JP3928910B2 - Polysulfone blood treatment module - Google Patents

Polysulfone blood treatment module Download PDF

Info

Publication number
JP3928910B2
JP3928910B2 JP10397499A JP10397499A JP3928910B2 JP 3928910 B2 JP3928910 B2 JP 3928910B2 JP 10397499 A JP10397499 A JP 10397499A JP 10397499 A JP10397499 A JP 10397499A JP 3928910 B2 JP3928910 B2 JP 3928910B2
Authority
JP
Japan
Prior art keywords
pvp
membrane
content
module
spin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10397499A
Other languages
Japanese (ja)
Other versions
JP2000296318A (en
Inventor
雅一 山田
誠 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Medical Co Ltd
Original Assignee
Asahi Kasei Medical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Medical Co Ltd filed Critical Asahi Kasei Medical Co Ltd
Priority to JP10397499A priority Critical patent/JP3928910B2/en
Publication of JP2000296318A publication Critical patent/JP2000296318A/en
Application granted granted Critical
Publication of JP3928910B2 publication Critical patent/JP3928910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、体外循環による血中老廃物の除去を目的とした血液処理モジュールに関するもので、血液浄化、特に腎機能を代用する血液透析、血液濾過、および血液濾過透析といった治療分野で使用されるものである。
【0002】
【従来の技術】
近年、膜分離技術が数多く実用化されており、液体や気体の混合物から目的物を分離したり、不純物を除去するために様々な分離膜が利用されている。分離膜の素材としては一般に有機系高分子が汎用されており、例えば天然高分子としてセルロース、合成高分子としてはポリアクリロニトリル、ポリアミド、ポリイミド、ポリオレフィン、ポリシロキサン、ポリスルホン、ポリメタクリレート等が挙げられる。中でもポリスルホン系高分子は工業用分離膜として幅広く利用されているが、その理由は放射線、加熱、および酸・アルカリ等の化学薬品に対して優れた耐性を示すためである。また、生体適合性や安全性にも優れることから、最近では医療用途においても分離膜素材として注目され、需要が増加している。
【0003】
ところが、ポリスルホン系高分子は親水基を持たない疎水性樹脂であり、医療用具、とりわけ血液処理用の分離膜として使用する場合には、透水不良や血液凝固系の活性化を引き起こすことがあった。そこで、これらを改善するために、通常は親水化剤によって膜表面に親水性が付与されている。親水化剤としては、グリセリンのような低分子化合物からポリエチレングリコールやポリビニルピロリドンのような親水性高分子まで幅広く使用されており、前者では膜表面に塗布、後者では製膜原液に若干量を添加することで、親水性が改善された分離膜が得られている。
【0004】
これらの分離膜を医療用具として使用するためには、ハウジングに組み込んでモジュール化した後、滅菌処理が必要となる。医療用具の滅菌方法は、従来からガス滅菌や高圧蒸気滅菌が知られているが、物質浸透性、および生産性に優れるという理由から、最近では放射線滅菌が汎用されている。
しかしながら、放射線滅菌により、モジュールの構成素材の中で化学的に不安定な部分に損傷が生じることが知られている。ハウジングは放射線耐性の素材を選択すればよく、また、分離膜中のポリスルホン系高分子も放射線耐性が大きいため、このような問題は小さいが、親水性高分子はその化学構造ゆえに一般に放射線耐性が低く、加水分解や主鎖切断、架橋などの変成を起こしやすい。
通常、血液処理モジュールは、製造後数ヶ月から2〜3年の間に使用されるが、その間は病院・施設の保管場所に置かれている。この様な長期保管中に変成が徐々に進行し、その結果、使用時までに抗血栓性が低下するおそれがあった。
【0005】
【発明が解決しようとする課題】
従って、本発明は上記の課題を解決するため、放射線滅菌後に長期保管しても抗血栓性の低下が起こらない、ポリスルホン系血液処理モジュールを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは前記目的を達成するために鋭意研究した結果、放射線滅菌後に膜中に残留するラジカルスピン含有量が一定値以下であれば、長期保管における抗血栓性の低下を抑制できることを見出した。すなわち、本発明のポリスルホン系血液処理モジュールは、ポリスルホン系高分子、およびポリビニルピロリドンからなる中空糸膜を組み込んで放射線滅菌された血液処理モジュールにおいて、該中空糸膜は、該膜中のポリビニルピロリドンの含有率が5.0〜7.5重量%であり、該中空糸内側1.5m に対して40容量%エタノール水溶液200 cc を循環したとき、該水溶液中に溶出するポリビニルピロリドン濃度が10ppm以下であり、更にモジュール内部の空間をドライ状態で放射線滅菌したことにより、該中空糸膜中のラジカルスピン含有量を2.1×10 15 スピン/g〜3.3×1015 スピン/gとしたことを特徴とする。
【0007】
本発明の血液処理用モジュールに組み込まれた分離膜において、第一の構成成分であるポリスルホン系高分子とは、下記の化学構造式(1)、もしくは(2)のユニットの繰り返し構造を有する芳香族ポリスルホン系高分子である。これには、芳香環上に官能基やアルキル基が結合した、いわゆるポリスルホン誘導体も範疇に含まれる。なお、式中のArはパラ二置換のフェニル基を示し、重合度や分子量については特に限定しない。

Figure 0003928910
【0008】
第二の構成成分はポリビニルピロリドン(以下、PVPという)であるが、ポリスルホン系高分子との相溶性に優れ、しかも血液凝固系の活性化が比較的少ないとの理由から選択される。PVPは、様々なグレードが市販されているので、それらを利用すればよいが、分離膜表面に残存して適当な親水性を付与させるためには、重量平均分子量が少なくとも10万以上のものを用いることが好ましい。また、ポリスルホン系高分子との親和性や膜表面の親水性を制御する目的から、酢酸ビニル等、エステル系ビニルモノマーとの共重合物を含んでもよい。
【0009】
該分離膜中のPVPの含有率は、本発明を達成する重要なパラメーターの一つである。すなわち、PVPの含有率が低すぎる場合、親水化効果が不十分で抗血栓性が発揮できず、反対に高すぎる場合は、含水時にPVPの膨潤で細孔が狭窄し、透過性能が低下する可能性がある。また、放射線滅菌後の分離膜中のラジカルスピン含有量はPVP含有率にも依存するため、PVP含有率は不必要に上げすぎないほうが好ましい。従って、両者を満足する好ましいPVP含有率の範囲は3.0〜9.0重量%である。より好ましい範囲は、5.0〜7.5重量%である。
【0010】
本発明でいうラジカルスピン含有量とは、分離膜をモジュールに組み込んで放射線滅菌した後、室温保管90±3日目の分離膜中のラジカルスピン量を電子スピン共鳴装置で測定したもので、標準品として、1,1−ジフェニル−2−ピクリルヒドラジルのラジカルスピン量から、膜1gあたりのラジカルスピン量に換算した値である。一般に、放射線滅菌後、生成した膜中のラジカル種のなかで極めて不安定なものは直ちに消失し、反応性がやや劣るものが長期間残留する。本発明者らは、これらが90日目で一定値以下であれば、その後2年保管相当の加速試験を実施しても、抗血栓性の低下が抑制されることを見出した。
本発明の血液処理モジュールにおいては、放射線滅菌後のラジカルスピン含有量が20.0×1015スピン/g以下であり、その後の長期保管を経ても、抗血栓性の低下は抑えられている。より好ましくは10.0×1015スピン/g以下であり、3.0×1015スピン/g以下とすることが最も好ましい。
【0011】
以下、本発明の血液処理モジュールの実施態様について、詳細に説明する。
製膜原液は、ポリスルホン系高分子とPVPを溶剤に溶解し、減圧脱気したものを用いる。溶剤としては、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシドが挙げられるが、これらは単独、あるいは任意の割合で混合して使用しても構わない。さらに、凝固速度を制御する目的から少量の水や塩類を含んでいてもよい。中空状に製膜するには、製造上、取り扱いやすい粘度にする必要があり、また、膜のPVP含有率を所望の範囲に制御するため、製膜原液の好ましい組成は、ポリスルホン系高分子が16〜18重量%、PVPが4〜10重量%であり、残りが溶剤である。
【0012】
中空糸の形成は公知の方法に従えばよいが、本発明でいう血液処理モジュールに好適な透過性能を得るには、中空剤の組成を制御することが重要である。分離膜の透過性能を安定に制御するには、中空剤に水と溶剤との混合液を用いる方法が好ましく、溶剤はN,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドン、ジメチルスルホキシドから選択される。中空剤の好ましい組成は溶剤が5〜40重量%であり、残りが水である。溶剤の割合がこれ以上高くなると、凝固までに中空形状を保持できずに糸切れ等の製造トラブルの原因となる。反対に低くなると膜として十分な透過性能が達成できない。より好ましい範囲は10〜25重量%である。
【0013】
これらの製膜原液と中空剤とを50〜80℃に保温した二重紡糸口金から同時に吐出させ、空中走行を経て温水凝固浴に導入後、巻き上げると中空糸状の分離膜が得られる。続いて、後述する水性媒体による抽出工程の後、水洗し、さらに孔径保持剤として、グリセリンまたはポリエチレングリコール水溶液を付着させて70〜80℃で乾燥処理を行えば、乾燥分離膜が得られる。
【0014】
上記の分離膜は、さらに処理工程を経た後、ハウジングに組み込まれて血液処理モジュールとなり、放射線滅菌を受ける。その際、分離膜に生成したラジカル種の一部が残留し、長期保管中に徐々にPVPの変成を起こす結果、使用時までに抗血栓性が低下する可能性があった。
ところが、本発明者らは、分離膜表面に存在している吸着PVPを放射線滅菌前に除去しておくと、ラジカルスピン含有量が減少し、長期保管中の抗血栓性の低下が抑制されることを見出した。この理由は詳細に解明されてはいないが、ラジカル種の生成やPVPの変成が、おもに表面に出た部分で生じていることが原因ではないかと推定される。すなわち、PVP分子には、一部がポリスルホン系高分子中に強固に埋まり、残りの部分が表面に出たものと、全体が表面に吸着しているだけのものがある。後者は、血液中では脱着してしまう本来不要なものであるが、分子量が10万〜数十万と大きく、多点吸着しているために短時間の水洗程度では除去されず、膜表面に残ってラジカル生成源になると思われる。従って、この吸着PVPを放射線滅菌前に十分に除去しておけば、滅菌後のラジカルスピン含有量が軽減し、膜表面の変成が抑制されるためだと考えられる。
【0015】
膜表面に残っている吸着PVPを効率よく除去するにあたっては、下記に示す水性媒体を使用して分離膜を抽出すればよい。
ここでいう水性媒体とは、ポリスルホン系高分子を溶解せずにPVPだけを溶解できる組成で、しかも、ポリスルホン系高分子表面にある吸着PVPに対して脱着作用を有する媒体である。具体的には、メタノール、エタノール、プロパノール、ブタノール、グリセロール等の水混和性アルコールを各々、30〜95容量%含有する水溶液、および、テトラヒドロフラン、ジメチルスルホキシド、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン等の水混和性非プロトン性有機溶媒を各々、30〜60容量%含有する水溶液が挙げられる。これらの中から任意に選択すればよい。
水性媒体による抽出は、温度が高いほど吸着PVPの除去効果が高いが、製造上の取り扱い性の点から、35〜90℃で使用することが望ましい。この温度範囲で15〜120分間抽出すれば、吸着PVPを十分に除去することができる。温度が低すぎると、これ以上に時間をかける必要があり、生産性が低下してしまう。抽出方法は特に問わないが、製膜後の巻き束を水性媒体に完全浸漬させるか、あるいはシャワーリングすればよい。もちろん、分離膜をハウジングに組み込んだ後にモジュール内部に通液してもよく、抽出効率が高くなるため好ましい。
【0016】
膜表面の吸着PVPが除去されたことの評価は以下のように行う。すなわち、後述の方法で膜面積1.5mのモジュールを作成し、放射線滅菌後に、37℃の40容量%エタノール水溶液200ccを中空糸内側に2時間循環し、溶出するPVP濃度を測定する。循環液中のPVPは、ゲル濾過カラムを取り付け、50mMの食塩水をキャリアーとした高速液体クロマトグラフ装置において、220nmの紫外部吸収でモニターを行ったときに数千〜数十万の分子量領域に見られるピーク全てについて、PVP標準品の検量線から濃度を求めればよい。この濃度が10ppm以下であれば、クロマトグラム上で分子量が10万以上の高分子量PVPピークは認められず、膜表面の吸着PVPは実質的に除去されていると判断する。
【0017】
続いて、分離膜に残った水性媒体を水で洗浄し、さらに孔径保持剤としてグリセリン水溶液を付着させた後、70〜80℃で10時間以上の乾燥処理を行なえば、乾燥した分離膜が得られる。
【0018】
分離膜の形状は中空状であるが、血液処理用途としての強度や実用性とを考慮すると、内径が80〜400μmの中空部と、厚みが35〜85μmの膜厚部からなることが好ましい。内径がこれ以下に小さいと血流抵抗が高まり、必要以上に大きくなっても血中の物質移動効率が悪くなって、治療効果の低下につながる。また、膜厚が薄すぎると強度が保てず、取り扱い時の潰れの原因となり、厚すぎると膜中の物質移動抵抗が大きくなり、透過性能が低下するので好ましくない。
【0019】
モジュール化の方法も特に限定せず、公知の手法を用いればよい。すなわち、分離膜をハウジングに挿入した後、両端をポッティングして所定の膜面積を有するモジュールに成形する。ハウジングの素材は、ポリスチレンのブロック共重合体やポリカーボネート等、透明度が高くしかも放射線照射に耐える樹脂が用いられる。形状は、透析液や濾液を通すためのノズルが両端付近にそれぞれ付いていればよい。
該モジュール内の分離膜の充填密度は、透析液の偏流れによる透析効率の低下、あるいはハウジングへの挿入時の膜の破損が起こらない範囲であればよく、55〜70%が好ましい。また、膜面積は分離膜の血液接触面を均一な平面と仮定した時の総表面積であるが、0.01〜2.5mの範囲が好ましい。これ以上に小さいと、血液処理モジュールとしての治療効果が発揮されず、反対に大きすぎると体外に持ち出される血液量が増えるため、好ましくない。
【0020】
次に、ハウジングの両端にポッティング剤を注入して硬化後、両端面を切断して中空糸を開口させる。ポッティング剤としては、ポリウレタン樹脂、エポキシ樹脂、およびシリコン樹脂が汎用されており、これらの何れを使用しても構わない。このハウジングに、血液の導入・排出用のノズルがついたヘッダーをゴムパッキンと共に取り付け、締結するか溶着して外れないように固定する。
上記の血液処理モジュールは、分離膜とハウジング以外の空間が空気や不活性ガスで満たされた、あるいは減圧状態に保たれたドライ状態、もしくは水溶液で満たされたウェット状態の何れであっても構わない。ただし、ヒドロキシラジカルに誘起されるラジカル生成量が少ないためか、ドライ状態の方が膜中のラジカルスピン含有量が少なくなるので、モジュール内部の空間はドライ状態の方がより好ましい。この場合、分離膜の含水率は特に限定しない。
【0021】
該モジュールへ放射線滅菌を行うにあたり、放射線の線源は特に限定しないが、医療用具の放射線滅菌に汎用されているのはコバルト60によるγ線である。他にもX線や電子線も利用できるが、物質浸透性の点からγ線を使用することが最も好ましい。照射線量は、一般的な医療用具の滅菌条件に準じればよく、15〜50KGyの範囲であればよく、好ましくは20〜35KGyである。
以上により、本発明の血液処理モジュールが得られる。
【0022】
【発明の実施の形態】
以下、実施例により本発明をさらに詳細に説明するが、本発明はそれに限定されるものではない。なお、実施例で用いた諸数値は以下の手順によって測定したものである。
【0023】
(分離膜中のラジカルスピン含有量の測定)放射線滅菌後90±3日目の血液処理モジュールから分離膜50本×5cm分を取り出し、4時間凍結乾燥させた。窒素気流下で減圧を解除し、窒素ガスと共に測定試料管に挿入して密栓後、翌日の測定開始までドライアイスで氷冷した。測定は、電子スピン共鳴装置(日本電子 JES−FE2XG)を用いて、室温下、磁場3400±100G、マイクロ波照射0.4mW、掃引時間1分、強度200倍で実施した。また、標準品としては、1,1−ジフェニル−2−ピクリルヒドラジルのベンゼン溶液(2.9×10−6mol/リットル)を用い、装置内蔵のマンガンマーカーとの相対比から、試料中のラジカルスピン含有量を算出した。この値を分離膜の乾燥重量で割って、膜1gあたりのラジカルスピン含有量とした。
【0024】
(分離膜吸着PVPの溶出評価)膜面積1.5mで、放射線滅菌後90±3日目の血液処理モジュールを準備し、その中空糸内側に、40容量%エタノール水溶液200ccを流速200cc/分にて、37℃、2時間循環した。循環液0.05ccを、ゲル濾過カラム(昭和電工社製 Asahipak GF−710HQ)を取り付けた高速液体クロマトグラフ装置に注入し、50mMの食塩水を流速1.0cc/分で流しながら220nmの紫外部吸収でモニターした。高分子領域である保持時間6〜10分のピークについて、PVP標準品を用いた検量線からPVP濃度を求めた。PVPの定量限界は2.5ppmであった。
【0025】
(分離膜の抗血栓性評価)放射線滅菌後90±3日目の血液処理モジュールから分離膜を切り出し、長さ20cm、300本からなるミニモジュールを作成した。該モジュールにヘパリン加ヒト新鮮血を37℃で10分間充填させた後、血液を押し出して回収した。充填前後の血液をそれぞれ血漿分離して、血漿中のトロンボキサンB2濃度をラジオイムノアッセィ法にて測定し、充填前に対する充填後の増加率を算出した。なお、血小板活性化の激しい陽性対照として、PVPを全く含有しない膜を用い、試験品と同時に比較した。
【0026】
(分離膜中のPVP含有率の測定)照射滅菌後に水洗して凍結乾燥させた分離膜を5mg秤量し、元素分析計を用いて測定した総窒素量からPVP含有率を算出した。
【0027】
【実施例1】
ポリスルホン系高分子(アモコ社製:P−1700)17.5部とPVP(BASF社製:K90、重量平均分子量36万)4.5部をN,N−ジメチルアセトアミド(以下、DMACという)78部に添加、溶解して製膜原液を得た。中空剤はDMAC12.5部と水87.5部の混合液とし、これらを40℃の二重紡糸口金から吐出させ、凝固浴を通過させた後にカセに巻取った。巻き束を50容量%DMAC水溶液に浸漬し、75℃で30分間抽出して余分のPVPを抽出後、水洗した。さらに、45重量%のグリセリン水溶液を付着させ、70℃で10時間乾燥させて乾燥膜を得た。
この膜を膜面積1.5mのモジュールに成形し、γ線を20KGy照射したところ、照射滅菌後90日目において、分離膜中のラジカルスピン含有量は2.7×1015スピン/g、PVP含有率は6.2重量%であり、40容量%エタノール循環液中のPVP濃度は6.8ppmであった。また、トロンボキサンB2増加率は2.3であり、陽性対照の10.1に比較して明らかに抗血栓性が優れていた。同様に作成したモジュールの60℃、4週間加速試験後のラジカルスピン含有量は2.3×1015スピン/g、トロンボキサンB2増加率は2.5にとどまり、抗血栓性は保持されていた。
【0028】
【実施例2】
水性媒体として、35容量%DMAC水溶液を用い、90℃で30分間浸漬抽出した以外は、実施例1と同様の条件で乾燥膜を得た。この膜を膜面積1.5mのモジュールに成形し、減圧・窒素置換を3回繰り返した後、真空パックした。
γ線を25KGy照射したところ、照射滅菌後90日目において、分離膜中のラジカルスピン含有量は2.1×1015スピン/g、PVP含有率は6.4重量%であり、40容量%エタノール循環液中のPVP濃度は5.4ppmであった。また、トロンボキサンB2増加率は2.4であった。同様に作成したモジュールの60℃、4週間加速試験後のラジカルスピン含有量は2.0×1015スピン/g、トロンボキサンB2増加率は2.5にとどまり、抗血栓性は保持されていた。
【0029】
参考例1
水性媒体として、50容量%DMAC水溶液を用い、90℃で60分間浸漬抽出した以外は、実施例1と同様の条件で乾燥膜を得た。この膜を膜面積1.5mのモジュールに成形し、500ppmのピロ亜硫酸ナトリウム水溶液を充填して一晩静置した。
γ線を27.5KGy照射したところ、照射滅菌後90日目において、分離膜中のラジカルスピン含有量は6.9×1015スピン/g、PVP含有率は6.0重量%であり、40容量%エタノール循環液中のPVP濃度は2.5ppm以下であった。また、トロンボキサンB2増加率は2.7であった。同様に作成したモジュールの60℃、4週間加速試験後のラジカルスピン含有量は3.1×1015スピン/g、トロンボキサンB2増加率は2.7にとどまり、抗血栓性は保持されていた。
【0030】
【実施例
実施例1で得られた紡糸後の巻き束を、水性媒体で処理せずに水洗、グリセリン処理 し、乾燥膜を得た。この膜を膜面積1.5mのモジュールに成形後、40℃の60容量%エタノール水溶液を流速50ml/分で通液し、2時間、全濾過抽出した。さらに、モジュールを水洗し、分離膜を40重量%のグリセリン水溶液で置換後、中空部をエアーフラッシュした。
γ線を22KGy照射したところ、照射滅菌後90日目において、分離膜中のラジカルスピン含有量は3.3×1015スピン/g、PVP含有率は6.6重量%であり、40容量%エタノール循環液中のPVP濃度は6.0ppmであった。また、トロンボキサンB2増加率は2.9であった。同様に作成したモジュールの60℃、4週間加速試験後のラジカルスピン含有量は3.3×1015スピン/g、トロンボキサンB2増加率は3.2にとどまり、抗血栓性は保持されていた。
【0031】
参考例2
実施例1で得られた紡糸後の巻き束を、水性媒体で処理せずに水洗、グリセリン処理し、乾燥膜を得た。この膜を膜面積1.5mのモジュールに成形後、40℃の40容量%テトラヒドロフラン水溶液を流速50ml/分で通液し、2時間、全濾過抽出した。
モジュールを水洗後、内部に水を充填したままγ線を22KGy照射したところ、照射滅菌後90日目において、分離膜中のラジカルスピン含有量は9.3×1015スピン/g、PVP含有率は6.6重量%であり、40容量%エタノール循環液中のPVP濃度は2.5ppm以下であった。また、トロンボキサンB2増加率は3.2であった。同様に作成したモジュールの60℃、4週間加速試験後のラジカルスピン含有量は3.3×1015スピン/g、トロンボキサンB2増加率は3.5にとどまり、抗血栓性は保持されていた。
【0032】
【比較例1】
実施例1で得られた紡糸後の巻き束を、水性媒体による抽出処理をせずに水洗、グリセリン処理を行い、乾燥膜を得た。
この膜を膜面積1.5mのモジュールに成形し、22.5KGyのγ線照射滅菌後90日目において、分離膜中のラジカルスピン含有量は23×1015スピン/g、PVP含有率は9.2重量%であり、40容量%エタノール循環液中のPVP濃度は47ppmと何れも高かった。また、トロンボキサンB2増加率は3.1であった。ところが、同様に作成したモジュールの60℃、4週間加速試験後のラジカルスピン含有量は2.4×1015スピン/gまで減少し、一方、トロンボキサンB2増加率は9.5と増大し、抗血栓性が低下した。
【0033】
【比較例2】
比較例1の乾燥膜を膜面積1.5mのモジュールに成形後、水を充填してγ線を22.5KGy照射したところ、照射滅菌後90日目において、分離膜中のラジカルスピン含有量は31×1015スピン/g、40容量%エタノール循環液中のPVP濃度は19ppmと何れも高かった。また、トロンボキサンB2増加率は3.3であった。ところが、同様に作成したモジュールの60℃、4週間加速試験後のラジカルスピン含有量は3.3×1015スピン/gまで減少し、一方、トロンボキサンB2増加率は10.2と増大し、抗血栓性は低下した。
【0034】
【比較例3】
ポリスルホン系高分子15部とPVP9部をDMAC76部に添加、溶解した以外は、実施例1と同様の条件で巻き束を得た。この束を、25容量%のジメチルスルホキシド水溶液に75℃で30分間浸漬抽出した後、1時間水洗し、さらに45重量%のグリセリン水溶液を付着させて70℃で10時間乾燥した。
この膜を膜面積1.5mのモジュールに成形し、水を充填してγ線を25KGy照射したところ、照射滅菌後90日目において、分離膜中のラジカルスピン含有量は43×1015スピン/g、PVP含有率は11.4重量%であり、40容量%エタノール循環液中のPVP濃度も57ppmと何れも高かった。また、トロンボキサンB2増加率は3.1であった。ところが、同様に作成したモジュールの60℃、4週間加速試験後のラジカルスピン含有量は5.2×1015スピン/gまで減少し、一方、トロンボキサンB2増加率は9.4と増大し、抗血栓性は低下した。
【0035】
【発明の効果】
本発明のポリスルホン系血液処理モジュールは、放射線滅菌後のラジカルスピン含有量が少なく、長期保管中も抗血栓状態を保持できるため、血液浄化の分野に好適に利用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a blood processing module for the purpose of removing blood waste products by extracorporeal circulation, and is used in the field of treatment such as blood purification, in particular hemodialysis, blood filtration, and blood filtration dialysis substituting for renal function. Is.
[0002]
[Prior art]
In recent years, many membrane separation technologies have been put into practical use, and various separation membranes are used for separating a target substance from a liquid or gas mixture and removing impurities. As a material for the separation membrane, an organic polymer is generally used. Examples of the natural polymer include cellulose, and examples of the synthetic polymer include polyacrylonitrile, polyamide, polyimide, polyolefin, polysiloxane, polysulfone, and polymethacrylate. Among these, polysulfone polymers are widely used as industrial separation membranes because they exhibit excellent resistance to radiation, heating, and chemicals such as acids and alkalis. Moreover, since it is excellent in biocompatibility and safety, it has recently been attracting attention as a separation membrane material in medical applications, and demand is increasing.
[0003]
However, polysulfone-based polymers are hydrophobic resins that do not have hydrophilic groups. When used as medical devices, particularly as separation membranes for blood treatment, they may cause poor water permeability and activation of the blood coagulation system. . Therefore, in order to improve them, hydrophilicity is usually imparted to the membrane surface by a hydrophilizing agent. A wide range of hydrophilizing agents are used, from low molecular weight compounds such as glycerin to hydrophilic polymers such as polyethylene glycol and polyvinyl pyrrolidone. The former is applied to the membrane surface, and the latter is added in a small amount to the stock solution. Thus, a separation membrane having improved hydrophilicity is obtained.
[0004]
In order to use these separation membranes as a medical device, sterilization is required after being incorporated into a housing and modularized. Conventionally, gas sterilization and high-pressure steam sterilization are known as sterilization methods for medical devices, but radiation sterilization has been widely used recently because of its excellent material permeability and productivity.
However, it is known that radiation sterilization causes damage to chemically unstable parts of the component material of the module. It is only necessary to select a radiation-resistant material for the housing, and the polysulfone polymer in the separation membrane is also highly radiation-resistant, so this problem is small, but hydrophilic polymers are generally radiation-resistant because of their chemical structure. It is low and is prone to modification such as hydrolysis, main chain breakage and crosslinking.
Usually, the blood processing module is used for several months to 2 to 3 years after manufacture, and during that time, it is placed in a storage area of a hospital / facility. During such long-term storage, the transformation gradually progressed, and as a result, the antithrombogenicity may be lowered before use.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a polysulfone-based blood treatment module in which the antithrombogenicity does not decrease even when stored for a long time after radiation sterilization in order to solve the above-described problems.
[0006]
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present inventors have found that if the radical spin content remaining in the film after radiation sterilization is not more than a certain value, it is possible to suppress a decrease in antithrombogenicity during long-term storage. It was. That is, polysulfone-based blood treatment module of the present invention, a polysulfone-based polymer, and the polyvinyl pyrrolidone blood processing modules radiation sterilization incorporates hollow fiber membranes made of, hollow fiber membrane, polyvinylpyrrolidone in the membrane Content of 5.0 to 7.5% by weight, and when 200 cc of 40% ethanol aqueous solution is circulated with respect to 1.5 m 2 inside the hollow fiber, the concentration of polyvinylpyrrolidone eluted in the aqueous solution is 10 ppm. or less, further by that the space inside the module to radiation sterilization in a dry state, and the radical spin content of the hollow fiber membrane 2.1 × 10 15 spin / g~ 3.3 × 10 15 spins / g characterized in that it was.
[0007]
In the separation membrane incorporated in the blood processing module of the present invention, the polysulfone polymer as the first component is an aromatic having a repeating structure of the following chemical structural formula (1) or (2) unit: Group polysulfone polymer. This includes a so-called polysulfone derivative in which a functional group or an alkyl group is bonded to an aromatic ring. Ar in the formula represents a para-disubstituted phenyl group, and the degree of polymerization and molecular weight are not particularly limited.
Figure 0003928910
[0008]
The second component is polyvinylpyrrolidone (hereinafter referred to as PVP), which is selected because it has excellent compatibility with the polysulfone polymer and relatively little activation of the blood coagulation system. Since various grades of PVP are commercially available, they may be used. However, in order to remain on the surface of the separation membrane and impart appropriate hydrophilicity, PVP must have a weight average molecular weight of at least 100,000. It is preferable to use it. Further, for the purpose of controlling the affinity with the polysulfone polymer and the hydrophilicity of the membrane surface, a copolymer with an ester vinyl monomer such as vinyl acetate may be included.
[0009]
The content of PVP in the separation membrane is one of the important parameters for achieving the present invention. That is, when the PVP content is too low, the hydrophilic effect is insufficient and the antithrombotic property cannot be exhibited. On the other hand, when the PVP content is too high, the pores are narrowed due to the swelling of the PVP when containing water, and the permeation performance decreases. there is a possibility. Moreover, since the radical spin content in the separation membrane after radiation sterilization also depends on the PVP content, it is preferable that the PVP content is not increased excessively. Therefore, the preferable range of the PVP content satisfying both is 3.0 to 9.0% by weight. A more preferable range is 5.0 to 7.5% by weight.
[0010]
The radical spin content referred to in the present invention is a value obtained by measuring the amount of radical spin in the separation membrane 90 ± 3 days after storage at room temperature with an electron spin resonance apparatus after incorporating the separation membrane into a module and sterilizing by radiation. As a product, it is a value converted from a radical spin amount of 1,1-diphenyl-2-picrylhydrazyl into a radical spin amount per 1 g of film. In general, after radiation sterilization, extremely unstable radical species in the generated film immediately disappear, and those with slightly inferior reactivity remain for a long time. The present inventors have found that if these are 90% or less on the 90th day, even if an accelerated test corresponding to storage for 2 years is carried out thereafter, the decrease in antithrombogenicity is suppressed.
In the blood processing module of the present invention, the radical spin content after radiation sterilization is 20.0 × 10 15 spins / g or less, and the decrease in antithrombogenicity is suppressed even after long-term storage. More preferably, it is 10.0 × 10 15 spin / g or less, and most preferably 3.0 × 10 15 spin / g or less.
[0011]
Hereinafter, embodiments of the blood processing module of the present invention will be described in detail.
As the membrane forming stock solution, a polysulfone polymer and PVP dissolved in a solvent and degassed under reduced pressure is used. Examples of the solvent include N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2-pyrrolidone, and dimethyl sulfoxide. These may be used alone or in a mixture at any ratio. Absent. Furthermore, a small amount of water or salt may be included for the purpose of controlling the coagulation rate. In order to form a hollow film, it is necessary to make the viscosity easy to handle in production, and in order to control the PVP content of the film to a desired range, the preferred composition of the film-forming stock solution is a polysulfone polymer. 16 to 18% by weight, PVP is 4 to 10% by weight, and the remainder is the solvent.
[0012]
The formation of the hollow fiber may be performed by a known method, but it is important to control the composition of the hollow agent in order to obtain the permeation performance suitable for the blood processing module referred to in the present invention. In order to stably control the permeation performance of the separation membrane, a method of using a mixed solution of water and a solvent as the hollow agent is preferable, and the solvent is N, N-dimethylacetamide, N, N-dimethylformamide, N-methyl-2. -Selected from pyrrolidone, dimethyl sulfoxide. A preferable composition of the hollow agent is 5 to 40% by weight of the solvent, and the remainder is water. If the ratio of the solvent is higher than this, the hollow shape cannot be maintained until solidification, which causes production trouble such as yarn breakage. On the other hand, if it is low, sufficient permeation performance as a membrane cannot be achieved. A more preferred range is 10 to 25% by weight.
[0013]
These membrane-forming stock solution and hollow agent are simultaneously discharged from a double spinneret kept at 50 to 80 ° C., introduced into a warm water coagulation bath through air travel, and then rolled up to obtain a hollow fiber-like separation membrane. Subsequently, after an extraction step using an aqueous medium, which will be described later, the membrane is washed with water, and further a glycerin or polyethylene glycol aqueous solution is attached as a pore size retaining agent, followed by drying at 70 to 80 ° C., thereby obtaining a dry separation membrane.
[0014]
The separation membrane is further subjected to a processing step, and then incorporated into a housing to form a blood processing module, which undergoes radiation sterilization. At that time, a part of the radical species generated in the separation membrane remains, and as a result of gradually changing the PVP during long-term storage, the antithrombogenicity may be lowered before use.
However, when the present inventors remove the adsorbed PVP present on the surface of the separation membrane before radiation sterilization, the content of radical spins is reduced, and the decrease in antithrombogenicity during long-term storage is suppressed. I found out. The reason for this has not been elucidated in detail, but it is presumed that the generation of radical species and the modification of PVP are mainly caused by the portion that has come out on the surface. That is, some of the PVP molecules are firmly embedded in the polysulfone-based polymer and the remaining portion is exposed on the surface, while the other is only adsorbed on the surface as a whole. The latter is essentially unnecessary because it is desorbed in blood, but its molecular weight is as large as 100,000 to several hundred thousand, and it is not removed by washing with water for a short time because it is adsorbed at multiple points. It seems to remain as a radical generation source. Therefore, it is considered that if this adsorbed PVP is sufficiently removed before radiation sterilization, the radical spin content after sterilization is reduced, and the film surface is prevented from being modified.
[0015]
In order to efficiently remove the adsorbed PVP remaining on the membrane surface, the separation membrane may be extracted using an aqueous medium described below.
The aqueous medium referred to here is a medium that can dissolve only PVP without dissolving the polysulfone-based polymer, and has a desorption effect on the adsorbed PVP on the surface of the polysulfone-based polymer. Specifically, an aqueous solution containing 30 to 95% by volume of a water-miscible alcohol such as methanol, ethanol, propanol, butanol and glycerol, and tetrahydrofuran, dimethyl sulfoxide, N, N-dimethylformamide, N, N- An aqueous solution containing 30 to 60% by volume of a water-miscible aprotic organic solvent such as dimethylacetamide and N-methyl-2-pyrrolidone can be used. What is necessary is just to select arbitrarily from these.
In the extraction with an aqueous medium, the higher the temperature, the higher the effect of removing the adsorbed PVP. However, it is desirable to use at 35 to 90 ° C. from the viewpoint of handling in production. If it extracts for 15 to 120 minutes in this temperature range, adsorption | suction PVP can be fully removed. When the temperature is too low, it is necessary to spend more time than this, and productivity is lowered. The extraction method is not particularly limited, and the wound bundle after film formation may be completely immersed in an aqueous medium or showered. Of course, the separation membrane may be incorporated into the housing and then passed through the module, which is preferable because the extraction efficiency increases.
[0016]
The evaluation that the adsorbed PVP on the film surface has been removed is performed as follows. That is, a module having a membrane area of 1.5 m 2 is prepared by a method described later, and after radiation sterilization, 200 cc of a 40 vol% ethanol aqueous solution at 37 ° C. is circulated inside the hollow fiber for 2 hours, and the eluted PVP concentration is measured. PVP in the circulating fluid has a molecular weight region of several thousands to several hundred thousand when a gel filtration column is attached and monitoring is performed with ultraviolet absorption at 220 nm in a high-performance liquid chromatograph using 50 mM saline as a carrier. What is necessary is just to obtain | require a density | concentration from the calibration curve of a PVP standard goods about all the peaks seen. If this concentration is 10 ppm or less, a high molecular weight PVP peak having a molecular weight of 100,000 or more is not observed on the chromatogram, and it is judged that the adsorbed PVP on the membrane surface is substantially removed.
[0017]
Subsequently, the aqueous medium remaining on the separation membrane is washed with water, and further a glycerin aqueous solution is adhered as a pore size retaining agent, and then dried at 70 to 80 ° C. for 10 hours or more to obtain a dried separation membrane. It is done.
[0018]
The shape of the separation membrane is hollow, but considering the strength and practicality as a blood treatment application, the separation membrane preferably comprises a hollow portion having an inner diameter of 80 to 400 μm and a film thickness portion having a thickness of 35 to 85 μm. If the inner diameter is smaller than this, the resistance to blood flow increases, and even if it becomes larger than necessary, the mass transfer efficiency in blood deteriorates, leading to a decrease in therapeutic effect. On the other hand, if the film thickness is too thin, the strength cannot be maintained, causing crushing during handling, and if it is too thick, the mass transfer resistance in the film increases and the permeation performance decreases, which is not preferable.
[0019]
The modularization method is not particularly limited, and a known method may be used. That is, after the separation membrane is inserted into the housing, both ends are potted to form a module having a predetermined membrane area. As the material of the housing, a resin having high transparency and resistant to radiation, such as a polystyrene block copolymer or polycarbonate, is used. The shape should just have the nozzle for letting a dialysate and a filtrate pass, respectively near both ends.
The packing density of the separation membrane in the module may be within a range in which the dialysis efficiency is not lowered due to the uneven flow of dialysate, or the membrane is not damaged when inserted into the housing, and is preferably 55 to 70%. The membrane area is the total surface area when the blood contact surface of the separation membrane is assumed to be a uniform plane, and is preferably in the range of 0.01 to 2.5 m 2 . If it is smaller than this, the therapeutic effect as a blood treatment module will not be exhibited. On the other hand, if it is too large, the amount of blood taken out of the body increases, which is not preferable.
[0020]
Next, a potting agent is injected into both ends of the housing and cured, and then both end surfaces are cut to open the hollow fibers. As the potting agent, polyurethane resin, epoxy resin, and silicon resin are widely used, and any of these may be used. A header with a blood introduction / discharge nozzle is attached to the housing together with a rubber packing, and is fastened or welded so as not to be detached.
The blood treatment module may be in a dry state where the space other than the separation membrane and the housing is filled with air or an inert gas, kept under a reduced pressure, or a wet state filled with an aqueous solution. Absent. However, since the radical generation amount induced by the hydroxy radical is small or the radical spin content in the film is smaller in the dry state, the space inside the module is more preferably in the dry state. In this case, the moisture content of the separation membrane is not particularly limited.
[0021]
In performing radiation sterilization on the module, the radiation source is not particularly limited, but gamma rays from cobalt 60 are widely used for radiation sterilization of medical devices. In addition, although X-rays and electron beams can be used, it is most preferable to use γ rays from the viewpoint of material permeability. Irradiation dose should just follow the sterilization conditions of a general medical device, should just be the range of 15-50KGy, Preferably it is 20-35KGy.
As described above, the blood processing module of the present invention is obtained.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to it. The numerical values used in the examples are measured by the following procedure.
[0023]
(Measurement of Radical Spin Content in Separation Membrane) 50 separation membranes × 5 cm were taken out from the blood treatment module 90 ± 3 days after radiation sterilization and freeze-dried for 4 hours. The reduced pressure was released under a nitrogen stream, inserted into a measurement sample tube together with nitrogen gas, sealed, and then ice-cooled with dry ice until the next day's measurement started. The measurement was performed using an electron spin resonance apparatus (JEOL JES-FE2XG) at room temperature at a magnetic field of 3400 ± 100 G, microwave irradiation of 0.4 mW, a sweep time of 1 minute, and an intensity of 200 times. In addition, as a standard product, a 1,1-diphenyl-2-picrylhydrazyl benzene solution (2.9 × 10 −6 mol / liter) was used. From the relative ratio to the manganese marker built in the device, The radical spin content of was calculated. This value was divided by the dry weight of the separation membrane to obtain the radical spin content per gram of membrane.
[0024]
(Elution Evaluation of Separation Membrane Adsorbed PVP) A blood treatment module 90 ± 3 days after radiation sterilization was prepared with a membrane area of 1.5 m 2 , and 200 cc of a 40 vol% ethanol aqueous solution was flowed at a flow rate of 200 cc / min inside the hollow fiber. At 37 ° C. for 2 hours. Circulating liquid 0.05 cc was injected into a high-performance liquid chromatograph apparatus equipped with a gel filtration column (Asahipak GF-710HQ manufactured by Showa Denko KK), and an ultraviolet region of 220 nm while flowing 50 mM saline at a flow rate of 1.0 cc / min. Monitored by absorption. The PVP concentration was determined from a calibration curve using a PVP standard for a peak in the polymer region with a retention time of 6 to 10 minutes. The quantitative limit of PVP was 2.5 ppm.
[0025]
(Evaluation of Antithrombogenicity of Separation Membrane) A separation membrane was cut out from the blood treatment module 90 ± 3 days after radiation sterilization, and a mini-module consisting of 300 pieces with a length of 20 cm was prepared. The module was filled with heparinized human fresh blood at 37 ° C. for 10 minutes, and then the blood was extruded and collected. The blood before and after filling was separated into plasma, and the thromboxane B2 concentration in the plasma was measured by the radioimmunoassay method, and the increase rate after filling with respect to before filling was calculated. In addition, as a positive control with severe platelet activation, a membrane containing no PVP was used and compared with the test product at the same time.
[0026]
(Measurement of PVP content in separation membrane) 5 mg of the separation membrane washed with water and lyophilized after irradiation sterilization was weighed, and the PVP content was calculated from the total nitrogen content measured using an elemental analyzer.
[0027]
[Example 1]
17.5 parts of a polysulfone polymer (Amoco: P-1700) and 4.5 parts of PVP (BASF: K90, weight average molecular weight 360,000) 4.5 parts are added to N, N-dimethylacetamide (hereinafter referred to as DMAC) 78 A film-forming stock solution was obtained by adding and dissolving to the part. The hollow agent was a mixture of 12.5 parts of DMAC and 87.5 parts of water, and these were discharged from a double spinneret at 40 ° C., passed through a coagulation bath, and wound around a cassette. The wound bundle was immersed in a 50% by volume DMAC aqueous solution, extracted at 75 ° C. for 30 minutes to extract excess PVP, and then washed with water. Further, a 45% by weight glycerin aqueous solution was attached and dried at 70 ° C. for 10 hours to obtain a dry film.
When this membrane was formed into a module with a membrane area of 1.5 m 2 and γ-rays were irradiated with 20 KGy, on the 90th day after irradiation sterilization, the radical spin content in the separation membrane was 2.7 × 10 15 spins / g, The PVP content was 6.2% by weight, and the PVP concentration in the 40% by volume ethanol circulating liquid was 6.8 ppm. Moreover, the increase rate of thromboxane B2 was 2.3, and the antithrombogenicity was clearly superior to 10.1 of the positive control. The module prepared in the same manner had a radical spin content of 2.3 × 10 15 spins / g after 4 weeks acceleration test at 60 ° C., and the thromboxane B2 increase rate was only 2.5, and antithrombogenicity was maintained. .
[0028]
[Example 2]
A dry film was obtained under the same conditions as in Example 1, except that a 35% by volume DMAC aqueous solution was used as the aqueous medium, and immersion extraction was performed at 90 ° C. for 30 minutes. This membrane was formed into a module having a membrane area of 1.5 m 2 , and after vacuuming and nitrogen substitution were repeated three times, it was vacuum packed.
When γ-rays were irradiated with 25 KGy, on the 90th day after irradiation sterilization, the radical spin content in the separation membrane was 2.1 × 10 15 spin / g, the PVP content was 6.4% by weight, and 40% by volume. The PVP concentration in the ethanol circulating liquid was 5.4 ppm. Moreover, the increase rate of thromboxane B2 was 2.4. The module prepared in the same manner had a radical spin content of 2.0 × 10 15 spin / g after 4 weeks acceleration test at 60 ° C., and the increase rate of thromboxane B2 was 2.5, and antithrombogenicity was maintained. .
[0029]
[ Reference Example 1 ]
A dry film was obtained under the same conditions as in Example 1 except that a 50% by volume DMAC aqueous solution was used as the aqueous medium, and immersion extraction was performed at 90 ° C. for 60 minutes. This membrane was formed into a module having a membrane area of 1.5 m 2 , filled with 500 ppm of sodium pyrosulfite aqueous solution and allowed to stand overnight.
When γ-ray irradiation was performed at 27.5 KGy, on the 90th day after irradiation sterilization, the radical spin content in the separation membrane was 6.9 × 10 15 spin / g, and the PVP content was 6.0% by weight. The PVP concentration in the volume% ethanol circulating liquid was 2.5 ppm or less. Moreover, the increase rate of thromboxane B2 was 2.7. Similarly 60 ° C. a module created, radical spin content after 4 weeks acceleration test 3.1 × 10 15 spin / g, thromboxane B2 increase rate remains at 2.7, antithrombotic was retained .
[0030]
[Example 3 ]
The wound bundle after spinning obtained in Example 1 was washed with water and glycerin without being treated with an aqueous medium to obtain a dry film. After forming this membrane into a module having a membrane area of 1.5 m 2 , a 60 vol% ethanol aqueous solution at 40 ° C. was passed at a flow rate of 50 ml / min, followed by total filtration extraction for 2 hours. Further, the module was washed with water, the separation membrane was replaced with a 40% by weight glycerin aqueous solution, and the hollow portion was air flushed.
When γ-rays were irradiated with 22 KGy, on the 90th day after irradiation sterilization, the radical spin content in the separation membrane was 3.3 × 10 15 spin / g, the PVP content was 6.6% by weight, and 40% by volume. The PVP concentration in the ethanol circulating liquid was 6.0 ppm. Moreover, the increase rate of thromboxane B2 was 2.9. The module prepared in the same manner had a radical spin content of 3.3 × 10 15 spin / g after 4 weeks acceleration test at 60 ° C., the thromboxane B2 increase rate was only 3.2, and antithrombogenicity was maintained. .
[0031]
[ Reference Example 2 ]
The wound bundle after spinning obtained in Example 1 was washed with water and treated with glycerin without being treated with an aqueous medium to obtain a dried film. After forming this membrane into a module having a membrane area of 1.5 m 2 , a 40 vol% tetrahydrofuran aqueous solution at 40 ° C. was passed at a flow rate of 50 ml / min, and the whole was extracted by filtration for 2 hours.
When the module was washed with water and irradiated with 22 KGy with γ-rays filled with water, the radical spin content in the separation membrane was 9.3 × 10 15 spins / g and the PVP content was 90 days after irradiation sterilization. Was 6.6% by weight, and the PVP concentration in the 40% by volume ethanol circulating liquid was 2.5 ppm or less. Moreover, the increase rate of thromboxane B2 was 3.2. The module prepared in the same manner had a radical spin content of 3.3 × 10 15 spin / g after 4 weeks acceleration test at 60 ° C., an increase rate of thromboxane B2 was only 3.5, and antithrombogenicity was maintained. .
[0032]
[Comparative Example 1]
The wound bundle after spinning obtained in Example 1 was washed with water and glycerin treated without being extracted with an aqueous medium to obtain a dried film.
The membrane was formed into a module having a membrane area of 1.5 m 2 , and after 90 days after sterilization by γ-ray irradiation of 22.5 KGy, the radical spin content in the separation membrane was 23 × 10 15 spin / g, and the PVP content was It was 9.2% by weight, and the PVP concentration in the 40% by volume ethanol circulating liquid was 47 ppm, both of which were high. Moreover, the increase rate of thromboxane B2 was 3.1. However, the radical spin content after the acceleration test at 60 ° C. for 4 weeks of the module prepared in the same manner decreased to 2.4 × 10 15 spin / g, while the increase rate of thromboxane B2 increased to 9.5, Antithrombogenicity decreased.
[0033]
[Comparative Example 2]
The dry membrane of Comparative Example 1 was molded into a module having a membrane area of 1.5 m 2 , filled with water and irradiated with γ rays at 22.5 KGy. On the 90th day after irradiation sterilization, the radical spin content in the separation membrane Was 31 × 10 15 spin / g, and the PVP concentration in the 40 vol% ethanol circulating liquid was 19 ppm, both of which were high. Moreover, the increase rate of thromboxane B2 was 3.3. However, the radical spin content after the acceleration test at 60 ° C. for 4 weeks of the module prepared in the same manner decreased to 3.3 × 10 15 spin / g, while the increase rate of thromboxane B2 increased to 10.2. Antithrombogenicity decreased.
[0034]
[Comparative Example 3]
A wound bundle was obtained under the same conditions as in Example 1 except that 15 parts of the polysulfone polymer and 9 parts of PVP were added to and dissolved in 76 parts of DMAC. This bundle was extracted by immersion in a 25% by volume dimethyl sulfoxide aqueous solution at 75 ° C. for 30 minutes, washed with water for 1 hour, further adhered with a 45% by weight glycerin aqueous solution, and dried at 70 ° C. for 10 hours.
When this membrane was formed into a module with a membrane area of 1.5 m 2 , filled with water and irradiated with 25 KGy of γ rays, the radical spin content in the separation membrane was 43 × 10 15 spins 90 days after irradiation sterilization. / G, PVP content was 11.4 wt%, and the PVP concentration in the 40 vol% ethanol circulating liquid was also as high as 57 ppm. Moreover, the increase rate of thromboxane B2 was 3.1. However, the radical spin content after the acceleration test at 60 ° C. for 4 weeks of the module prepared in the same manner decreased to 5.2 × 10 15 spin / g, while the increase rate of thromboxane B2 increased to 9.4, Antithrombogenicity decreased.
[0035]
【The invention's effect】
The polysulfone-based blood treatment module of the present invention has a low radical spin content after radiation sterilization and can maintain an antithrombotic state even during long-term storage, and therefore can be suitably used in the field of blood purification.

Claims (2)

ポリスルホン系高分子、およびポリビニルピロリドンからなる中空糸膜を組み込んで放射線滅菌された血液処理モジュールにおいて、該中空糸膜は、該膜中のポリビニルピロリドンの含有率が5.0〜7.5重量%であり、該中空糸内側1.5m に対して40容量%エタノール水溶液200 cc を循環したとき、該水溶液中に溶出するポリビニルピロリドン濃度が10ppm以下であり、更にモジュール内部の空間をドライ状態で放射線滅菌したことにより、該中空糸膜中のラジカルスピン含有量を2.1×10 15 スピン/g〜3.3×1015 スピン/gとしたことを特徴とするポリスルホン系血液処理モジュール。Polysulfone polymer, and the hollow fiber membrane incorporated in radiation sterilized blood treatment module comprising a polyvinyl pyrrolidone, the hollow fiber membrane, the content of polyvinylpyrrolidone in the membrane 5.0 to 7.5 weight When 200 cc of 40 volume% ethanol aqueous solution is circulated with respect to 1.5 m 2 inside the hollow fiber, the concentration of polyvinylpyrrolidone eluted in the aqueous solution is 10 ppm or less, and the space inside the module is in a dry state. in by the radiation sterilization, polysulfone-based blood treatment module, characterized in that the radical spin content of the hollow fiber membrane and 2.1 × 10 15 spin / g~ 3.3 × 10 15 spins / g. 該中空糸膜中の吸着ポリビニルピロリドンを水性媒体で抽出除去後、放射線滅菌して得られる請求項1に記載のポリスルホン系血液処理モジュール。The polysulfone-based blood treatment module according to claim 1, which is obtained by extracting and removing the adsorbed polyvinylpyrrolidone in the hollow fiber membrane with an aqueous medium, followed by radiation sterilization.
JP10397499A 1999-04-12 1999-04-12 Polysulfone blood treatment module Expired - Fee Related JP3928910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10397499A JP3928910B2 (en) 1999-04-12 1999-04-12 Polysulfone blood treatment module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10397499A JP3928910B2 (en) 1999-04-12 1999-04-12 Polysulfone blood treatment module

Publications (2)

Publication Number Publication Date
JP2000296318A JP2000296318A (en) 2000-10-24
JP3928910B2 true JP3928910B2 (en) 2007-06-13

Family

ID=14368314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10397499A Expired - Fee Related JP3928910B2 (en) 1999-04-12 1999-04-12 Polysulfone blood treatment module

Country Status (1)

Country Link
JP (1) JP3928910B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002177748A (en) * 2000-12-08 2002-06-25 Nok Corp Method for treating porous organic hollow fiber membrane
ATE505223T1 (en) 2002-07-19 2011-04-15 Baxter Int SYSTEM FOR PERITONEAL DIALYSIS
US8029454B2 (en) 2003-11-05 2011-10-04 Baxter International Inc. High convection home hemodialysis/hemofiltration and sorbent system
US8038639B2 (en) 2004-11-04 2011-10-18 Baxter International Inc. Medical fluid system with flexible sheeting disposable unit
KR100844735B1 (en) * 2004-08-06 2008-07-07 아사히 카세이 쿠라레 메디칼 가부시키가이샤 Polysulfone hemodialyzer
JP5343317B2 (en) 2005-03-29 2013-11-13 東レ株式会社 Modified substrate and method for producing modified substrate
JP4843988B2 (en) * 2005-04-05 2011-12-21 東洋紡績株式会社 Polysulfone hollow fiber membrane blood purifier
US8114276B2 (en) 2007-10-24 2012-02-14 Baxter International Inc. Personal hemodialysis system
US9415150B2 (en) 2007-11-09 2016-08-16 Baxter Healthcare S.A. Balanced flow dialysis machine
US8057679B2 (en) 2008-07-09 2011-11-15 Baxter International Inc. Dialysis system having trending and alert generation
AU2016282817B2 (en) 2015-06-25 2020-09-17 Gambro Lundia Ab Medical device system and method having a distributed database
JP7153017B2 (en) 2016-12-21 2022-10-13 ガンブロ・ルンディア・エービー A medical device system that includes an information technology infrastructure with a secure cluster domain that supports external domains
JP2020533162A (en) * 2017-09-11 2020-11-19 ソルベイ スペシャルティ ポリマーズ ユーエスエー, エルエルシー Purification methods involving the use of membranes obtained from bio-based sulfone polymers

Also Published As

Publication number Publication date
JP2000296318A (en) 2000-10-24

Similar Documents

Publication Publication Date Title
JP4211168B2 (en) Dialyzer manufacturing method and sterilization method
JP4453248B2 (en) Method for producing hollow fiber membrane and hollow fiber membrane module
JP3097149B2 (en) Medical dialysis module and method of manufacturing the same
RU2113273C1 (en) Polysulfone-based hollow-fiber membrane and method of manufacturing thereof
JP5011722B2 (en) Method for producing medical separation membrane and method for producing medical separation membrane module using the medical separation membrane
JP5407713B2 (en) Polysulfone-based hollow fiber membrane module and manufacturing method
JP3928910B2 (en) Polysulfone blood treatment module
RU2648027C1 (en) Hollow fiber membrane blood purification device
JP4889109B2 (en) Hollow fiber membrane blood purification device
JP5857407B2 (en) Hollow fiber membrane and method for producing hollow fiber membrane
KR20150123780A (en) Hollow-fiber membrane module, process for producing hollow-fiber membrane, and process for producing hollow-fiber membrane module
KR102230435B1 (en) Porous membrane, blood purifying module incorporating porous membrane, and method for producing porous membrane
JP2001170171A (en) Semipermeable membrane for blood processing and dialyzer for blood processing using the same
JP3966481B2 (en) Semipermeable membrane
JP3640737B2 (en) Polysulfone-based permselective hollow fiber membrane
JP3432240B2 (en) Sterilized dialyzer
JP5644328B2 (en) Hollow fiber membrane module and method for producing hollow fiber membrane module
JP2001170172A (en) Dialyzer for blood processing
JP2000135421A (en) Polysulfone-base blood purifying membrane
JPH04338223A (en) Treatment of permselective membrane
JP6558063B2 (en) Hollow fiber membrane module and manufacturing method thereof
JP4569315B2 (en) Modified hollow fiber membrane
JP3992186B2 (en) Method for producing hollow fiber membrane
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JP3334705B2 (en) Polysulfone-based selectively permeable hollow fiber membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060403

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060727

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061211

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070302

R150 Certificate of patent or registration of utility model

Ref document number: 3928910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120316

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130316

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140316

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees