JP5082347B2 - Separation membrane manufacturing method and separation membrane for water treatment - Google Patents

Separation membrane manufacturing method and separation membrane for water treatment Download PDF

Info

Publication number
JP5082347B2
JP5082347B2 JP2006239964A JP2006239964A JP5082347B2 JP 5082347 B2 JP5082347 B2 JP 5082347B2 JP 2006239964 A JP2006239964 A JP 2006239964A JP 2006239964 A JP2006239964 A JP 2006239964A JP 5082347 B2 JP5082347 B2 JP 5082347B2
Authority
JP
Japan
Prior art keywords
separation membrane
oxygen
perfluorocarbon
water
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006239964A
Other languages
Japanese (ja)
Other versions
JP2008062127A5 (en
JP2008062127A (en
Inventor
貴志 中野
慎哉 民辻
誠二 東
昌子 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006239964A priority Critical patent/JP5082347B2/en
Publication of JP2008062127A publication Critical patent/JP2008062127A/en
Publication of JP2008062127A5 publication Critical patent/JP2008062127A5/en
Application granted granted Critical
Publication of JP5082347B2 publication Critical patent/JP5082347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多孔質膜の表面に親水撥油性を付与して分離膜を製造する方法に関する。   The present invention relates to a method for producing a separation membrane by imparting hydrophilic oil repellency to the surface of a porous membrane.

近年、多孔質膜を用いた分離膜が、例えば浄水処理、廃液・排水処理、超純水製造などの水処理分野;血液透析、血液濾過などの医療分野;食品工業分野等の様々な方面で利用されている。
特に浄水処理、排水処理等の水処理の分野において用いられる多孔質膜は、処理水量が大きいため、透水性能の向上が求められる。透水性能が優れていれば、単位面積あたりの処理水量が大きくなるため、膜の面積を小さくできる。膜の面積が小さいと、膜交換費用を削減できるとともに、装置を小型化して省スペース化を実現できる点で有利である。
In recent years, separation membranes using porous membranes have been used in various fields such as water treatment fields such as water purification treatment, waste liquid / drainage treatment, ultrapure water production, medical fields such as hemodialysis and blood filtration, and food industries. It's being used.
In particular, porous membranes used in the field of water treatment such as water purification and wastewater treatment are required to have improved water permeability because of the large amount of treated water. If the water permeation performance is excellent, the amount of treated water per unit area increases, so that the area of the membrane can be reduced. A small membrane area is advantageous in that the membrane replacement cost can be reduced and the apparatus can be miniaturized to save space.

また、分離膜を長期間継続して使用できるようにするために、防汚性および易洗浄性の向上が望まれる。一般に、水処理を行う過程において、原水中の分離対象物質等が分離膜に付着して膜汚染(膜ファウリング)が起こるため、定期的に逆圧洗浄、エアスクラビング等の物理洗浄が行われる。更に膜ファウリングが進行して物理洗浄の効果が小さくなった場合には、付着物を化学的に分解して溶解除去する薬品洗浄が行われる。膜の防汚性能が高ければ、物理洗浄および薬品洗浄の間隔を長くすることができるため、濾過効率の向上、および周辺機器の寿命延長が期待できる。また膜の易洗浄性が良好で、物理洗浄による透水性能の回復率が高いほど、物理洗浄および薬品洗浄を短時間で行うことができ、その間隔を長くすることができる。   Moreover, in order to enable the separation membrane to be used continuously for a long period of time, it is desired to improve antifouling properties and easy cleaning properties. In general, in the process of water treatment, substances to be separated in raw water adhere to the separation membrane and membrane contamination (membrane fouling) occurs, so physical cleaning such as back-pressure cleaning and air scrubbing is performed regularly. . Further, when the film fouling progresses and the effect of physical cleaning is reduced, chemical cleaning is performed in which the deposits are chemically decomposed and dissolved and removed. If the antifouling performance of the membrane is high, the interval between the physical cleaning and the chemical cleaning can be increased, so that the filtration efficiency can be improved and the life of the peripheral device can be extended. In addition, the easier the membrane is washed, and the higher the recovery rate of the water permeation performance by physical washing, the shorter the physical washing and chemical washing can be, and the longer the interval.

分離膜に求められるその他の性能、例えば熱安定性、耐薬品性、機械強度などの観点から、膜素材には疎水性ポリマーがよく用いられる。疎水性ポリマーからなる多孔質膜を水処理に用いる場合、透水性が充分ではなく、疎水性の高い油、タンパク質等の有機系分子との親和性が高いため、これらが膜に堆積あるいは吸着しやすいという問題がある。この問題に対して、多孔質膜の表面に親水性を付与することによって、透水性を向上させ、疎水性の有機分子や土泥類の吸着を抑える方法が一般的である。   In view of other performances required for the separation membrane, such as thermal stability, chemical resistance and mechanical strength, a hydrophobic polymer is often used as the membrane material. When using a porous membrane made of a hydrophobic polymer for water treatment, the water permeability is not sufficient, and it has high affinity with organic molecules such as highly hydrophobic oils and proteins. There is a problem that it is easy. In order to solve this problem, a general method is to improve the water permeability by imparting hydrophilicity to the surface of the porous membrane and suppress the adsorption of hydrophobic organic molecules and mud.

疎水性ポリマーからなる多孔質膜の親水化方法については、例えば、オゾン処理による方法(特許文献1)、親水性モノマーのグラフト重合による方法(特許文献2)、親水性高分子をブレンドする方法(特許文献3)、界面活性剤を表面に塗布あるいは内部に浸漬する方法(特許文献4)など多数報告されている。
また、耐ファウリング性を高めるという観点から、表面にフッ素系の重合膜を形成して、膜の表面エネルギーを低下させ、積極的に有機分子を吸着し難くする方法もある(特許文献5)。
特開平6−343843号公報 特公平6−104753号公報 特開平11−156171号公報 特開2004−202438号公報 特開昭62−23401号公報
As for the method of hydrophilizing a porous membrane made of a hydrophobic polymer, for example, a method by ozone treatment (Patent Document 1), a method by graft polymerization of a hydrophilic monomer (Patent Document 2), a method of blending a hydrophilic polymer ( A number of reports have been reported, such as Patent Document 3), a method of applying a surfactant to the surface or dipping it inside (Patent Document 4).
Further, from the viewpoint of enhancing the fouling resistance, there is also a method in which a fluorine-based polymer film is formed on the surface to reduce the surface energy of the film and to make it difficult to actively adsorb organic molecules (Patent Document 5). .
Japanese Patent Laid-Open No. 6-343843 Japanese Examined Patent Publication No. 6-104753 Japanese Patent Laid-Open No. 11-156171 JP 2004-202438 A Japanese Patent Laid-Open No. 62-23401

しかしながら、多孔質膜の表面を親水化する方法では、耐ファウリング性および易洗浄性が必ずしも充分とは言えず、さらなる改善が求められている。
また、上記許文献5記載の方法で形成されるフッ素系重合膜は撥水性を示すため、透水性が低いという問題点がある。
However, the method of hydrophilizing the surface of the porous membrane does not necessarily have sufficient fouling resistance and easy cleaning properties, and further improvements are required.
Moreover, since the fluoropolymer film formed by the method described in Permissible Document 5 exhibits water repellency, there is a problem that water permeability is low.

本発明は上記事情に鑑みてなされたものであり、優れた透水性、耐ファウリング性および易洗浄性を有する分離膜を製造できる方法を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the method which can manufacture the separation membrane which has the outstanding water permeability, fouling resistance, and easy washing | cleaning property.

本発明者は上記課題を解決するべく鋭意検討し、多孔質膜の表面に、通常は互いに相容れない特性である、親水性と撥油性を併せ持つ表面特性を付与できる方法を見出した。そして、該方法を用いて多孔質膜の表面に親水撥油性を付与することにより、優れた透水性、耐ファウリング性および易洗浄性を兼ね備えた分離膜を実現できることを知見して本発明を完成するに至った。
すなわち本発明の分離膜の製造方法は、多孔質膜の表面を、(A)パーフルオロカーボンと、(B)酸素原子を有し、C−H結合およびハロゲン原子のいずれも有しない酸素含有物質とが存在する雰囲気中で放電処理する工程を有する分離膜の製造方法であって、前記(A)パーフルオロカーボンが重合性炭素−炭素二重結合を有しており、前記雰囲気中に存在する酸素原子の原子数とフッ素原子の原子数の比(O/F比)が0.05〜100であることを特徴とする。
前記(A)パーフルオロカーボンにおけるフッ素原子と炭素原子の存在比(F/C)が1.5以上であることが好ましい。
前記(B)酸素含有物質が、酸素、オゾン、二酸化炭素、水、一酸化窒素、二酸化窒素、二酸化硫黄および三酸化硫黄からなる群から選択される1種以上であることが好ましい。
前記(A)パーフルオロカーボンの炭素数が2〜6であることが好ましい。
前記(A)パーフルオロカーボンがテトラフルオロエチレンまたはヘキサフルオロプロピレンであり、前記(B)酸素含有物質が酸素であることが好ましい
前記雰囲気中における(A)パーフルオロカーボンおよび(B)酸素含有物質の含有割合の合計が50モル%以上であることが好ましい。
前記多孔質膜の孔径が0.01〜5μmであることが好ましい。
前記多孔質膜の材質が、ポリオレフィン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリアクリロニトリル、ポリビニルアルコール、酢酸セルロース、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、またはポリフッ化ビニリデンであることが好ましい。
本発明は、本発明の方法で製造される水処理用分離膜を提供する。
The present inventor has intensively studied to solve the above problems, and has found a method capable of imparting surface characteristics having both hydrophilicity and oil repellency, which are usually incompatible characteristics, to the surface of the porous membrane. The present invention is based on the knowledge that a separation membrane having excellent water permeability, fouling resistance and easy washing can be realized by imparting hydrophilic oil repellency to the surface of the porous membrane using the method. It came to be completed.
That is, in the method for producing a separation membrane of the present invention, the surface of the porous membrane comprises (A) perfluorocarbon and (B) an oxygen-containing substance having oxygen atoms and having neither C—H bonds nor halogen atoms. A process for producing a separation membrane having a step of performing a discharge treatment in an atmosphere in which the (A) perfluorocarbon has a polymerizable carbon-carbon double bond, and oxygen atoms present in the atmosphere The ratio of the number of atoms to the number of fluorine atoms (O / F ratio) is 0.05 to 100 .
The abundance ratio (F / C) of fluorine atoms to carbon atoms in the (A) perfluorocarbon is preferably 1.5 or more.
The (B) oxygen-containing substance is preferably at least one selected from the group consisting of oxygen, ozone, carbon dioxide, water, nitric oxide, nitrogen dioxide, sulfur dioxide and sulfur trioxide.
The (A) perfluorocarbon preferably has 2 to 6 carbon atoms.
The (A) perfluorocarbon is preferably tetrafluoroethylene or hexafluoropropylene, and the (B) oxygen-containing substance is preferably oxygen .
The total content of (A) perfluorocarbon and (B) oxygen-containing substance in the atmosphere is preferably 50 mol% or more.
It is preferable that the porous membrane has a pore diameter of 0.01 to 5 μm.
The material of the porous membrane is polyolefin, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyacrylonitrile, polyvinyl alcohol, cellulose acetate, polytetrafluoroethylene, ethylenetetrafluoroethylene copolymer, polychlorotrifluoroethylene, Or it is preferable that it is a polyvinylidene fluoride.
The present invention provides a separation membrane for water treatment produced by the method of the present invention.

本発明によれば、優れた透水性、耐ファウリング性および易洗浄性を有する分離膜が得られる。   According to the present invention, a separation membrane having excellent water permeability, resistance to fouling and easy cleaning can be obtained.

<多孔質膜>
本発明において基材として用いられる多孔質膜は分離膜として使用できるものであればよく、特に限定されない。
多孔質膜の材質は分離膜として使用できるものであればよく、例えば有機高分子、セラミック等が挙げられる。本発明による効果がより優れている点で有機高分子が好ましい。これは、多孔質膜が有機高分子であると、放電処理によって多孔質膜処理面に形成される被膜の、該多孔質膜表面に対する密着性が優れるためと考えられる。
有機高分子の具体例としては、ポリエチレン、ポリプロピレン等のポリオレフィン;ポリスルホン;ポリエーテルスルホン;ポリカーボネート;ポリアミド;ポリイミド;ポリアクリロニトリル;ポリビニルアルコール;酢酸セルロース;ポリテトラフルオロエチレン;エチレンテトラフルオロエチレン共重合体;ポリクロロトリフルオロエチレン;ポリフッ化ビニリデン等が挙げられる。
有機高分子は親水性ポリマーでもよく疎水性ポリマーでもよい。熱安定性、耐薬品性、機械強度に優れる点からは疎水性ポリマーが好ましい。上記に挙げた有機高分子の例のうち、疎水性ポリマーに含まれるものはポリエチレン、ポリプロピレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリアクリロニトリル、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレンおよびポリフッ化ビニリデンである。
セラミックの具体例としては、アルミナ、ジルコニア等の酸化物系セラミック;水酸化物系セラミック;炭化ケイ素等の炭化物系セラミック;炭酸塩系セラミック;窒化ケイ素等の窒化物系セラミック;ハロゲン化物系セラミック;リン酸塩系セラミックが挙げられる。
本発明における多孔質膜は、水処理における分離膜として使用できるものが好ましく、限外ろ過膜、精密ろ過膜が好ましい。孔径は0.01〜5μm程度が好ましい。
多孔質膜のモジュール形態は、例えば、平膜状、中空糸状、円筒状等、公知の任意の形態とすることができる。
<Porous membrane>
The porous membrane used as a substrate in the present invention is not particularly limited as long as it can be used as a separation membrane.
The material of the porous membrane may be any material that can be used as a separation membrane, and examples thereof include organic polymers and ceramics. An organic polymer is preferred in that the effect of the present invention is more excellent. This is presumably because, when the porous film is an organic polymer, the adhesion of the coating formed on the treated surface of the porous film by the discharge treatment to the surface of the porous film is excellent.
Specific examples of the organic polymer include polyolefins such as polyethylene and polypropylene; polysulfone; polyethersulfone; polycarbonate; polyamide; polyimide; polyacrylonitrile; polyvinyl alcohol; Polychlorotrifluoroethylene; polyvinylidene fluoride and the like.
The organic polymer may be a hydrophilic polymer or a hydrophobic polymer. Hydrophobic polymers are preferred from the viewpoint of excellent thermal stability, chemical resistance, and mechanical strength. Among the organic polymers listed above, those included in the hydrophobic polymer include polyethylene, polypropylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyacrylonitrile, polytetrafluoroethylene, and ethylenetetrafluoroethylene copolymer. Coalesce, polychlorotrifluoroethylene and polyvinylidene fluoride.
Specific examples of the ceramic include oxide ceramics such as alumina and zirconia; hydroxide ceramics; carbide ceramics such as silicon carbide; carbonate ceramics; nitride ceramics such as silicon nitride; halide ceramics; Examples thereof include phosphate ceramics.
The porous membrane in the present invention is preferably one that can be used as a separation membrane in water treatment, and an ultrafiltration membrane and a microfiltration membrane are preferred. The pore diameter is preferably about 0.01 to 5 μm.
The module form of the porous membrane may be any known form such as a flat membrane shape, a hollow fiber shape, or a cylindrical shape.

<(A)パーフルオロカーボン>
本発明で用いられるパーフルオロカーボンは、エーテル性酸素原子(環状エーテルを含む)が含まれてもよい炭化水素の、水素原子の全部がフッ素原子に置換された化合物である。該炭化水素は、直鎖状、分岐状または環状の、飽和または不飽和の炭化水素である。
パーフルオロカーボンは、重合性が高く、短時間で被処理物品の表面上に膜を形成できることから、重合性炭素−炭素二重結合を有することが好ましい。
パーフルオロカーボンの炭素数は2〜6が好ましく、コストの面から2〜4がより好ましい。
パーフルオロカーボンにおけるフッ素原子と炭素原子の存在比(F/C)が大きいほど、得られる膜の撥油性が向上する。本発明では、良好な撥油性を得るためにF/Cが1.5以上であることが好ましく、2.0以上がより好ましい。
パーフルオロカーボンの具体例としては、テトラフルオロエチレン、ヘキサフルオロプロピレン、ヘキサフルオロプロピレンオキサイド(HFPO)、および下記式で表されるPPVE、PMVE、AVE、BVE、c−C4F8およびC5F8が挙げられる。これらのうちで、重合性およびコストの点から、テトラフルオロエチレンおよびヘキサフルオロプロピレンが特に好ましい。これらは、地球温暖化係数が低く、膜成長に寄与するCFカルベンを生成しやすい。
これらは1種を単独で用いてもよく2種以上を併用してもよい。
<(A) Perfluorocarbon>
The perfluorocarbon used in the present invention is a compound in which all of the hydrogen atoms are substituted with fluorine atoms in hydrocarbons which may contain etheric oxygen atoms (including cyclic ethers). The hydrocarbon is a linear, branched or cyclic, saturated or unsaturated hydrocarbon.
Since perfluorocarbon has high polymerizability and can form a film on the surface of the article to be treated in a short time, it preferably has a polymerizable carbon-carbon double bond.
2-6 are preferable and, as for carbon number of perfluorocarbon, 2-4 are more preferable from the surface of cost.
The greater the abundance ratio (F / C) of fluorine atoms to carbon atoms in perfluorocarbon, the better the oil repellency of the resulting film. In the present invention, in order to obtain good oil repellency, F / C is preferably 1.5 or more, and more preferably 2.0 or more.
Specific examples of the perfluorocarbon include tetrafluoroethylene, hexafluoropropylene, hexafluoropropylene oxide (HFPO), and PPVE, PMVE, AVE, BVE, c-C4F8 and C5F8 represented by the following formula. Of these, tetrafluoroethylene and hexafluoropropylene are particularly preferable from the viewpoints of polymerizability and cost. These have a low global warming potential and are likely to generate CF 2 carbene that contributes to film growth.
These may be used alone or in combination of two or more.

Figure 0005082347
Figure 0005082347

<(B)酸素含有物質>
酸素含有物質としては、「酸素原子を有し、C−H結合を有さず、かつハロゲン原子を有しない化合物」が用いられる。該酸素含有物質は、プラズマ中で酸素原子を遊離する酸素源として機能する。またC−H結合およびハロゲン原子を有しないため、プラズマ処理によって形成される被膜の撥油性の低下を抑えつつ親水性を付与できる点で好ましい。
特に、取り扱いの容易さおよびコストの点から、酸素、オゾン、二酸化炭素、水、一酸化窒素、二酸化窒素、二酸化硫黄、三酸化硫黄からなる群から選択されるものが好ましい。酸素含有物質は1種を単独で用いてもよく2種以上を併用してもよい。
<(B) Oxygen-containing substance>
As the oxygen-containing substance, a “compound having an oxygen atom, no C—H bond, and no halogen atom” is used. The oxygen-containing substance functions as an oxygen source that liberates oxygen atoms in the plasma. Moreover, since it does not have a C—H bond and a halogen atom, it is preferable in terms of imparting hydrophilicity while suppressing a decrease in oil repellency of a film formed by plasma treatment.
In particular, those selected from the group consisting of oxygen, ozone, carbon dioxide, water, nitrogen monoxide, nitrogen dioxide, sulfur dioxide, and sulfur trioxide are preferred from the viewpoint of ease of handling and cost. One oxygen-containing substance may be used alone, or two or more oxygen-containing substances may be used in combination.

<分離膜の製造方法>
本発明の分離膜の製造方法は、多孔質膜の表面に対して、(A)パーフルオロカーボンと(B)酸素含有物質とが存在する雰囲気中で放電処理を行う工程を有する。放電処理の雰囲気中において(A)パーフルオロカーボンおよび(B)酸素含有物質はガス状で存在していることが好ましい。
該工程により多孔質膜の放電処理された面(以下、処理面ということもある。)上に親水撥油性が付与された分離膜が得られる。
放電処理は、多孔質膜の表面のうち、分離膜として使用する際に、少なくとも処理対象である原水が接触する面(処理水接触面)に対して行う。
<Method for producing separation membrane>
The method for producing a separation membrane of the present invention includes a step of performing a discharge treatment on the surface of the porous membrane in an atmosphere in which (A) perfluorocarbon and (B) an oxygen-containing substance are present. In the discharge treatment atmosphere, (A) perfluorocarbon and (B) oxygen-containing substance are preferably present in the form of gas.
By this step, a separation membrane having hydrophilic oil repellency provided on the surface of the porous membrane that has been subjected to the discharge treatment (hereinafter also referred to as the treated surface) can be obtained.
The discharge treatment is performed on at least a surface (treated water contact surface) with which the raw water to be treated comes into contact when used as a separation membrane among the surfaces of the porous membrane.

放電処理が施された処理面における親水撥油性の程度は、放電処理を行う雰囲気中に存在する酸素原子の原子数とフッ素原子の原子数の比(酸素原子数/フッ素原子数、以下「O/F比」ということもある。)によって調整できる。該O/F比が大きくなるほど処理面の親水性が大きくなるとともに撥油性が低下し、該O/F比が小さくなるほど処理面の撥油性が大きくなるとともに親水性が低下する。該O/F比は、放電処理の雰囲気に供給する(A)パーフルオロカーボンの種類および量と、(B)酸素含有物質の種類および量を調整することによって制御できる。
またO/F比が一定であっても、放電処理を行う装置構成および放電条件によって、処理面における親水撥油性の程度は変化し得る。
The degree of hydrophilic oil repellency on the treated surface subjected to the discharge treatment is determined by the ratio of the number of oxygen atoms and the number of fluorine atoms present in the atmosphere in which the discharge treatment is performed (number of oxygen atoms / number of fluorine atoms, hereinafter referred to as “O / F ratio "). As the O / F ratio increases, the hydrophilicity of the treated surface increases and the oil repellency decreases, and as the O / F ratio decreases, the oil repellency of the treated surface increases and the hydrophilicity decreases. The O / F ratio can be controlled by adjusting the type and amount of (A) perfluorocarbon supplied to the discharge treatment atmosphere and the type and amount of (B) oxygen-containing substance.
Even if the O / F ratio is constant, the degree of hydrophilic oil repellency on the treated surface can vary depending on the configuration of the apparatus performing the discharge treatment and the discharge conditions.

したがって、処理面に所望の親水撥油性を付与できるように、装置構成に応じて、(A)パーフルオロカーボンの種類および供給量、(B)酸素含有物質の種類および供給量、ならびに放電条件を設定するのが好ましい。
具体的には、13.56MHzの高周波電源を放電電源とし、容量結合型平行平板を用いた放電装置を使用し、(A)パーフルオロカーボンとしてヘキサフルオロプロピレンを、(B)酸素含有物質として酸素をそれぞれ用い、放電処理時の電力(電極面積当たりの電力)を0.1〜1.0W/cmの範囲内としてポリエーテルスルホン製多孔質膜の表面を処理する場合、処理面に良好な親水撥油性を付与するためには、前記O/F比が0.05〜100の範囲であることが好ましく、特に0.5〜20の範囲が好ましい。
Therefore, (A) type and supply amount of perfluorocarbon, (B) type and supply amount of oxygen-containing substance, and discharge conditions are set according to the device configuration so that the desired hydrophilic oil repellency can be imparted to the treated surface. It is preferable to do this.
Specifically, a high frequency power source of 13.56 MHz is used as a discharge power source, a discharge device using a capacitively coupled parallel plate is used, (A) hexafluoropropylene as perfluorocarbon, (B) oxygen as oxygen-containing substance. When the surface of the porous membrane made of polyethersulfone is treated with the power during discharge treatment (power per electrode area) in the range of 0.1 to 1.0 W / cm 2 , respectively, the treatment surface has good hydrophilicity. In order to impart oil repellency, the O / F ratio is preferably in the range of 0.05 to 100, and particularly preferably in the range of 0.5 to 20.

放電処理時の雰囲気中には、(A)パーフルオロカーボンおよび(B)酸素含有物質のほかに、アルゴン、ヘリウム、ネオン等の不活性ガス、窒素等のその他のガスが存在していてもよい。
処理面に良好な親水撥油性を付与するためには、該雰囲気中における(A)パーフルオロカーボンおよび(B)酸素含有物質の含有割合の合計が、50モル%以上であることが好ましく、100モル%がより好ましい。
In the atmosphere during the discharge treatment, in addition to (A) perfluorocarbon and (B) oxygen-containing substance, an inert gas such as argon, helium or neon, or other gas such as nitrogen may be present.
In order to impart good hydrophilic oil repellency to the treated surface, the total content of (A) perfluorocarbon and (B) oxygen-containing substance in the atmosphere is preferably 50 mol% or more, and 100 mol % Is more preferable.

(放電条件)
本発明における放電処理の方法は特に限定されず、たとえばコロナ放電(火花放電)、グロー放電等が適用できる。グロー放電がより好ましい。いずれも、ガス雰囲気中に処理面を曝し、電極間に高周波電圧を印加することで発生するプラズマにより放電処理する。放電形態は連続的又はパルス的に放電することができる。
本発明における放電処理の雰囲気の圧力は10Pa以下が好ましく、10Pa以下がより好ましい。該雰囲気の圧力が10Pa以下であれば放電の安定性が良好となる。放電処理の雰囲気圧力の下限は特に制限されず、良好な放電が行われる範囲であればよい。たとえば1Pa以上とされる。
例えば、13.56MHzの高周波電源を放電電源とし、容量結合型平行平板を用いた放電装置を使用し、(A)パーフルオロカーボンとしてヘキサフルオロプロピレンを、(B)酸素含有物質として酸素をそれぞれ用い、O/Fが3.6の雰囲気下、放電処理時の電力を0.1〜1.0W/cmの範囲内としてポリエーテルスルホン製多孔質膜の表面を処理する場合、良好な親水撥油性を有する膜を形成するためには、該雰囲気の圧力が20〜40Paの範囲であることが好ましい。
(Discharge conditions)
The discharge treatment method in the present invention is not particularly limited, and for example, corona discharge (spark discharge), glow discharge, and the like can be applied. Glow discharge is more preferable. In either case, the treatment surface is exposed to a gas atmosphere and a discharge treatment is performed by plasma generated by applying a high-frequency voltage between the electrodes. The discharge form can be discharged continuously or in pulses.
The pressure of the discharge treatment atmosphere in the present invention is preferably 10 4 Pa or less, and more preferably 10 3 Pa or less. When the pressure of the atmosphere is 10 4 Pa or less, the discharge stability is good. The lower limit of the atmospheric pressure of the discharge treatment is not particularly limited as long as it is in a range where good discharge is performed. For example, it is 1 Pa or more.
For example, a high frequency power source of 13.56 MHz is used as a discharge power source, a discharge device using a capacitively coupled parallel plate is used, (A) hexafluoropropylene is used as perfluorocarbon, and (B) oxygen is used as an oxygen-containing substance. Good hydrophilic oil repellency when the surface of the polyethersulfone porous membrane is treated in an atmosphere where the O / F is 3.6 and the power during the discharge treatment is in the range of 0.1 to 1.0 W / cm 2. In order to form a film having, the pressure of the atmosphere is preferably in the range of 20 to 40 Pa.

本発明の製造方法によれば、多孔質膜の表面に親水撥油性が付与された分離膜が得られる。これは、多孔質膜の処理面に(A)パーフルオロカーボンに由来するモノマー単位からなるフルオロカーボン重合体の被膜が形成されることにより撥油性が得られるとともに、該被膜中に酸素が取り込まれることにより親水性が得られ、親水撥油性が発現されるものと考えられる。
本発明によれば、(A)パーフルオロカーボンと(B)酸素含有物質が存在する雰囲気中で放電処理する方法で、処理面に親水撥油性を付与できるため、プロセスが簡易である。また、処理面に形成される被膜は、多孔質膜表面に対する密着性が良好であり耐久性に優れる。これは、放電処理の過程で多孔質膜の表面に活性点が形成され、該活性点を起点として重合鎖がグラフト成長し、多孔質膜の表面と化学結合を有する被膜が形成されるためと考えられる。
According to the production method of the present invention, a separation membrane in which hydrophilic oil repellency is imparted to the surface of the porous membrane can be obtained. This is because (A) a fluorocarbon polymer film composed of monomer units derived from perfluorocarbon is formed on the treated surface of the porous film, thereby providing oil repellency and incorporating oxygen into the film. It is considered that hydrophilicity is obtained and hydrophilic oil repellency is exhibited.
According to the present invention, the process is simple because the treatment surface can be given hydrophilic oil repellency by the discharge treatment in an atmosphere containing (A) perfluorocarbon and (B) an oxygen-containing substance. Moreover, the coating film formed on the treated surface has good adhesion to the porous membrane surface and is excellent in durability. This is because active sites are formed on the surface of the porous film in the course of the discharge treatment, polymer chains are graft-grown starting from the active sites, and a film having a chemical bond with the surface of the porous film is formed. Conceivable.

本発明により得られる分離膜は、処理面に親水撥油性が付与されているため、透水性が良好であるともに有機分子や土泥類が付着し難く、優れた耐ファウリング性が得られる。また逆圧洗浄等の物理処理によって付着した汚れが除去され易く、易洗浄性にも優れる。   The separation membrane obtained according to the present invention has hydrophilic and oil repellency on the treated surface, so that the water permeability is good and the organic molecules and soil mud are hardly attached, and excellent fouling resistance is obtained. Further, dirt attached by physical treatment such as back pressure cleaning is easily removed, and easy cleaning is excellent.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されない。
図1は、以下の実施例で用いた装置の概略構成図である。この例の装置は、概略次のように構成されている。真空チャンバー5内に平行平板電極からなる上部シャワーヘッド電極7および下部電極8(直径100mmの円板状)が互いに対向して設置されている。上部シャワーヘッド電極7には13.56MHzの高周波電源6が接続されており、下部電極8は接地されており、該電極7,8間に低温プラズマを発生できるように構成されている。下部電極8の、上部シャワーヘッド電極7に対向する面上には被処理物10が着脱可能に固定されるようになっている。上部シャワーヘッド電極7はガス供給手段も兼ねており、該上部シャワーヘッド電極7には、流量計を備えたパーフルオロカーボンガス供給手段3および流量計を備えた酸素系ガス供給手段4が接続されている。また、上部シャワーヘッド電極7の、下部電極8に対向する面には多数のガス噴出孔が設けられており、下部電極8上の被処理物10に向かってシャワー状にガスを供給できるようになっている。図中符号9は真空ポンプを備えた排気手段を示している。
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples.
FIG. 1 is a schematic configuration diagram of an apparatus used in the following examples. The apparatus of this example is generally configured as follows. An upper shower head electrode 7 and a lower electrode 8 (disc shape with a diameter of 100 mm) made of parallel plate electrodes are disposed in the vacuum chamber 5 to face each other. The upper shower head electrode 7 is connected to a high frequency power source 6 of 13.56 MHz, the lower electrode 8 is grounded, and is configured to generate low temperature plasma between the electrodes 7 and 8. A workpiece 10 is detachably fixed on the surface of the lower electrode 8 facing the upper showerhead electrode 7. The upper shower head electrode 7 also serves as a gas supply means. The upper shower head electrode 7 is connected to a perfluorocarbon gas supply means 3 having a flow meter and an oxygen-based gas supply means 4 having a flow meter. Yes. In addition, a number of gas ejection holes are provided on the surface of the upper shower head electrode 7 facing the lower electrode 8 so that gas can be supplied in a shower shape toward the workpiece 10 on the lower electrode 8. It has become. Reference numeral 9 in the drawing denotes an exhaust means provided with a vacuum pump.

(実施例1および比較例1〜3)
図1の装置を用いて、ポリエーテルスルホン製多孔質膜を基材とした分離膜の製造を行った。
まず、市販のポリエーテルスルホン製多孔質膜(ミリポア社製、製品名:Express membrane、細孔径:0.22μm、直径:47mm)を被処理物10として下部電極8上に設置し、真空チャンバー5内が0.1Pa以下になるまで真空ポンプで排気した。次いで、上部シャワーヘッド電極7と下部電極8との電極間距離を5cmに調整した後、表1の条件で上部シャワーヘッド電極7よりヘキサフルオロプロピレンガス(HFP)および/または酸素ガスを含む混合ガスを流しつつ放電処理を行った。続いて、真空チャンバー5内を空気パージしてから、放電処理された多孔質膜を取り出して分離膜とした。
表1における「混合ガスのO/F」は混合ガス中の酸素原子数とフッ素原子数との比を表している。
(Example 1 and Comparative Examples 1-3)
Using the apparatus shown in FIG. 1, a separation membrane based on a polyethersulfone porous membrane was produced.
First, a commercially available polyethersulfone porous membrane (manufactured by Millipore, product name: Express membrane, pore size: 0.22 μm, diameter: 47 mm) was placed on the lower electrode 8 as the object 10 to be processed, and the vacuum chamber 5 The inside was evacuated with a vacuum pump until the inside became 0.1 Pa or less. Next, after adjusting the distance between the upper showerhead electrode 7 and the lower electrode 8 to 5 cm, a mixed gas containing hexafluoropropylene gas (HFP) and / or oxygen gas from the upper showerhead electrode 7 under the conditions shown in Table 1 The discharge treatment was performed while flowing. Subsequently, after the inside of the vacuum chamber 5 was purged with air, the discharged porous membrane was taken out and used as a separation membrane.
“O / F of mixed gas” in Table 1 represents the ratio of the number of oxygen atoms and the number of fluorine atoms in the mixed gas.

(比較例4)
実施例1で用いた市販のポリエーテルスルホン製多孔質膜を放電処理に供しないでそのまま分離膜とした。
(Comparative Example 4)
The commercially available polyethersulfone porous membrane used in Example 1 was used as it was as a separation membrane without being subjected to a discharge treatment.

<透過水性および耐ファウリング性の評価試験>
実施例1および比較例1〜4で得られたそれぞれの分離膜を、図2に示す測定用セル20にセットし、ろ過抵抗の測定を行った。図2において、符号21は測定対象の分離膜を示す。分離膜21は、放電処理を行った処理面が測定用セル20の内部側となるようにセットした。
まず、セル20内に純水500mLを入れ、窒素ガスにより加圧して膜21を透過させた。加圧圧力は150kPaとした。50mL透過する毎に経過時間を計測し透過流束(単位:m/m・day)を算出した。こうして算出される純水透過流束は常に一定の値を示した。結果を表1に示す。
次いで、膜21はそのままで、水処理においてファウリングの原因となり易い有機物と粘土鉱物を含有させたモデル原水400mLをセル20内に入れ、純水の場合と同様にして50mLろ過する毎に透過流束を測定した。モデル原水としては、純水1LにAldrich社製のフミン酸ナトリウム2mgおよび純正化学社製のベントナイト10mgを溶解、懸濁したものを用いた。
次に、分離膜21を裏返して、すなわち放電処理を行った処理面がセル20の外部側となるようにセットし、純水100mLを透過して逆圧洗浄を行った。加圧圧力は同じく150kPaとした。
逆圧洗浄終了後、もう一度膜21を裏返して、すなわち放電処理を行った処理面がセル20の内部側となるようにセットし直して、モデル原水100mLをろ過して、上記と同様に透過流束を測定した。
測定された透過流束Jv(単位:m/m・day)の値と、加圧圧力P(単位:kPa)の値(本例では150)から、下記数式(1)によりろ過抵抗R(単位:m・kPa・day/m)を算出した。
R=P/Jv ・・・(1)
<Evaluation test for permeability and fouling resistance>
The respective separation membranes obtained in Example 1 and Comparative Examples 1 to 4 were set in the measurement cell 20 shown in FIG. 2, and the filtration resistance was measured. In FIG. 2, the code | symbol 21 shows the separation membrane of a measuring object. The separation membrane 21 was set so that the treatment surface subjected to the discharge treatment was on the inner side of the measurement cell 20.
First, 500 mL of pure water was put into the cell 20 and pressurized with nitrogen gas to allow the membrane 21 to permeate. The pressurizing pressure was 150 kPa. The elapsed time was measured every time 50 mL permeated, and the permeation flux (unit: m 3 / m 2 · day) was calculated. The pure water permeation flux calculated in this way always showed a constant value. The results are shown in Table 1.
Next, 400 mL of model raw water containing organic substances and clay minerals, which are likely to cause fouling in water treatment, is placed in the cell 20 while the membrane 21 is kept as it is, and permeate flow every time 50 mL is filtered as in the case of pure water. The bundle was measured. As the model raw water, 1 L of pure water was used in which 2 mg of sodium humate manufactured by Aldrich and 10 mg of bentonite manufactured by Pure Chemical Co. were dissolved and suspended.
Next, the separation membrane 21 was turned over, that is, set so that the treatment surface subjected to the discharge treatment was on the outside of the cell 20, and 100 mL of pure water was permeated to perform back pressure cleaning. The pressurizing pressure was also 150 kPa.
After the back pressure cleaning is completed, the membrane 21 is turned over once again, that is, set again so that the treated surface is on the inner side of the cell 20, 100 mL of model raw water is filtered, and the permeate flow is the same as above. The bundle was measured.
From the measured value of permeation flux Jv (unit: m 3 / m 2 · day) and the value of pressurizing pressure P (unit: kPa) (150 in this example), the filtration resistance R is calculated by the following formula (1). (Unit: m 2 · kPa · day / m 3 ) was calculated.
R = P / Jv (1)

純水ろ過抵抗として、純水の透過量の合計(総ろ過水量)が50mL透過時から500mL透過時まで50mL増加する毎のろ過抵抗の値を求めた。
モデル原水ろ過抵抗として、モデル原水のろ過量の合計(総ろ過水量)が50mL透過時から400mL透過時まで50mL増加する毎のろ過抵抗の値と、逆圧洗浄後にモデル原水が50mLろ過されたとき(総ろ過水量450mL)のろ過抵抗の値と、逆圧洗浄後にモデル原水が100mLろ過されたとき(総ろ過水量500mL)のろ過抵抗の値を求めた。
そして、互いに同じ総ろ過水量におけるモデル原水ろ過抵抗の値と純水ろ過抵抗の値とから、「モデル原水ろ過抵抗/純水ろ過抵抗」の値を「ろ過抵抗比」として求めた。
こうして得られたろ過抵抗比の値と総ろ過水量(単位:m/m)との関係を図3のグラフに示す。
As the pure water filtration resistance, the value of the filtration resistance was calculated every time the total pure water permeation amount (total filtered water amount) increased by 50 mL from the time of 50 mL permeation to the time of 500 mL permeation.
As the model raw water filtration resistance, the value of filtration resistance every time the total amount of model raw water filtered (total filtered water volume) increases by 50 mL from the time of 50 mL permeation to the time of 400 mL permeation, and when 50 mL of model raw water is filtered after back pressure washing The value of filtration resistance (total filtered water volume 450 mL) and the value of filtration resistance when 100 mL of model raw water was filtered after total pressure washing (total filtered water volume 500 mL) were obtained.
And the value of "model raw water filtration resistance / pure water filtration resistance" was calculated | required as a "filtration resistance ratio" from the value of the model raw water filtration resistance and the value of pure water filtration resistance in the mutually same total filtered water amount.
The relationship between the value of the filtration resistance ratio thus obtained and the total amount of filtered water (unit: m 3 / m 2 ) is shown in the graph of FIG.

比較例2で得られた膜は、全く水を透過しなかったため、ろ過抵抗比は測定しなかった。
比較例3、4は、透水性が低かったため、モデル原水を300mLろ過した後に逆圧洗浄を行った。逆圧洗浄後にモデル原水が50mLろ過されたとき(総ろ過水量350mL)のろ過抵抗比は、比較例3が54、比較例4が114にまでしか回復しなかった。
Since the membrane obtained in Comparative Example 2 did not permeate water at all, the filtration resistance ratio was not measured.
In Comparative Examples 3 and 4, since water permeability was low, 300 mL of model raw water was filtered, and then back pressure washing was performed. When 50 mL of the model raw water was filtered after the back pressure washing (total filtered water amount 350 mL), Comparative Example 3 recovered only 54 and Comparative Example 4 up to 114.

<透水性および易洗浄性の評価>
上記評価試験において、モデル原水を300mLろ過した時点(初期300mL)までの平均の透過流束(単位:m/day)、逆圧洗浄後にモデル原水を100mLろ過した時の平均の透過流束(単位:m/day)、および逆圧洗浄によるモデル原水透過流束の回復率([モデル原水透過流束(初期100mL)]/[モデル原水透過流束(逆圧洗浄後100mL)])を算出した。評価結果を表1に示す。
<Evaluation of water permeability and easy cleaning>
In the above evaluation test, the average permeation flux (unit: m / day) up to the time when 300 mL of model raw water was filtered (initial 300 mL), the average permeation flux (unit: 100 mL of model raw water after back pressure washing) : M / day) and the recovery rate of the model raw water permeation flux by backwashing ([model raw water permeation flux (initial 100 mL)] / [model raw water permeation flux (100 ml after back pressure washing)]) . The evaluation results are shown in Table 1.

Figure 0005082347
Figure 0005082347

表1および図3の結果に示されるように、パーフルオロカーボンガスと酸素系ガスを含む混合ガス中で放電処理を行った実施例1の分離膜は、透水性が高く、耐ファウリング性に優れている。また、逆圧洗浄によりろ過性能が良好に回復しており、易洗浄性に優れている。
一方、酸素系ガスのみの雰囲気下で放電処理した比較例1は、処理面に親水性のみが付与されたと推測される。表1に示されるように、比較例1は、純水の透水性(純水透過流束)は実施例1よりも大きかったが、モデル原水の透水性(初期300mLのモデル原水透過流束)は実施例1よりも劣っていた。また図3のグラフに示されるよう、逆圧洗浄前におけるろ過抵抗比(モデル原水ろ過抵抗/純水ろ過抵抗)の上昇率が実施例1よりも大きく、実施例1と比べて耐ファウリング性が劣っていた。さらに、表1に示す逆圧洗浄後におけるモデル原水透過流束、および逆圧洗浄によるモデル原水流束の回復率においても、比較例1は実施例1より劣っており、易洗浄性が劣っていた。
一方、パーフルオロカーボンガスのみの雰囲気下で放電処理を行った比較例2、3では、処理面に撥油性のみが付与されたと推測される。比較例2では全く水を透過しなかった。比較例2に比べて放電処理時の電力が低く、放電時間も短い比較例3、および放電処理を施していない比較例4では、実施例1および比較例1に比べて透水性、耐ファウリング性および逆圧洗浄によるろ過性能回復性において著しく劣っていた。
As shown in the results of Table 1 and FIG. 3, the separation membrane of Example 1 subjected to discharge treatment in a mixed gas containing a perfluorocarbon gas and an oxygen-based gas has high water permeability and excellent fouling resistance. ing. In addition, the filtration performance is well recovered by back pressure washing, and it is excellent in easy washing.
On the other hand, in Comparative Example 1 in which the discharge treatment was performed in an atmosphere containing only oxygen-based gas, it is estimated that only hydrophilicity was imparted to the treated surface. As shown in Table 1, in Comparative Example 1, the water permeability (pure water permeation flux) of pure water was larger than that in Example 1, but the water permeability of model raw water (initial model water permeation flux of 300 mL) was high. Was inferior to Example 1. Further, as shown in the graph of FIG. 3, the rate of increase in the filtration resistance ratio (model raw water filtration resistance / pure water filtration resistance) before back pressure washing is larger than that in Example 1 and is more resistant to fouling than Example 1. Was inferior. Furthermore, also in the recovery rate of the model raw water permeation flux after back pressure cleaning shown in Table 1 and the model raw water flux by back pressure cleaning, Comparative Example 1 is inferior to Example 1, and easy cleaning properties are inferior. It was.
On the other hand, in Comparative Examples 2 and 3 in which the discharge treatment was performed in an atmosphere containing only perfluorocarbon gas, it is presumed that only the oil repellency was imparted to the treated surface. In Comparative Example 2, no water permeated. Compared with Example 1 and Comparative Example 1, in Comparative Example 3 in which the power during the discharge treatment is lower than that in Comparative Example 2 and the discharge time is short, and in Comparative Example 4 where the discharge treatment is not performed, the water permeability and fouling resistance are increased. And recovery performance of filtration performance by backwashing were significantly inferior.

<X線光電子分光法による分析>
実施例1および比較例4で得られた分離膜の処理面をX線光電子分光法(XPS)を用いて分析して得られたC1sナロースペクトルを図4に示す。図4に示されるように、実施例1の分離膜では、287〜293eVにおいて、C−O結合およびC−F結合の増加が観測された。このことから実施例1の分離膜の処理面には、酸素を含有する親水性基と撥油性を有するパーフルオロアルキル基の両方が導入されていることが示唆された。
<Analysis by X-ray photoelectron spectroscopy>
FIG. 4 shows a C1s narrow spectrum obtained by analyzing the treated surfaces of the separation membranes obtained in Example 1 and Comparative Example 4 using X-ray photoelectron spectroscopy (XPS). As shown in FIG. 4, in the separation membrane of Example 1, an increase in C—O bond and C—F bond was observed at 287 to 293 eV. This suggested that both the hydrophilic group containing oxygen and the perfluoroalkyl group having oil repellency were introduced into the treated surface of the separation membrane of Example 1.

本発明にかかる放電処理に用いられる装置の例を示す概略構成図である。It is a schematic block diagram which shows the example of the apparatus used for the discharge process concerning this invention. ろ過抵抗比を測定するための装置を示す概略構成図である。It is a schematic block diagram which shows the apparatus for measuring a filtration resistance ratio. 実施例および比較例についてろ過抵抗比を測定した結果を示すグラフである。It is a graph which shows the result of having measured the filtration resistance ratio about the Example and the comparative example. 実施例1および比較例4で得られた分離膜の処理面についてX線光電子分光法(XPS)で分析した結果を示すグラフである。It is a graph which shows the result of having analyzed the processing surface of the separation membrane obtained in Example 1 and Comparative Example 4 by X-ray photoelectron spectroscopy (XPS).

符号の説明Explanation of symbols

3…パーフルオロカーボン供給手段、
4…酸素含有物質供給手段、
5…真空チャンバー、
6…高周波電源、
7…上部シャワーヘッド電極、
8…下部電極、
9…排気手段。
3. Perfluorocarbon supply means,
4 ... oxygen-containing substance supply means,
5 ... Vacuum chamber,
6 ... High frequency power supply,
7 ... Upper showerhead electrode,
8 ... Lower electrode,
9: Exhaust means.

Claims (9)

多孔質膜の表面を、(A)パーフルオロカーボンと、(B)酸素原子を有し、C−H結合およびハロゲン原子のいずれも有しない酸素含有物質とが存在する雰囲気中で放電処理する工程を有する分離膜の製造方法であって、前記(A)パーフルオロカーボンが重合性炭素−炭素二重結合を有しており、前記雰囲気中に存在する酸素原子の原子数とフッ素原子の原子数の比(O/F比)が0.05〜100であることを特徴とする分離膜の製造方法。 A step of performing a discharge treatment on the surface of the porous film in an atmosphere in which (A) perfluorocarbon and (B) an oxygen-containing substance having oxygen atoms and neither a C—H bond nor a halogen atom are present. The (A) perfluorocarbon has a polymerizable carbon-carbon double bond, and is a ratio of the number of oxygen atoms and the number of fluorine atoms present in the atmosphere. (O / F ratio) is 0.05-100, The manufacturing method of the separation membrane characterized by the above-mentioned. 前記(A)パーフルオロカーボンにおけるフッ素原子と炭素原子の存在比(F/C)が1.5以上である、請求項1に記載の分離膜の製造方法。   The manufacturing method of the separation membrane of Claim 1 whose abundance ratio (F / C) of the fluorine atom and carbon atom in the said (A) perfluorocarbon is 1.5 or more. 前記(B)酸素含有物質が、酸素、オゾン、二酸化炭素、水、一酸化窒素、二酸化窒素、二酸化硫黄および三酸化硫黄からなる群から選択される1種以上である請求項1または2に記載の分離膜の製造方法。   3. The oxygen-containing substance (B) is at least one selected from the group consisting of oxygen, ozone, carbon dioxide, water, nitric oxide, nitrogen dioxide, sulfur dioxide, and sulfur trioxide. A method for producing a separation membrane. 前記(A)パーフルオロカーボンの炭素数が2〜6である、請求項1〜3のいずれか一項に記載の分離膜の製造方法。   The manufacturing method of the separation membrane as described in any one of Claims 1-3 whose carbon number of the said (A) perfluorocarbon is 2-6. 前記(A)パーフルオロカーボンが、テトラフルオロエチレンまたはヘキサフルオロプロピレンであり、前記(B)酸素含有物質が酸素である請求項1〜4のいずれか一項に記載の分離膜の製造方法。   The method for producing a separation membrane according to any one of claims 1 to 4, wherein the (A) perfluorocarbon is tetrafluoroethylene or hexafluoropropylene, and the (B) oxygen-containing substance is oxygen. 前記雰囲気中における(A)パーフルオロカーボンおよび(B)酸素含有物質の含有割合の合計が50モル%以上である、請求項1〜のいずれか一項に記載の分離膜の製造方法。 The manufacturing method of the separation membrane as described in any one of Claims 1-5 whose sum total of the content rate of (A) perfluorocarbon in the said atmosphere and (B) oxygen-containing substance is 50 mol% or more. 前記多孔質膜の孔径が0.01〜5μmである、請求項1〜のいずれか一項に記載の分離膜の製造方法。 The method for producing a separation membrane according to any one of claims 1 to 6 , wherein the pore size of the porous membrane is 0.01 to 5 µm. 前記多孔質膜の材質が、ポリオレフィン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリアクリロニトリル、ポリビニルアルコール、酢酸セルロース、ポリテトラフルオロエチレン、エチレンテトラフルオロエチレン共重合体、ポリクロロトリフルオロエチレン、またはポリフッ化ビニリデンである、請求項1〜のいずれか一項に記載の分離膜の製造方法。 The material of the porous membrane is polyolefin, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyacrylonitrile, polyvinyl alcohol, cellulose acetate, polytetrafluoroethylene, ethylenetetrafluoroethylene copolymer, polychlorotrifluoroethylene, or polyvinylidene fluoride, a manufacturing method of the separation membrane according to any one of claims 1-7. 請求項1〜のいずれか一項に記載の方法で製造される、水処理用分離膜。 The separation membrane for water treatment manufactured by the method as described in any one of Claims 1-8 .
JP2006239964A 2006-09-05 2006-09-05 Separation membrane manufacturing method and separation membrane for water treatment Expired - Fee Related JP5082347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006239964A JP5082347B2 (en) 2006-09-05 2006-09-05 Separation membrane manufacturing method and separation membrane for water treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006239964A JP5082347B2 (en) 2006-09-05 2006-09-05 Separation membrane manufacturing method and separation membrane for water treatment

Publications (3)

Publication Number Publication Date
JP2008062127A JP2008062127A (en) 2008-03-21
JP2008062127A5 JP2008062127A5 (en) 2009-08-13
JP5082347B2 true JP5082347B2 (en) 2012-11-28

Family

ID=39285293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006239964A Expired - Fee Related JP5082347B2 (en) 2006-09-05 2006-09-05 Separation membrane manufacturing method and separation membrane for water treatment

Country Status (1)

Country Link
JP (1) JP5082347B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3175899B1 (en) 2014-07-30 2019-03-13 Mitsubishi Materials Corporation Filter medium, method for producing filter medium, water treatment module, and water treatment device
WO2016017761A1 (en) 2014-07-30 2016-02-04 三菱マテリアル株式会社 Surface-coating material, coated film, and hydrophilic/oil-repellent material
WO2016017686A1 (en) 2014-07-30 2016-02-04 三菱マテリアル株式会社 Hydrophilic oil repellent agent and method for manufacturing same, and surface covering material, coating film, resin composition, oil-water separation filter medium, and porous body
JP6461573B2 (en) 2014-07-30 2019-01-30 三菱マテリアル株式会社 Oil / water separator / collector
JP6384843B2 (en) * 2017-08-21 2018-09-05 国立大学法人弘前大学 Fluorine-containing nanocomposite particles and method for producing the same, coating agent containing the same, oil-water separation membrane, and resin composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6099326A (en) * 1983-11-04 1985-06-03 Agency Of Ind Science & Technol Separation film for gas
JPS6223401A (en) * 1985-07-22 1987-01-31 Nok Corp Ultrafiltration membrane
AU7135087A (en) * 1986-04-11 1987-10-15 Applied Membrane Technology Inc. Preparation of a hydrophilic microfiltration membrane by means of plasma treatment
JPH0761434B2 (en) * 1988-03-18 1995-07-05 セントラル硝子株式会社 Material permeable membrane
US5073175A (en) * 1988-08-09 1991-12-17 Air Products And Chemicals, Inc. Fluorooxidized polymeric membranes for gas separation and process for preparing them
JP2926869B2 (en) * 1990-04-20 1999-07-28 エヌオーケー株式会社 Hollow fiber surface treatment method for hollow fiber module
JPH05329342A (en) * 1992-05-29 1993-12-14 Dainippon Ink & Chem Inc Production of polymeric separation membrane

Also Published As

Publication number Publication date
JP2008062127A (en) 2008-03-21

Similar Documents

Publication Publication Date Title
JP5781140B2 (en) High durability PVDF porous membrane, method for producing the same, and cleaning method and filtration method using the same
TWI712448B (en) Operation method of porous membrane for membrane distillation and module for membrane distillation
EP2001666B1 (en) Atmospheric pressure microwave plasma treated porous membranes
JP5082347B2 (en) Separation membrane manufacturing method and separation membrane for water treatment
JP4939124B2 (en) Fluororesin porous membrane
JP2019058908A (en) 1234yf- and 1234ze BASED POLYMERIC MEMBRANE MATERIALS, MEMBRANE PREPARATIONS AND USES THEREOF
JP2006239636A (en) Fouling prevention material and separation membrane having surface treated with the fouling prevention material
JP2014231059A (en) Hollow fiber membrane for immersion filtration, hollow fiber membrane module for immersion filtration using it, immersion filtration device, and immersion filtration method
Xie et al. Improvement of antifouling characteristics in a bioreactor of polypropylene microporous membrane by the adsorption of Tween 20
Huang et al. A hybrid electric field assisted vacuum membrane distillation method to mitigate membrane fouling
KR20130030954A (en) Thin film composite membrane and method for preparing the same
Salimi et al. Development of PES-based hydrophilic membranes via corona air plasma for highly effective water purification
JP6295456B2 (en) Coated PTFE membrane
JP2018187533A (en) Composite semipermeable membrane
KR102072877B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
KR102041657B1 (en) Method for manufacturing water-treatment membrane, water-treatment membrane manufactured by thereof, and water treatment module comprising membrane
CA2367547A1 (en) Porous membrane
KR102230992B1 (en) Water treatment membrane and method for preparing thereof
JP2006224051A (en) Porous membrane, porous membrane element, and membrane filter apparatus
JP3638426B2 (en) Ceramic composite member for deaeration and deaeration method using the same
JPS6223401A (en) Ultrafiltration membrane
JP2007007490A (en) Porous membrane, its manufacturing method, and repairing method of porous membrane
JP2005296846A (en) Hydrophilic porous membrane and its manufacturing method
JP5564018B2 (en) Fluororesin porous membrane
RU2418621C1 (en) Method of producing nanomembrane filters

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120529

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150914

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees