 Hydrophilization agent, method for modifying hydrophobic porous film, and hydrophilic porous film

Similar Documents

Publication Publication Date Title
EP0498414B1 (en) Porous hollow fiber membrane of polypropylene and production thereof
EP0186758B1 (en) Porous membrane having hydrophilic surface and process of its manufacture
EP0772488B1 (en) Porous composite membrane and process
US4774132A (en) Polyvinylidene difluoride structure
EP0561277A1 (en) Hydrophobic polymeric membrane composites
US4678813A (en) Hydrophilized porous polyolefin membrane and production process thereof
US5814372A (en) Process for forming porous composite membrane
JPH0556181B2 (en)
DE10159191B4 (en) Modified hollow fiber membrane materials and methods for their modification
JPH0369673A (en) Heat-resistant hydrophilic porous polyolefin hollow fiber
US5330830A (en) Heat-resisting porous membrane, hydrophilized heat-resisting porous membrane and production processes thereof
JPS627401A (en) Heat resistant hydrophilic porous polyolefin hollow yarn
JPS6214903A (en) Process of turning hydrophobic microporous filter membrane hydrophilic
JP3130996B2 (en) Large pore porous polypropylene hollow fiber membrane, method for producing the same, and hydrophilized porous polypropylene hollow fiber membrane
JPH0259030A (en) Heat-resistant hydrophilicity imparted porous membrane and preparation thereof
JPS61125409A (en) Method for making porous polyolefin hollow yarn hydrophilic
KR101072919B1 (en) Super Absorbent Resin Using PVA films and Production Method thereof
JPS5962351A (en) Anion exchanger and its production
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JPS6214904A (en) Process of turning surface of hydrophobic microporous filter membrane hydrophilic
JPS6233878A (en) Heat resistant porous polyolefin hollow yarn
JPS62163703A (en) Hydrophilic porous membrane and its production
JPH03193125A (en) Heat-resistant porous membrane and manufacture thereof
JP2798267B2 (en) Gamma-ray sterilizable hydrophilized porous material
JP2004154613A (en) Manufacturing method of functional porous membrane