JPS627401A - Heat resistant hydrophilic porous polyolefin hollow yarn - Google Patents

Heat resistant hydrophilic porous polyolefin hollow yarn

Info

Publication number
JPS627401A
JPS627401A JP14453985A JP14453985A JPS627401A JP S627401 A JPS627401 A JP S627401A JP 14453985 A JP14453985 A JP 14453985A JP 14453985 A JP14453985 A JP 14453985A JP S627401 A JPS627401 A JP S627401A
Authority
JP
Japan
Prior art keywords
fibril
hollow yarn
hollow fiber
porous polyolefin
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14453985A
Other languages
Japanese (ja)
Inventor
Shoichi Nagai
永井 昭一
Saburo Hiraoka
三郎 平岡
Kunio Misoo
久仁夫 三十尾
Yoshihiro Kakumoto
角元 義裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP14453985A priority Critical patent/JPS627401A/en
Publication of JPS627401A publication Critical patent/JPS627401A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtains a heat resistance hydrophilic porous polyolefin hollow yarn, by polymerizing an alkoxy(meth)acrylate polyethylene glycol compound and a compound containing a monomer copolymerizable therewith on the surface of a fibril to fix the formed copolymer to said fibril. CONSTITUTION:A porous polyethylene hollow yarn is immersed in a solutions prepared by dissolving a first component represented by formula A (wherein n is 10-100, R is a 12C or more alkyl group and R' is hydrogen or a methyl group) being an alkoxy acrylate polyethylene glycol and a second component being a monomer having at least two double bonds copolymerizable with the first component, for example, diacrylic acid tetraethylene glycol in a solvent and dried in air to remove the solvent and subsequently irradiated with electron beam to perform radiation polymerization. By this method, the polymer film is fixed to the surface of the fibril of the hollow yarn and a crosslinked structure is introduced between molecular chains of polyethylene. As a result, good hydrophilic capacity can be imparted to the surface of the fibril of the hollow yarn and the collapse or heat shrinkage of the yarn due to softening when hot water is filtered can be suppressed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は耐熱性及び親水性に優れた多孔質ポリオレフィ
ン中空糸に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a porous polyolefin hollow fiber having excellent heat resistance and hydrophilicity.

〔従来の技術〕[Conventional technology]

従来より、医療用、医薬品用、食品工業用、精密工業用
、理化学実験用などの分野において用いられる純水製造
装置として、多種多様の装置が提案されている。即ち、
コロイド状物質や細菌類を含有しない純水製造装置、更
には発熱性物質を含有しない純水製造装置などである。
Conventionally, a wide variety of devices have been proposed as pure water production devices used in fields such as medical, pharmaceutical, food industry, precision industry, and physical and chemical experiments. That is,
These include pure water production equipment that does not contain colloidal substances or bacteria, and furthermore, pure water production equipment that does not contain pyrogenic substances.

例えば、医療用分野における無菌水製造装置としては、
蒸留法による装置、煮沸滅菌装置、紫外線殺菌装置など
があるが、しかしエネルギー費や設備費が高く、滅菌が
不充分なものがあり、またコロイド状物質や細菌類は除
去できるが、発熱性物質(パイロジエン)は除去できな
いなどの欠点を有する装置もある。
For example, as a sterile water production device in the medical field,
There are devices that use distillation methods, boiling sterilizers, and ultraviolet sterilizers, but they require high energy and equipment costs, and some sterilize them insufficiently.Also, although they can remove colloidal substances and bacteria, they cannot remove pyrogenic substances. Some devices have drawbacks such as the inability to remove (pyrogene).

このような現状から、本出願人は、従来装置の欠点を解
決するため、発熱性物質等を除去できる、孔径が0.0
1〜1μの微小空孔が、中空糸内壁面より外壁面へ連通
している、フィブリルを有する多孔質ポリオレフィン中
空糸を提案した(特開昭57−42919参照)。
Under these circumstances, in order to solve the drawbacks of conventional devices, the applicant has developed a device with a pore diameter of 0.0 that can remove exothermic substances, etc.
We have proposed a porous polyolefin hollow fiber having fibrils in which micropores of 1 to 1 μm are connected from the inner wall surface of the hollow fiber to the outer wall surface (see JP-A-57-42919).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のように多孔質ポリオレフィン中空系を用いたモジ
ュールは、種々の利点を有しているが、疎水性である為
、アルコール等の親水化剤を用いた親水化処理をしなけ
れば充分な濾水性能が得られず、また水を長時間濾過し
た後、該モジュールを洗浄するために水を抜き取り、多
孔質ポリオレフィン中空糸表面を空気と接触させて乾燥
すると、濾水性が著しく低下する問題がある。
As mentioned above, modules using porous polyolefin hollow systems have various advantages, but because they are hydrophobic, sufficient filtration cannot be achieved unless they are hydrophilized using a hydrophilic agent such as alcohol. In addition, after water has been filtered for a long time, if the water is removed to clean the module and the surface of the porous polyolefin hollow fibers is dried by contacting with air, there is a problem that the freeness is significantly reduced. be.

さらに熱水を濾過した場合、糸が著しく収縮したり、軟
化により糸のつぶれが生じ、濾水性の低下が起こる。従
って、本発明の目的とするところは、耐熱性及び親水性
に優れた多孔質ポリオレフィン中空糸を提供することに
ある。
Furthermore, when hot water is filtered, the threads shrink significantly or become crushed due to softening, resulting in a decrease in freeness. Therefore, an object of the present invention is to provide a porous polyolefin hollow fiber having excellent heat resistance and hydrophilicity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、中空糸のほぼ長手方向に配列した多数のフィ
ブリル相互間に形成されている微小空孔が、中空糸の内
壁面と外壁面との間を連通している多孔質ポリオレフィ
ン中空糸を提供するものであって、該多孔質ポリオレフ
ィン中空糸はフィブリルの表面に5〜95重量%の(メ
タ)アクリル酸アルコキシポリエチレングリコール化合
物と5〜95重量%の、前記化合物と共重合可能な二重
結合を少なくとも2個以上有する単量体を含む少なくと
も2種類以上の化合物の混合物が放射線により重合固着
されて耐熱親水化されていることを特徴とする。
The present invention provides a porous polyolefin hollow fiber in which micropores formed between a large number of fibrils arranged substantially in the longitudinal direction of the hollow fiber communicate between the inner wall surface and the outer wall surface of the hollow fiber. The porous polyolefin hollow fiber has 5 to 95% by weight of an alkoxy(meth)acrylic acid polyethylene glycol compound and 5 to 95% by weight of a double polymer copolymerizable with the compound on the surface of the fibril. It is characterized in that a mixture of at least two kinds of compounds containing a monomer having at least two or more bonds is polymerized and fixed by radiation to make it heat-resistant and hydrophilic.

(メタ)アクリル酸アルコキシポリエチレングリコール
の量が95重景%を超えると、皮膜の形成性が悪くなり
、物理的耐久性も低くなる。また、5重量%未満では、
親水性が不十分となり、水フラフクスが低(なる。
If the amount of alkoxypolyethylene glycol (meth)acrylate exceeds 95% by weight, the film formation properties will be poor and the physical durability will also be reduced. In addition, if it is less than 5% by weight,
Hydrophilicity becomes insufficient and water flux becomes low.

本発明に用いられる微小空孔が中空糸内壁面より外壁面
へ連通している多孔質ポリオレフィン中空糸は、先に特
開昭57−42919等で示した製法により得られる。
The porous polyolefin hollow fiber used in the present invention, in which micropores communicate from the inner wall surface to the outer wall surface of the hollow fiber, can be obtained by the manufacturing method previously disclosed in JP-A-57-42919.

また、上記の多孔質ポリオレフィン中空糸のフィブリル
表面に固着する重合体被膜を形成させる成分としては、
次の化合物が含まれる。
In addition, the components that form the polymer film that adheres to the fibril surface of the porous polyolefin hollow fibers include:
Contains the following compounds:

即ち、第1成分としては下式(A)で示される化合物が
挙げられる。
That is, examples of the first component include a compound represented by the following formula (A).

(式中、nは10〜100であり、Rは炭素数12以上
のアルキル基であり、R′は水素又はメチル基である)
(In the formula, n is 10 to 100, R is an alkyl group having 12 or more carbon atoms, and R' is hydrogen or a methyl group)
.

この場合、ポリエチレングリコール鎖の重合度nは10
〜100の範囲にあるのがよい。これは、nが10未満
では親木性能が充分でなく、100以上では粘度が高く
なり、多孔質層の微小空孔がふさかって、フラツクスの
低下を招くためであり、また、アルギル基の炭素数はポ
リオレフィンとの親和性を得るために12以上であるの
がよい。上記化合物は、単独で用いても良好な親水性能
を発現するが、被膜形成性に劣るため、5〜95重量%
の添加量とし、被膜形成性を向上させる第2成分を添加
する。
In this case, the degree of polymerization n of the polyethylene glycol chain is 10
It is preferable that it be in the range of 100 to 100. This is because if n is less than 10, the parent wood performance will not be sufficient, and if n is more than 100, the viscosity will increase and the micropores in the porous layer will be blocked, leading to a decrease in flux. The number is preferably 12 or more in order to obtain affinity with polyolefins. Although the above compound exhibits good hydrophilic performance even when used alone, it has poor film-forming properties, so it can be used in an amount of 5 to 95% by weight.
A second component that improves film forming properties is added.

第2成分としては上記第1成分と共重合可能な二重結合
を少なくとも2個以上有する単量体が用いられ、例えば
ジメタクリル酸エチレングリコール、メタクリル酸アリ
ル、2−メタクリロキシエチルマレイン酸、ジメタクリ
ル酸−1,3−ブチレングリコール、トリメタクリル酸
トリメチロールプロパン、テトラメタクリル酸ペンタエ
リスリトール等が挙げられる。この第2成分を2〜95
重量%添加することで、被膜形成能が著しく向上し、親
木性能を損うことなしに放射線により均一な重合体被膜
を得ることができる。
As the second component, a monomer having at least two or more double bonds that can be copolymerized with the first component is used, such as ethylene glycol dimethacrylate, allyl methacrylate, 2-methacryoxyethylmaleic acid, dimethacrylate, etc. Examples include 1,3-butylene glycol methacrylate, trimethylolpropane trimethacrylate, and pentaerythritol tetramethacrylate. This second component is 2 to 95
By adding % by weight, the film forming ability is significantly improved, and a uniform polymer film can be obtained by radiation without impairing the parent wood performance.

多孔質ポリオレフィン中空糸のフィブリル表面に上記の
化合物を重合固着させる方法としては、メタノール等の
、ポリオレフィンに対して濡れ易い溶媒に上記の少なく
とも2種類以上の化合物を溶解した溶液中へ、多孔質ポ
リオレフィン中空糸を浸漬した後、風乾等により)容媒
を除去して放射線重合を行なう。この場合、用いる放射
線としては、電子線、紫外線、プラズマ等が挙げられる
が、耐熱性を向上させるために、ポリオレフィンの分子
間への架橋反応も同時に行なえる電子線を用いるのが好
ましい。
As a method for polymerizing and fixing the above compound to the fibril surface of the porous polyolefin hollow fiber, the porous polyolefin is added to a solution in which at least two or more of the above compounds are dissolved in a solvent that easily wets the polyolefin, such as methanol. After the hollow fibers are immersed, the medium is removed (by air drying, etc.) and radiation polymerization is performed. In this case, examples of the radiation used include electron beams, ultraviolet rays, plasma, etc., but in order to improve heat resistance, it is preferable to use electron beams, which can simultaneously perform a crosslinking reaction between molecules of the polyolefin.

上記の処理を行なうことで多孔質ポリオレフィン中空糸
のフィブリル表面へ良好な親水性能を付与することが可
能となる。また、固着された重合体被膜は、高度に架橋
された耐熱性を有する被膜であり、中空糸内部にも同時
に架橋構造が導入されるため、熱水を濾過した場合の軟
化による糸のつぶれや熱収縮を抑制することが可能とな
る。
By performing the above treatment, it becomes possible to impart good hydrophilic properties to the fibril surface of the porous polyolefin hollow fiber. In addition, the fixed polymer coating is a highly crosslinked and heat resistant coating, and a crosslinked structure is also introduced inside the hollow fibers, so the fibers will not collapse due to softening when hot water is filtered. It becomes possible to suppress thermal contraction.

〔実施例〕〔Example〕

以下実施例により本発明の詳細な説明する。 The present invention will be explained in detail below with reference to Examples.

実施例1 多孔質ポリエチレン中空糸EHF(商品名、三菱レイヨ
ン株式会社製)を、アクリル酸アルコキシポリエチレン
グリコール化合物(A式において、n−30、Rの炭素
数12)5重量部及びジアクリル酸テトラエチレングリ
コール5重量部をメタノール90重量部で溶解した20
℃の溶液中に、30秒間浸漬した後、風乾を10分間行
ない、メタノールを除去した。
Example 1 Porous polyethylene hollow fiber EHF (trade name, manufactured by Mitsubishi Rayon Co., Ltd.) was mixed with 5 parts by weight of an alkoxy polyethylene glycol acrylate compound (in formula A, n-30, carbon number of R: 12) and tetraethylene diacrylate. 20 by dissolving 5 parts by weight of glycol in 90 parts by weight of methanol
After being immersed in the solution at 0.degree. C. for 30 seconds, it was air-dried for 10 minutes to remove methanol.

引続き、電子線照射装置(日新t\イボルテージ、キュ
アトロンEBC−200−20−15)を用いて、20
Mradの線量にて電子線を照射し、多孔質ポリエチレ
ン中空糸の積層構造表面へ重合体被膜を固着するととも
にポリエチレンの分子鎖間へ架橋構造を導入した。
Subsequently, using an electron beam irradiation device (Nissin t\Ivoltage, Curetron EBC-200-20-15),
An electron beam was irradiated at a dose of Mrad to fix a polymer film to the surface of the laminated structure of porous polyethylene hollow fibers and introduce a crosslinked structure between the molecular chains of the polyethylene.

次に、上記の耐熱親水化多孔質ポリエチレン中空糸10
0本をU字型に束ね、中空糸の開口部分を樹脂で固め、
樹脂包埋部の長さ4cm、中空糸有効長10cmのモジ
ュールを作製した。
Next, the above heat-resistant and hydrophilized porous polyethylene hollow fiber 10
Bundle the fibers into a U-shape, harden the opening of the hollow fibers with resin,
A module with a resin-embedded portion having a length of 4 cm and a hollow fiber effective length of 10 cm was produced.

参考例として上記の耐熱親水化処理していない多孔質ポ
リエチレン中空糸を用い、前記と同じ方法で通常のモジ
ュールを作製した。
As a reference example, a normal module was produced in the same manner as above using the porous polyethylene hollow fibers that had not been subjected to the heat-resistant hydrophilic treatment.

上記の耐熱親水化多孔質ポリエチレン中空糸使用モジュ
ールの透水圧及び透水■を測定した結果、0.05kg
 r / calの低い圧力で水の濾過が開始され、水
圧1 kg f / crAでの透水量は1分間に13
cc/catであった。
As a result of measuring the water permeability pressure and water permeability of the above heat-resistant hydrophilic porous polyethylene hollow fiber module, it was 0.05 kg.
Water filtration begins at a low pressure of r/cal, and the water permeation rate at a water pressure of 1 kg f/crA is 13 per minute.
It was cc/cat.

これに対し、参考例として作製した耐熱親水化処理して
いない多孔質ポリエチレン中空糸使用のモジュールは、
透水圧が著しく大きく、圧力3 kgf/c[l!を加
えても水は全く濾過されなかった。更に、上記の耐熱親
水化多孔質ポリエチレン中空糸使用のモジュールに透水
圧1 kg f / cotの圧力で80℃の熱水を1
時間濾過した後、熱水を抜き取り、真空乾燥機にて60
℃で24hr乾燥した後、再び透水圧及び透水量を測定
したところ、熱水を濾過し乾燥したにもかかわらず、性
能低下は認められなかった。
On the other hand, a module using porous polyethylene hollow fibers that was not heat-resistant and hydrophilized was prepared as a reference example.
The permeability pressure is extremely high, with a pressure of 3 kgf/c [l! The water was not filtered at all even after adding . Furthermore, 80°C hot water was poured into the module using heat-resistant, hydrophilized porous polyethylene hollow fibers at a pressure of 1 kgf/cot.
After filtration for an hour, remove the hot water and put it in a vacuum dryer for 60 minutes.
After drying at ℃ for 24 hours, the water permeation pressure and water permeation amount were measured again, and no deterioration in performance was observed even though the hot water was filtered and dried.

実施例2 多孔質ポリエチレン中空糸E HFを、アクリル酸アル
コキシポリエチレングリコール化合物(A式において、
n−30、Rの炭素数12)3重量部及びトリメタクリ
ル酸トリメチロールプロパン2重量部をメタノール95
重量部で溶解した20℃の溶液中に、10秒間浸漬した
後、風乾を10分間行ない、メタノールを除去した。引
続き、10叶adの線量にて電子線を照射し、耐熱親水
化多孔質ポリエチレン中空糸を得た。
Example 2 Porous polyethylene hollow fiber E HF was treated with an acrylic acid alkoxypolyethylene glycol compound (in formula A,
3 parts by weight of n-30, R having 12 carbon atoms and 2 parts by weight of trimethylolpropane trimethacrylate were mixed with 95 parts by weight of methanol.
After being immersed in a 20° C. solution containing parts by weight for 10 seconds, it was air-dried for 10 minutes to remove methanol. Subsequently, the fibers were irradiated with an electron beam at a dose of 10 AD to obtain heat-resistant, hydrophilic porous polyethylene hollow fibers.

次に、上記の耐熱親水化多孔質ポリエチレン中空糸を用
いて実施例1と同様のモジュールを作製し、透水圧及び
透水量を測定したところ、0.05kgf/cI11の
低い圧力で水の濾過が開始され、水圧1kgf/cdで
の透水量は1分間に11 cc/ crAであった。
Next, a module similar to that in Example 1 was fabricated using the heat-resistant, hydrophilized porous polyethylene hollow fibers described above, and the water permeation pressure and water permeation amount were measured. The water permeation rate was 11 cc/crA per minute at a water pressure of 1 kgf/cd.

また、80℃の熱水濾過及び乾燥に対しても、性能低下
は認められなかった。
Further, no deterioration in performance was observed even after hot water filtration and drying at 80°C.

〔発明の効果及び作用〕[Effects and operations of the invention]

疎水性を有する多孔質ポリオレフィン中空糸のフィブリ
ル表面に、(メタ)アクリル酸アルコキシポリエチレン
グリコール化合物と、これと共重合可能な二重結合を少
なくとも2個以上有する単量体とを含む少なくとも2種
以上の化合物の混合物を、放射線により重合固着するこ
とで、耐熱性と親水性を同時に付与することが可能とな
り、従来のようなアルコール浸漬等の前処理が省略でき
るばかりでなく、熱水の濾過も可能である。
At least two or more types containing an alkoxypolyethylene glycol (meth)acrylate compound and a monomer having at least two or more double bonds copolymerizable with the alkoxypolyethylene glycol (meth)acrylate compound on the fibril surface of the porous polyolefin hollow fiber having hydrophobicity. By polymerizing and fixing a mixture of compounds using radiation, it is possible to impart heat resistance and hydrophilicity at the same time, and not only can the conventional pretreatment such as alcohol immersion be omitted, but also the filtration of hot water is possible. It is possible.

Claims (1)

【特許請求の範囲】 中空糸のほぼ長手方向に配列した多数のフィブリル相互
間に形成されている微小空孔が、中空糸の内壁面と外壁
面との間を連通している多孔質ポリオレフィン中空糸で
あって、フィブリルの表面に5〜95重量%の(A)式
で示される化合物と5〜95重量%の、(A)式の化合
物と共重合可能な二重結合を少なくとも2個以上有する
単量体を含む、少なくとも2種以上の化合物の混合物が
放射線により重合固着されていることを特徴とする、耐
熱親水化多孔質ポリオレフィン中空糸。 (A)式:▲数式、化学式、表等があります▼ (上式中、nは10〜100であり、Rは炭素数12以
上のアルキル基であり、R′は水素又はメチル基である
)。
[Claims] A porous polyolefin hollow fiber in which micropores formed between a large number of fibrils arranged substantially in the longitudinal direction of the hollow fiber communicate between the inner wall surface and the outer wall surface of the hollow fiber. It is a thread, and the surface of the fibril contains 5 to 95% by weight of a compound represented by formula (A) and 5 to 95% by weight of at least two double bonds that are copolymerizable with the compound of formula (A). 1. A heat-resistant, hydrophilized porous polyolefin hollow fiber, characterized in that a mixture of at least two or more compounds, including a monomer having the above-mentioned properties, is polymerized and fixed by radiation. (A) Formula: ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (In the above formula, n is 10 to 100, R is an alkyl group having 12 or more carbon atoms, and R' is hydrogen or a methyl group) .
JP14453985A 1985-07-03 1985-07-03 Heat resistant hydrophilic porous polyolefin hollow yarn Pending JPS627401A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14453985A JPS627401A (en) 1985-07-03 1985-07-03 Heat resistant hydrophilic porous polyolefin hollow yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14453985A JPS627401A (en) 1985-07-03 1985-07-03 Heat resistant hydrophilic porous polyolefin hollow yarn

Publications (1)

Publication Number Publication Date
JPS627401A true JPS627401A (en) 1987-01-14

Family

ID=15364657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14453985A Pending JPS627401A (en) 1985-07-03 1985-07-03 Heat resistant hydrophilic porous polyolefin hollow yarn

Country Status (1)

Country Link
JP (1) JPS627401A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004198A1 (en) * 1987-11-04 1989-05-18 Mitsubishi Rayon Co., Ltd. Porous membrane and process for its production
EP0410357A2 (en) * 1989-07-27 1991-01-30 Millipore Corporation Membrane having hydrophilic surface
JPH0824602A (en) * 1994-07-08 1996-01-30 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Surface-improve gas separation membrane and its preparation
US6602812B1 (en) 1997-08-22 2003-08-05 Asahi Medical Co., Ltd. Process for producing leukocyte-removing material and hydrophilized polyolefins

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989004198A1 (en) * 1987-11-04 1989-05-18 Mitsubishi Rayon Co., Ltd. Porous membrane and process for its production
EP0342239A1 (en) * 1987-11-04 1989-11-23 Mitsubishi Rayon Co., Ltd Porous membrane and process for its production
US4961853A (en) * 1987-11-04 1990-10-09 Mitsubishi Rayon Co., Ltd. Porous membranes and production processes thereof
EP0342239B1 (en) * 1987-11-04 1993-02-24 Mitsubishi Rayon Co., Ltd Porous membrane and process for its production
EP0410357A2 (en) * 1989-07-27 1991-01-30 Millipore Corporation Membrane having hydrophilic surface
JPH0824602A (en) * 1994-07-08 1996-01-30 Chikyu Kankyo Sangyo Gijutsu Kenkyu Kiko Surface-improve gas separation membrane and its preparation
US6602812B1 (en) 1997-08-22 2003-08-05 Asahi Medical Co., Ltd. Process for producing leukocyte-removing material and hydrophilized polyolefins

Similar Documents

Publication Publication Date Title
JP3084292B2 (en) Porous composite membrane and method
EP0186758B1 (en) Porous membrane having hydrophilic surface and process of its manufacture
US4424311A (en) Antithrombogenic biomedical material
TWI613005B (en) Hollow fiber membrane module, method for manufacturing hollow fiber membrane and method for manufacturing hollow fiber membrane module
US4171283A (en) Hemoperfusion adsorbents
JP5407713B2 (en) Polysulfone-based hollow fiber membrane module and manufacturing method
KR20040047887A (en) Hydrophilic material and process for producing the same
AU2017305070A1 (en) Copolymer, and separation membrane, medical device, and blood purifier using the copolymer
JP3928910B2 (en) Polysulfone blood treatment module
JPS627401A (en) Heat resistant hydrophilic porous polyolefin hollow yarn
EP1658126B1 (en) Surface treatment of the membrane and associated product
JP3640737B2 (en) Polysulfone-based permselective hollow fiber membrane
JPH0369673A (en) Heat-resistant hydrophilic porous polyolefin hollow fiber
WO2018062451A1 (en) Separation membrane module
JPH0259030A (en) Heat-resistant hydrophilicity imparted porous membrane and preparation thereof
KR101072919B1 (en) Super Absorbent Resin Using PVA films and Production Method thereof
GB1562969A (en) Hemoperfusion adsorbents
EP0682978A1 (en) Hydrophilic PTFE membrane
JPS6233878A (en) Heat resistant porous polyolefin hollow yarn
US20050045554A1 (en) Membrane unit element, semipermeable membrane, filtration device, and processes for manufacturing the same
JPS63260938A (en) Porous membrane having heat resistance imparted thereto and its production
JP4686836B2 (en) Method for producing lipid peroxide adsorbent
JP4882518B2 (en) Method for manufacturing medical separation membrane and medical separation membrane module
JP2798267B2 (en) Gamma-ray sterilizable hydrophilized porous material
JP4712285B2 (en) Blood filtration filter and method for producing the same