JP2508656B2 - Manufacturing method of gas separation membrane - Google Patents

Manufacturing method of gas separation membrane

Info

Publication number
JP2508656B2
JP2508656B2 JP61201269A JP20126986A JP2508656B2 JP 2508656 B2 JP2508656 B2 JP 2508656B2 JP 61201269 A JP61201269 A JP 61201269A JP 20126986 A JP20126986 A JP 20126986A JP 2508656 B2 JP2508656 B2 JP 2508656B2
Authority
JP
Japan
Prior art keywords
film
plasma
gas
gas separation
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61201269A
Other languages
Japanese (ja)
Other versions
JPS6359334A (en
Inventor
義久 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP61201269A priority Critical patent/JP2508656B2/en
Publication of JPS6359334A publication Critical patent/JPS6359334A/en
Application granted granted Critical
Publication of JP2508656B2 publication Critical patent/JP2508656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、気体分離膜の製造方法に関する。更に詳し
くは、有機多孔質膜状体の表面にプラズマ重合膜よりな
る気体分離性薄膜を形成せしめた気体分離膜の製造方法
に関する。
TECHNICAL FIELD The present invention relates to a method for producing a gas separation membrane. More specifically, it relates to a method for producing a gas separation membrane in which a gas separation thin film made of a plasma-polymerized membrane is formed on the surface of an organic porous membrane.

[従来の技術] 酸素富化膜などとして使用される気体分離膜は、従来
有機多孔質膜状体の表面に気体分離性能のすぐれた薄
膜、例えばポリシロキサン、ポリカーボネート、ポリビ
ニルピリジン、ポリエステルなどの薄膜をキャスト法、
水面展開法、プラズマ重合法、コーティング法などによ
り形成させることによって製造されている。
[Prior Art] A gas separation membrane used as an oxygen-enriched membrane is a thin film having excellent gas separation performance on the surface of a conventional organic porous membrane, for example, a thin film of polysiloxane, polycarbonate, polyvinylpyridine, polyester or the like. The casting method,
It is manufactured by forming by a water surface spreading method, a plasma polymerization method, a coating method or the like.

このようにして製造される気体分離膜の性能は、気体
分離性能を有する薄膜によって大きく支配されるもの
の、その薄膜を表面に形成させる有機多孔質膜状体の性
状によっても影響される。また、形成された薄膜の有機
多孔質膜状体への付着耐久性も不足している場合が多
く、そのために有機多孔質膜状体表面を予めアルゴンガ
スの存在下でグロー放電し、プラズマエッチングしてお
くことも行われているが、この場合にはグロー放電時間
を長くしなければ有効ではないという欠点がみられる。
Although the performance of the gas separation membrane produced in this way is largely controlled by the thin film having gas separation performance, it is also affected by the properties of the organic porous membrane-like body which forms the thin film on the surface. In addition, the adhesion durability of the formed thin film to the organic porous film-like body is often insufficient, and therefore the surface of the organic porous film-like body is glow-discharged in the presence of argon gas in advance to perform plasma etching. However, in this case, there is a drawback that it is not effective unless the glow discharge time is extended.

[発明が解決しようとする問題点] 本発明者は、プラズマ重合法により気体分離性の薄膜
を形成させる際のプラズマエッチング前処理法として、
グロー放電時間が短かくしかも酸素富化膜として当然に
要求される酸素透過速度をそれによっても改善し得るよ
うな方法を求めて種々検討した結果、従来のアルゴンガ
ス存在下でのプラズマエッチングに代えて、プラズマエ
ッチングをフッ素化低級アルカン類の存在下で行なうこ
とにより、かかる課題が効果的に解決されることを見出
した。
[Problems to be Solved by the Invention] The present inventor has proposed a plasma etching pretreatment method for forming a gas-separable thin film by a plasma polymerization method.
As a result of various investigations for a method capable of improving the oxygen permeation rate, which is naturally required as an oxygen-enriched film with a short glow discharge time, it was found that plasma etching in the presence of argon gas was used instead of conventional plasma etching. It has been found that such problems can be effectively solved by performing plasma etching in the presence of fluorinated lower alkanes.

[問題点を解決するための手段] 従って、本発明は気体分離膜の製造方法に係り、この
方法では、有機多孔質膜状体の表面に気体分離性薄膜を
形成させ、気体分離膜を製造するに際し、気体分離性薄
膜の形成に先立って有機多孔質膜状体の表面を低級アル
カンまたは塩素化低級アルカンのフッ素化物でプラズマ
エッチングすることが行われる。
[Means for Solving Problems] Therefore, the present invention relates to a method for producing a gas separation membrane, in which a gas separation membrane is formed on the surface of an organic porous membrane to produce a gas separation membrane. At this time, the surface of the organic porous membrane is plasma-etched with a lower alkane or a fluorinated fluoride of a lower chlorinated alkane prior to the formation of the gas separating thin film.

有機多孔質膜状体としては、酢酸セルロース、ポリプ
ロピレン、ポリカーボネート、ポリスルホン、ポリフッ
化ビニリデンなどの多孔質体であって、支持体としての
十分な強度を保持する膜厚を有する平膜状、中空糸状な
どの膜状体が用いられる。
The organic porous membrane is a porous body such as cellulose acetate, polypropylene, polycarbonate, polysulfone, or polyvinylidene fluoride, and has a flat membrane shape or a hollow fiber shape having a thickness capable of maintaining sufficient strength as a support. Membranes such as

これらの有機多孔質膜状体は、まずプラズマエッチン
グされ、次いで好ましくはプラズマ重合されるが、これ
らのプラズマ処理は、例えば一端側が細長くなってお
り、そこに高周波発振器に接続されたコイルを巻き付け
た円筒状プラズマ反応装置を用いて行われる。
These organic porous membranes are first plasma etched and then preferably plasma polymerized, but these plasma treatments are, for example, elongated on one end side, around which a coil connected to a high frequency oscillator is wound. It is carried out using a cylindrical plasma reactor.

プラズマエッチングは、この反応装置の他端側の排気
口から排気して装置内を10-3Torrのオーダー迄減圧した
後、パーフルオロメタンCF4、パーフルオルエタンC
2F6、パーフルオロプロパンC3F8、トリフルオロメタンC
HF3などの低級アルカンのフッ素化物またはモノクロル
トリフルオロメタンCClF3、モノクロルペンタフルオロ
エタンC2ClF5、ジクロルテトラフルオロエタンC2Cl2F4
などの塩素化低級アルカンのフッ素化物を10-2〜10-1To
rrのオーダー迄装置内に導入し、出力約10〜200Wの高周
波を約1/2〜10分間程度グロー放電することにより行わ
れる。
Plasma etching was performed by exhausting the gas from the exhaust port on the other end of the reactor to reduce the pressure inside the reactor to the order of 10 -3 Torr, then using perfluoromethane CF 4 and perfluoroethane C 4 .
2 F 6 , perfluoropropane C 3 F 8 , trifluoromethane C
Fluoride of lower alkane such as HF 3 or monochlorotrifluoromethane CClF 3 , monochloropentafluoroethane C 2 ClF 5 , dichlorotetrafluoroethane C 2 Cl 2 F 4
Fluorinated chlorinated lower alkanes such as 10 -2 to 10 -1 To
It is carried out by introducing a high frequency power of about 10 to 200 W for about 1/2 to 10 minutes and then performing glow discharge for about rr to rr.

次いで行われるプラズマ重合は、反応装置内を一旦10
-3Torrのオーダー迄排気した後、そこにパーフルオロベ
ンゼン、パーフルオロトルエンなどのパーフルオロ芳香
族化合物、ヘキサメチルジシロキサンなどのシロキサン
化合物、トリメチルビニルシランなどの有機けい素化合
物、テトラフルオロエチレンなどのフッ素化オレフィン
などのモノマーを10-2〜10-1Torrのオーダー迄装置内に
導入し、出力約10〜200Wの高周波を約1/5〜10分間(パ
ーフルオロベンゼンを用いた場合)グロー放電すること
により行われる。
Next, the plasma polymerization to be performed is carried out once in the reactor.
After exhausting to the order of -3 Torr, perfluorobenzene, perfluoroaromatic compounds such as perfluorotoluene, siloxane compounds such as hexamethyldisiloxane, organosilicon compounds such as trimethylvinylsilane, tetrafluoroethylene, etc. Glow discharge by introducing monomers such as fluorinated olefins into the equipment up to the order of 10 -2 to 10 -1 Torr and high frequency with output of about 10 to 200 W for about 1/5 to 10 minutes (when using perfluorobenzene) It is done by doing.

[発明の効果] 本発明方法によって得られる気体分離膜は、プラズマ
エッチングによるグロー放電時間を従来のアルゴンガス
を用いた場合の半分以下に短縮することができ、この処
理によって有機多孔質膜状体表面へのプラズマ重合膜よ
りなる気体分離性薄膜の付着耐久性を改善できるばかり
ではなく、酸素透過速度の改善をも同時に達成すること
ができるので、酸素富化膜などとしての有用性が更に高
められることになる。
EFFECTS OF THE INVENTION The gas separation membrane obtained by the method of the present invention can shorten the glow discharge time by plasma etching to less than half that in the case of using the conventional argon gas, and by this treatment, the organic porous membrane material Not only can the adhesion durability of the gas-separable thin film consisting of a plasma-polymerized film on the surface be improved, but also the improvement of the oxygen permeation rate can be achieved at the same time, further increasing the usefulness as an oxygen-enriched film. Will be done.

[実施例] 次に、実施例について本発明を説明する。EXAMPLES Next, the present invention will be described with reference to examples.

実施例1 酢酸セルロース系多孔質膜状体(日本ミリポアリミテ
ッド製品ミリポアフィルター;孔径0.05μm)を、円筒
状プラズマ反応装置に入れ、装置内を10-3Torrに排気し
た後、パーフルオロメタンガスを10-1Torrになる迄導入
し、13.56MHzの高周波を50Wの出力で印加し、8分間の
グロー放電を行った。
Example 1 A cellulose acetate-based porous membrane (Millipore filter manufactured by Japan Millipore Limited; pore diameter 0.05 μm) was placed in a cylindrical plasma reaction apparatus, and the inside of the apparatus was evacuated to 10 −3 Torr. It was introduced to -1 Torr, a high frequency of 13.56 MHz was applied with an output of 50 W, and glow discharge was performed for 8 minutes.

その後、一旦10-3Torr迄排気してから、パーフルオロ
ベンゼンを4×10-1Torr迄導入し、高周波を100Wの出力
で印加し、1分間のグロー放電を行ない、プラズマ重合
を行った。
Then, after exhausting once to 10 -3 Torr, perfluorobenzene was introduced up to 4 × 10 -1 Torr, high frequency was applied with an output of 100 W, glow discharge was performed for 1 minute, and plasma polymerization was performed.

前記多孔質膜状体の表面に、膜厚0.59μm(スローン
社製膜厚計DEKTAK-II-AVを用いて測定)のパーフルオロ
ベンゼンプラズマ重合膜が形成された。このプラズマ重
合膜形成多孔質膜状体について、圧力法による気体透過
膜としての評価を行ない、酸素の透過速度が4.1×10-5c
m3・cm/cm2・秒・cmHgの値を得た。
A perfluorobenzene plasma polymerized film having a film thickness of 0.59 μm (measured using a film thickness meter DEKTAK-II-AV manufactured by Sloan Co., Ltd.) was formed on the surface of the porous film body. This plasma polymerized film-forming porous film was evaluated as a gas permeable film by the pressure method, and the oxygen permeation rate was 4.1 × 10 -5 c.
The value of m 3 · cm / cm 2 · second · cmHg was obtained.

実施例2 実施例1において、パーフルオロメタンのグロー放電
時間を3分間に、またパーフルオロベンゼンのプラズマ
重合時間を45秒間にそれぞれ変更した。
Example 2 In Example 1, the glow discharge time of perfluoromethane was changed to 3 minutes, and the plasma polymerization time of perfluorobenzene was changed to 45 seconds.

厚さ0.44μmのプラズマ重合膜が形成され、このプラ
ズマ重合膜形成多孔質膜状体の酸素透過係数は2.8×10
-5cm3・cm/cm2・秒・cmHgであった。
A 0.44 μm-thick plasma polymerized film was formed, and the oxygen permeability coefficient of this plasma polymerized film-formed porous film was 2.8 × 10 5.
It was -5 cm 3 · cm / cm 2 · second · cmHg.

比較例1 実施例1においいて、パーフルオロメタンの代りにア
ルゴンガスを同じ圧力で用い、出力50Wで15分間のグロ
ー放電を行った後、パーフルオロベンゼンのグロー放電
を30秒間行った。
Comparative Example 1 In Example 1, argon gas was used instead of perfluoromethane at the same pressure, glow discharge was performed at an output of 50 W for 15 minutes, and then glow discharge of perfluorobenzene was performed for 30 seconds.

膜厚0.30μmのプラズマ重合膜が形成され、このプラ
ズマ重合膜形成多孔質膜状体の酸素透過係数は2.3×10
-5cm3・cm/cm2・秒・cmHgであった。
A plasma polymerized film with a thickness of 0.30 μm was formed, and the oxygen permeability coefficient of this plasma polymerized film-formed porous film was 2.3 × 10 5.
It was -5 cm 3 · cm / cm 2 · second · cmHg.

比較例2 実施例1において、10-3Torr迄排気した後、パーフル
オロメタンガス存在下でのグロー放電を行わずに、パー
フルオロベンゼンのプラズマ重合を30秒間行った。
Comparative Example 2 After evacuation to 10 −3 Torr in Example 1, plasma polymerization of perfluorobenzene was carried out for 30 seconds without glow discharge in the presence of perfluoromethane gas.

膜厚0.33μmのプラズマ重合膜が形成され、このプラ
ズマ重合膜形成多孔質膜状体の酸素透過係数は4.3×10
-6cm3・cm/cm2・秒・cmHgであった。
A plasma polymerized film with a thickness of 0.33 μm was formed, and the oxygen permeability coefficient of this plasma polymerized film-formed porous film was 4.3 × 10.
It was −6 cm 3 · cm / cm 2 · second · cmHg.

実施例3 実施例1において、他の酢酸セルロース系多孔質膜状
体(日本ミリポアリミテッド製品ミリポアフィルター;
孔径0.025μm)を用いると共に、パーフルオロメタン
ガス存在下でのグロー放電時間を種々に変更した。
Example 3 In Example 1, another cellulose acetate-based porous membrane (Millipore filter manufactured by Japan Millipore Limited;
A pore diameter of 0.025 μm) was used, and the glow discharge time in the presence of perfluoromethane gas was variously changed.

比較例3 比較例1において、実施例3で用いられた酢酸セルロ
ース系多孔質膜状体を用いると共に、アルゴンガス存在
下でのグロー放電時間を種々に変更した。
Comparative Example 3 In Comparative Example 1, the cellulose acetate-based porous membrane used in Example 3 was used, and the glow discharge time in the presence of argon gas was variously changed.

以上の実施例3および比較例3で得られたプラズム重
合膜形成多孔質膜状体について、セロファンテープ剥離
試験を行ない、プラズマ重合膜の付着性について評価し
た。得られた結果は、次の表に示される。
The plasma polymerized film-forming porous membranes obtained in Example 3 and Comparative Example 3 above were subjected to a cellophane tape peeling test to evaluate the adhesion of the plasma polymerized membrane. The results obtained are shown in the following table.

放電時間(分) 実施例3 比較例3 1 剥離せず 全部剥離 3 〃 〃 5 〃 一部剥離 8 〃 〃 10 〃 剥離せずTable Discharge time (minutes) Example 3 Comparative example 3 1 No peeling All peeling 3〃 〃 5〃 Partial peeling 8〃 〃 10〃 No peeling

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機多孔質膜状体の表面にプラズマ重合膜
よりなる気体分離性薄膜を形成させ、気体分離膜を製造
するに際し、気体分離性薄膜の形成に先立って有機多孔
質膜状体の表面を低級アルカンまたは塩素化低級アルカ
ンのフッ素化物でプラズマエッチングすることを特徴と
する気体分離膜の製造方法。
1. A method for forming a gas-separating thin film made of a plasma-polymerized film on the surface of an organic porous film-like body, and producing the gas-separating film, prior to forming the gas-separating thin film, the organic porous film-like body. A method for producing a gas separation membrane, which comprises plasma-etching the surface of a substrate with a fluoride of a lower alkane or a chlorinated lower alkane.
JP61201269A 1986-08-29 1986-08-29 Manufacturing method of gas separation membrane Expired - Lifetime JP2508656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201269A JP2508656B2 (en) 1986-08-29 1986-08-29 Manufacturing method of gas separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201269A JP2508656B2 (en) 1986-08-29 1986-08-29 Manufacturing method of gas separation membrane

Publications (2)

Publication Number Publication Date
JPS6359334A JPS6359334A (en) 1988-03-15
JP2508656B2 true JP2508656B2 (en) 1996-06-19

Family

ID=16438153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201269A Expired - Lifetime JP2508656B2 (en) 1986-08-29 1986-08-29 Manufacturing method of gas separation membrane

Country Status (1)

Country Link
JP (1) JP2508656B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056556A (en) * 2014-06-27 2014-09-24 南京大学 Modification method for etching surface of membrane-type artificial lung and bonding beta-cyclodextrin by using low-temperature plasma

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6495627B1 (en) 1995-07-11 2002-12-17 Nihon Kohden Corporation Conductive composition for biological electrode
US6673852B1 (en) 1995-07-11 2004-01-06 Nihon Kohden Corporation Conductive composition for biological electrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059927B2 (en) * 1980-09-02 1985-12-27 日東電工株式会社 Method of producing thin polymer film on film
JPS5945946A (en) * 1982-09-06 1984-03-15 Toyota Central Res & Dev Lab Inc Manufacture of porous hollow glass fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056556A (en) * 2014-06-27 2014-09-24 南京大学 Modification method for etching surface of membrane-type artificial lung and bonding beta-cyclodextrin by using low-temperature plasma

Also Published As

Publication number Publication date
JPS6359334A (en) 1988-03-15

Similar Documents

Publication Publication Date Title
US4046843A (en) Process for preparing membranes for separation of substances
US4483901A (en) Selectively gas-permeable composite membrane and process for production thereof
JPS60137417A (en) Gas separating member and its preparation
EP0288380A1 (en) Semi-permeable organo-mineral membrane, and processes for its preparation
JP2508656B2 (en) Manufacturing method of gas separation membrane
FR2461570A1 (en) PROCESS FOR PRODUCING FILMS, THIN SHEETS OR SHEETS, POLARIZING
EP2080734B1 (en) Method for manufacturing air cavities in microstructures
FR2926396A1 (en) METHOD FOR MANUFACTURING AMORPHOUS HYDROGENIC SILICON CARBIDE FILMS WITH THROUGH PORES AND FILMS THUS OBTAINED
JPH02127516A (en) Increase in internal burst pressure, gas-permeability and water-permeability of hollow fiber made of fine porous polymer
Inagaki et al. Gas separation membranes made by plasma polymerization of perfluorobenzene/cf4 and pentafluorobenzene/cf4 mixtures
Tu et al. Acrylamide plasma-induced polymerization onto expanded poly (tetrafluoroethylene) membrane for aqueous alcohol mixture vapor permeation separation
JPH051049B2 (en)
JPS61149226A (en) Gas permselective composite membrane and preparation thereof
JPH038808B2 (en)
JP2805794B2 (en) Manufacturing method of gas separation membrane
JPS6391123A (en) Porous hollow yarn composite membrane and its production
JPH03284325A (en) Production of gas separating membrane
JP2926869B2 (en) Hollow fiber surface treatment method for hollow fiber module
Spohr Report M2. 1 Etch hints for polymers with high track-etch-rate
JPS5833002B2 (en) Method for manufacturing filter media for water separation
KR950007320B1 (en) Complex gas separation membrane and plasma treatment method
JPS62129105A (en) Selective separation process of alcohol
JPS60139316A (en) Preparation of gas separating laminated composite membrane
JPS61141914A (en) Gas separation membrane
JPH0451222B2 (en)