JP2926869B2 - Hollow fiber surface treatment method for hollow fiber module - Google Patents

Hollow fiber surface treatment method for hollow fiber module

Info

Publication number
JP2926869B2
JP2926869B2 JP10454890A JP10454890A JP2926869B2 JP 2926869 B2 JP2926869 B2 JP 2926869B2 JP 10454890 A JP10454890 A JP 10454890A JP 10454890 A JP10454890 A JP 10454890A JP 2926869 B2 JP2926869 B2 JP 2926869B2
Authority
JP
Japan
Prior art keywords
hollow fiber
discharge
plasma
porous hollow
treatment method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10454890A
Other languages
Japanese (ja)
Other versions
JPH044023A (en
Inventor
正登 伊丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP10454890A priority Critical patent/JP2926869B2/en
Publication of JPH044023A publication Critical patent/JPH044023A/en
Application granted granted Critical
Publication of JP2926869B2 publication Critical patent/JP2926869B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、中空糸モジュールの中空糸表面処理方法に
関する。更に詳しくは、中空糸モジュールの多孔質中空
糸表面をプラズマ重合処理またはプラズマエッチング処
理する方法に関する。
Description: TECHNICAL FIELD The present invention relates to a hollow fiber surface treatment method for a hollow fiber module. More specifically, the present invention relates to a method for performing a plasma polymerization treatment or a plasma etching treatment on the surface of a porous hollow fiber of a hollow fiber module.

〔従来の技術〕[Conventional technology]

両端部に流体導入用および排出用ヘッダーを設け、ま
た胴部に流体導入孔および排出孔を設けた筒状体内に、
多数本の多孔質中空糸群を収容した中空糸モジュールは
周知である。
A fluid introduction and discharge header is provided at both ends, and a cylindrical body provided with a fluid introduction hole and a discharge hole in the body,
Hollow fiber modules containing a large number of porous hollow fiber groups are well known.

かかる中空糸モジュール内に収容される多孔質中空糸
は、それの表面特性を改善するために、中空糸外面側に
プラズマ重合膜またはプラズマエッチング膜を形成させ
た上で用いられることも多く行われている。例えば、 特開昭63−59334号公報: パーフルオロ芳香族化合物、シロキサン化合物、有機
けい素化合物、フッ素化オレフィンなどを用い、気体分
離膜を形成 特開昭62−23401号公報: 飽和または不飽和のパーフルオロ脂肪族化合物を用
い、限外ロ過膜を形成 特開昭62−68519号公報: ビス(トリメチルシリル)アセトアミドを用い、酸素
富化膜などの気体分離膜を形成 特開昭61−86908号公報: 含N系ガス(N2,NH3,MeNH2,Me2NH,NO,NO2など)、
含O系ガス(O2,COなど)または含S系ガス(SO2,H2S
など)を用い、親水性膜を形成 しかしながら、これらのプラズマ処理された多孔質中
空糸は、予めプラズマ処理された上で中空糸モジュール
の作製に用いられており、またその処理面も一般に中空
糸の外面側に限定されている。
A porous hollow fiber housed in such a hollow fiber module is often used after forming a plasma polymerized film or a plasma etching film on the outer surface side of the hollow fiber in order to improve its surface characteristics. ing. For example, JP-A-63-59334: A gas separation membrane is formed by using a perfluoroaromatic compound, a siloxane compound, an organosilicon compound, a fluorinated olefin, etc. JP-A-62-23401: Saturated or unsaturated Patent Application Publication JP-A-62-68519: Using Bis (trimethylsilyl) acetamide to Form a Gas Separation Membrane such as an Oxygen-Enriched Membrane Publication No .: N-containing gas (N 2 , NH 3 , MeNH 2 , Me 2 NH, NO, NO 2 etc.),
O-containing gas (O 2 , CO, etc.) or S-containing gas (SO 2 , H 2 S
However, these plasma-treated porous hollow fibers are used in the production of a hollow fiber module after being subjected to plasma treatment in advance, and the processing surface is also generally a hollow fiber. Is limited to the outer surface side.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

中空糸モジュールは、上記した如く種々の用途に用い
られており、それぞれの用途に応じて表面特性として親
水性が要求されたり、疎水性が要求されたり、あるいは
生体適合性が要求されたりする。
The hollow fiber module is used for various applications as described above, and hydrophilicity, hydrophobicity, or biocompatibility is required as a surface characteristic according to each application.

本発明の目的は、市販の中空糸モジュールを用い、こ
れらの各種の表面特性を多孔質中空糸の内面側、外面側
またはこれら両面側に付与し得る、中空糸モジュールの
中空糸の表面処理方法を提供することにある。
An object of the present invention is to provide a method for treating a hollow fiber surface of a hollow fiber module using a commercially available hollow fiber module and imparting these various surface characteristics to the inner surface, outer surface, or both surfaces of the porous hollow fiber. Is to provide.

〔課題を解決するための手段〕[Means for solving the problem]

かかる本発明の目的は、両端部に流体導入用および排
出用ヘッダーを、また胴部に流体導入孔および排出孔を
それぞれ設けた筒状体内に多数本の多孔質中空糸群が収
容された中空糸モジュールの外筒部に放電用コイルまた
は一対の対向電極を巻付け、 (1)胴部の各孔を閉塞させた状態で排出用ヘッダーを
真空ポンプに連結し、多孔質中空糸内部空間を減圧状態
とした後、 (2)両端部ヘッダーを閉塞させた状態で胴部排出孔を
真空ポンプに連結し、筒状体内の多孔質中空糸外部空間
を減圧状態とした後、 あるいは (3)排出用ヘッダーおよび胴部排出孔を真空ポンプに
連結し、多孔質中空糸の内部および外部空間を減圧状態
とした後、 減圧空間に導入されたガスに前記放電用コイルまたは一
対の対向電極から高周波電力を印加して、多孔質中空糸
の内面側、外面側またはこれら両面側にプラズマ処理膜
を形成させることにより達成される。
An object of the present invention is to provide a hollow fiber in which a large number of porous hollow fiber groups are accommodated in a cylindrical body provided with fluid introduction and discharge headers at both ends and a fluid introduction hole and a discharge hole at a body portion. A coil for discharge or a pair of counter electrodes is wound around the outer cylinder of the module. (1) The discharge header is connected to a vacuum pump with each hole of the body closed, and the internal space of the porous hollow fiber is depressurized. (2) Connect the body discharge hole to a vacuum pump with both end headers closed, and depressurize the porous hollow fiber external space in the cylindrical body, or (3) Discharge After connecting the header and the body discharge hole to a vacuum pump to reduce the pressure inside and outside of the porous hollow fiber, the gas introduced into the reduced pressure space is supplied with high-frequency power from the discharge coil or a pair of opposed electrodes. And apply The inner surface side of quality hollow fiber is achieved by forming the outer surface side or plasma treatment film on these both sides.

多数本の多孔質中空糸群は、中空糸モジュールの筒状
体内に収容された状態のままプラズマ処理されるので、
プラスチック、ガラス、セラミックスなどの非導電性材
料製筒状体の外筒部に放電用コイルまたは一対の対向電
極(2片のラベル状電極を筒状体外筒部の対向位置に隔
離して配置)を巻付け、そこから高周波電力を印加する
ようにする。
Since a large number of porous hollow fiber groups are subjected to plasma processing while being housed in the cylindrical body of the hollow fiber module,
A discharge coil or a pair of opposing electrodes (two pieces of label-like electrodes are placed separately at opposing positions of the outer cylindrical part of the cylindrical body) on the outer cylindrical part of a cylindrical body made of a non-conductive material such as plastic, glass, or ceramic. , And high frequency power is applied from there.

プラズマ処理は、用途に応じて上記各種の態様で行わ
れ、例えばポリフッ化ビニリデンの中空糸モジュールの
場合、中空糸の表面は疎水性であるため、それを水系の
フィルターとして使用する場合には親水性にする必要が
あり、そのためには原水と接する側のみが親水性で、透
過水側は疎水性である方が好ましく、その場合には前記
(1)の減圧状態とした後プラズマ処理が行われる。
The plasma treatment is performed in the above-mentioned various modes depending on the application.For example, in the case of a polyvinylidene fluoride hollow fiber module, since the surface of the hollow fiber is hydrophobic, when it is used as an aqueous filter, it is hydrophilic. In order to achieve this, it is preferable that only the side in contact with the raw water is hydrophilic and the permeate side is hydrophobic. In this case, the plasma treatment is performed after reducing the pressure in (1) above. Will be

プラズマ処理用ガスとしては、例えば上記の如き親水
性処理にはO2、NH3、NO2などが、疎水性処理にはCF4、C
2F6、C6F6、CF2=CF2、CF2=CFCF3などが、また生体適
合性処理にはNH3−O2混合ガスなどがそれぞれ用いられ
る。これらのプラズマ処理用ガスは、前記(1)、
(2)または(3)の減圧状態にそれぞれ対応して流体
導入用ヘッダー、胴部流体導入孔またはこれら両者から
減圧空間に導入される。
As the plasma processing gas, for example, O 2 , NH 3 , NO 2 and the like are used for the hydrophilic treatment as described above, and CF 4 and C are used for the hydrophobic treatment.
2 F 6 , C 6 F 6 , CF 2 = CF 2 , CF 2 = CFCF 3, and the like, and an NH 3 —O 2 mixed gas or the like is used for the biocompatibility treatment. These plasma processing gases are as described in the above (1),
The fluid is introduced into the decompression space from the fluid introduction header, the body fluid introduction hole, or both, corresponding to the reduced pressure state of (2) or (3), respectively.

プラズマ処理がポリスルホンのような親水性表面を有
する中空糸のモジュールについて行われる場合には、モ
ジュール内の空気は水に濡れると抜けなくなるという問
題がみられる。このような場合、親水性ポリマーの表面
を疎水性化する方法として、乾式ではCF4などのフッ素
系のガスを用いたグロー放電処理がある。
When the plasma treatment is performed on a module of a hollow fiber having a hydrophilic surface such as polysulfone, there is a problem that the air in the module cannot escape when wet with water. In such a case, as a method of making the surface of the hydrophilic polymer hydrophobic, there is a glow discharge treatment using a fluorine-based gas such as CF 4 in a dry method.

この場合には、ポリマー表面にF原子が取り込まれ、
疎水性にはなるが、同時に生ずるエッチング効果のため
に、中空糸ポリマー表面に大きいダメージを受けること
がある。また、表面に生成したF原子による表面エネル
ギーの減少は、エッチングにより表面粗さが増加してい
るために生ずる表面エネルギーの増加があるのであまり
効果がなく、また表面に取り込まれたF原子は、時間の
経過と共にポリマー主鎖の回転により内側にもぐり込
み、表面の疎水性化の度合いを低下させる。
In this case, F atoms are incorporated into the polymer surface,
While becoming hydrophobic, the hollow fiber polymer surface can be severely damaged due to the concurrent etching effect. In addition, the reduction of surface energy due to F atoms generated on the surface is not so effective because there is an increase in surface energy caused by the increase in surface roughness due to etching. As the time elapses, the polymer main chain is rotated inward by the rotation, thereby reducing the degree of surface hydrophobicity.

そのためには、中空糸ポリマー表面にF原子を取り込
ませかつエッチングが殆んど起こらないようにプラズマ
処理して疎水性化することが最も有効であり、それには
CF4、CHF3、C2F6、C3F8、C2H2F6などのフッ素化アルカ
ンではなく、CF2=CF2、CF2=CFCF3、CF2=CHFなどのフ
ッ素化オレフィンをプラズマ処理用ガスとして用い、モ
ジュール状態のまま中空糸表面にきわめて薄いフッ素系
ポリマー膜を直接形成させると、表面の疎水性化状態を
長期間にわたり維持させることができる。
For that purpose, it is most effective to incorporate F atoms into the surface of the hollow fiber polymer and to make it hydrophobic by plasma treatment so that etching hardly occurs.
CF 4, CHF 3, C 2 F 6, C 3 rather than the fluorinated alkanes, such as F 8, C 2 H 2 F 6, fluorinated such as CF 2 = CF 2, CF 2 = CFCF 3, CF 2 = CHF When an olefin is used as a plasma processing gas and an extremely thin fluoropolymer film is directly formed on the surface of the hollow fiber in a module state, the surface can be kept hydrophobic for a long period of time.

プラズマ処理するための放電用コイルまたは一対の対
向電極からの放電は、有効電力約10〜100Wの高周波を用
い、約1〜5分間程度放電させることによって行われ、
多孔質中空糸の内面側、外面側またはこれら両面側に、
用いられたプラズマ処理用ガスの種類に応じて各種の表
面特性を有するプラズマ重合膜またはプラズマエッチン
グ膜をそれぞれ形成させる。
The discharge from the discharge coil or the pair of opposed electrodes for plasma treatment is performed by using a high frequency of about 10 to 100 W of effective power and discharging for about 1 to 5 minutes,
On the inner surface side, outer surface side or these both sides of the porous hollow fiber,
A plasma-polymerized film or a plasma-etched film having various surface characteristics is formed according to the type of the plasma processing gas used.

〔発明の効果〕〔The invention's effect〕

本発明方法により、次のような効果が得られる。 The following effects can be obtained by the method of the present invention.

(1)モジュールを形成する多孔質中空糸の表面改質を
プラズマ処理で行っているため、乾式でクリーンな処理
ができる。
(1) Since the surface modification of the porous hollow fiber forming the module is performed by plasma processing, dry and clean processing can be performed.

(2)プラズマ処理用ガスの種類を選択することによ
り、任意の各種表面状態の多孔質中空糸を得ることがで
きる。
(2) By selecting the type of plasma processing gas, a porous hollow fiber having any of various surface states can be obtained.

(3)プラズマ処理用ガスの導入方法を変更することに
より、多孔質中空糸の内面側のみ、外面側のみあるいは
これら両面での表面改質を簡単に行うことができる。
(3) By changing the method of introducing the plasma processing gas, the surface modification can be easily performed only on the inner surface, only the outer surface, or both surfaces of the porous hollow fiber.

〔実施例〕〔Example〕

次に、実施例について本発明を説明する。 Next, the present invention will be described with reference to examples.

実施例1 ポリスルホン中空糸モジュールの両端部ヘッダーを閉
塞させた状態で胴部排出孔を真空ポンプに連結し、筒状
体内の多孔質中空糸外部空間を10-3Torr迄排気して減圧
状態とした後、 減圧空間にO2を5%含有するCF4(60 SCCM)を導入
し、内部圧力を0.06Torrとした状態で、モジュール外筒
部に巻付けられた放電用コイルから60Wの高周波を3分
間放電させた。 … 更に、この空間を10-3Torr迄排気した後、CF2=CF2
その減圧空間に導入し、内部圧力を0.08Torrとした状態
で、50Wの高周波を2分間放電させた。 … 未処理のもの、迄の処理したものおよび迄処理し
たものについて、それぞれのモジュールを水中浸漬した
後の空間透過量(単位:cm3/cm2/(kg/cm2)sec)を
測定した。得られた結果は、次の表に示される。
Example 1 With the headers at both ends of the polysulfone hollow fiber module closed, the body discharge hole was connected to a vacuum pump, and the outer space of the porous hollow fiber in the cylindrical body was evacuated to 10 -3 Torr to reduce the pressure. After that, CF 4 (60 SCCM) containing 5% O 2 was introduced into the decompression space, and the internal pressure was set to 0.06 Torr, and a high frequency of 60 W was discharged from the discharge coil wound around the outer tube of the module. Discharged for 3 minutes. Further, after this space was evacuated to 10 -3 Torr, CF 2 = CF 2 was introduced into the reduced pressure space, and a high frequency of 50 W was discharged for 2 minutes with the internal pressure being 0.08 Torr. For each of the untreated, treated, and treated samples, the permeation amount (unit: cm 3 / cm 2 / (kg / cm 2 ) sec) after immersing each module in water was measured. . The results obtained are shown in the following table.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】両端部に流体導入用および排出用ヘッダー
を、また胴部に流体導入孔および排出孔をそれぞれ設け
た筒状体内に多数本の多孔質中空糸群が収容された中空
糸モジュールの外筒部に放電用コイルまたは一対の対向
電極を巻付け、胴部の各孔を閉塞させた状態で排出用ヘ
ッダーを真空ポンプに連結し、多孔質中空糸内部空間を
減圧状態とした後、減圧空間に導入されたガスに前記放
電用コイルまたは一対の対向電極から高周波電力を印加
して、多孔質中空糸の内面側にプラズマ処理膜を形成さ
せることを特徴とする中空糸モジュールの中空糸表面処
理方法。
1. A hollow fiber module in which a plurality of porous hollow fiber groups are accommodated in a cylindrical body provided with fluid introduction and discharge headers at both ends and a fluid introduction hole and a discharge hole at a body. After winding a discharge coil or a pair of counter electrodes around the outer cylinder, connecting the discharge header to a vacuum pump with each hole of the body closed, and reducing the pressure inside the porous hollow fiber internal space, A high-frequency power is applied to the gas introduced into the reduced-pressure space from the discharge coil or the pair of opposed electrodes to form a plasma-treated film on the inner surface side of the porous hollow fiber, and the hollow fiber of the hollow fiber module is characterized in that Surface treatment method.
【請求項2】両端部に流体導入用および排出用ヘッダー
を、また胴部に流体導入孔および排出孔をそれぞれ設け
た筒状体内に多数本の多孔質中空糸群が収容された中空
糸モジュールの外筒部に放電用コイルまたは一対の対向
電極を巻付け、両端部ヘッダーを閉塞させた状態で胴部
排出孔を真空ポンプに連結し、筒状体内の多孔質中空糸
外部空間を減圧状態とした後、減圧空間に導入されたガ
スに前記放電用コイルまたは一対の対向電極から高周波
電力を印加して、多孔質中空糸の外面側にプラズマ処理
膜を形成させることを特徴とする中空糸モジュールの中
空糸表面処理方法。
2. A hollow fiber module in which a plurality of porous hollow fiber groups are housed in a cylindrical body provided with fluid introduction and discharge headers at both ends and a fluid introduction hole and a discharge hole at a body portion. A discharge coil or a pair of counter electrodes is wound around the outer cylinder, and the body discharge hole is connected to a vacuum pump with both end headers closed, so that the outer space of the porous hollow fiber inside the cylinder is depressurized. And applying a high-frequency power to the gas introduced into the decompression space from the discharge coil or the pair of opposed electrodes to form a plasma treatment film on the outer surface side of the porous hollow fiber. Hollow fiber surface treatment method.
【請求項3】両端部に流体導入用および排出用ヘッダー
を、また胴部に流体導入孔および排出孔をそれぞれ設け
た筒状体内に多数本の多孔質中空糸群が収容された中空
糸モジュールの外筒部に放電用コイルまたは一対の対向
電極を巻付け、排出用ヘッダーおよび胴部排出孔を真空
ポンプに連結し、多孔質中空糸の内部および外部空間を
減圧状態とした後、減圧空間に導入されたガスに前記放
電用コイルまたは一対の対向電極から高周波電力を印加
して、多孔質中空糸の内面側および外面側にプラズマ処
理膜を形成させることを特徴とする中空糸モジュールの
中空糸表面処理方法。
3. A hollow fiber module in which a plurality of porous hollow fiber groups are accommodated in a cylindrical body having fluid introduction and discharge headers at both ends and fluid introduction holes and discharge holes at a body. A discharge coil or a pair of counter electrodes is wound around the outer cylinder, the discharge header and the body discharge hole are connected to a vacuum pump, and the inside and outside space of the porous hollow fiber are reduced in pressure. A high-frequency power is applied to the introduced gas from the discharge coil or a pair of opposed electrodes to form a plasma-treated film on the inner surface and the outer surface of the porous hollow fiber. Surface treatment method.
【請求項4】プラズマ処理用ガスとしてフッ素化オレフ
ィンが用いられる請求項1、2または3記載の中空糸表
面処理方法。
4. The hollow fiber surface treatment method according to claim 1, wherein a fluorinated olefin is used as the plasma treatment gas.
【請求項5】プラズマ処理膜がプラズマエッチング膜で
ある請求項1、2または3記載の中空糸表面処理方法。
5. The hollow fiber surface treatment method according to claim 1, wherein the plasma treatment film is a plasma etching film.
【請求項6】プラズマ処理膜がプラズマ重合膜である請
求項1、2または3記載の中空糸表面処理方法。
6. The hollow fiber surface treatment method according to claim 1, wherein the plasma treatment film is a plasma polymerized film.
JP10454890A 1990-04-20 1990-04-20 Hollow fiber surface treatment method for hollow fiber module Expired - Lifetime JP2926869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10454890A JP2926869B2 (en) 1990-04-20 1990-04-20 Hollow fiber surface treatment method for hollow fiber module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10454890A JP2926869B2 (en) 1990-04-20 1990-04-20 Hollow fiber surface treatment method for hollow fiber module

Publications (2)

Publication Number Publication Date
JPH044023A JPH044023A (en) 1992-01-08
JP2926869B2 true JP2926869B2 (en) 1999-07-28

Family

ID=14383534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10454890A Expired - Lifetime JP2926869B2 (en) 1990-04-20 1990-04-20 Hollow fiber surface treatment method for hollow fiber module

Country Status (1)

Country Link
JP (1) JP2926869B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082347B2 (en) * 2006-09-05 2012-11-28 旭硝子株式会社 Separation membrane manufacturing method and separation membrane for water treatment
JP5688050B2 (en) * 2011-06-10 2015-03-25 富士フイルム株式会社 Plasma polymerizable composition, plasma polymerized film, structure and surface modification method using the same
CN112830557B (en) * 2021-01-06 2022-02-15 北京交通大学 Electrochemical membrane filtering device based on titanium fiber composite electrode and water treatment method thereof

Also Published As

Publication number Publication date
JPH044023A (en) 1992-01-08

Similar Documents

Publication Publication Date Title
US4073733A (en) PVA membrane and method for preparing the same
CA1207607A (en) Hydrophilized membrane of porous hydrophobic material and process of producing same
CA1300806C (en) Hydrophilic porous membrane of polyvinylidene fluoride and methodfor production thereof
KR20080033279A (en) Cross linking treatment of polymer membranes
JPS61161103A (en) Hydrophilic porous membrane and its preparation
JPS6217614B2 (en)
JP2926869B2 (en) Hollow fiber surface treatment method for hollow fiber module
CN108515751A (en) The polyamide composite nanofiltration membrane and preparation method thereof of containing mesopore silicon oxide intermediate
JPH02127516A (en) Increase in internal burst pressure, gas-permeability and water-permeability of hollow fiber made of fine porous polymer
WO2000010703A8 (en) Plasma treatment of polymer materials for increased dyeability
JPWO2016114051A1 (en) Hollow fiber membrane and method for producing hollow fiber membrane
JP2005220202A (en) Method for producing porous membrane and the resultant porous membrane
JP5082347B2 (en) Separation membrane manufacturing method and separation membrane for water treatment
JP2002233739A5 (en)
KR102072877B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
JPS61271003A (en) Hydrophilic compound porous membrane and its preparation
JPS6214903A (en) Process of turning hydrophobic microporous filter membrane hydrophilic
KR20020061895A (en) Process for producing inorganic membrane with ultrahydrophobic property
JPS612743A (en) Porous membrane
JPS61133105A (en) Process for improving permeability of porous membrane
JPS5815483B2 (en) Method for forming asymmetric composite membrane
JPS5819475A (en) Continuously purifying method for etching solution
JP2005042074A (en) Production method for porous membrane
JPS6041503A (en) Polyether sulfone microporous membrane and its manufacture
JPS61229830A (en) Method for purifying acetylene