JPS6394684A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6394684A
JPS6394684A JP61239910A JP23991086A JPS6394684A JP S6394684 A JPS6394684 A JP S6394684A JP 61239910 A JP61239910 A JP 61239910A JP 23991086 A JP23991086 A JP 23991086A JP S6394684 A JPS6394684 A JP S6394684A
Authority
JP
Japan
Prior art keywords
layer
epitaxial
poly
growth
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61239910A
Other languages
Japanese (ja)
Inventor
Fumitake Mieno
文健 三重野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61239910A priority Critical patent/JPS6394684A/en
Priority to KR1019870011063A priority patent/KR900007686B1/en
Priority to DE3789852T priority patent/DE3789852D1/en
Priority to EP87402250A priority patent/EP0267082B1/en
Publication of JPS6394684A publication Critical patent/JPS6394684A/en
Priority to US07/344,439 priority patent/US4966861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To make an epitaxial Si layer and a poly Si layer smoothly and continuously grow on a Si substrate's exposed surface and on an insulating film, respectively, without broken layers so that a good continuity state can be obtained, by performing vapor epitaxial growth of Si on a silicon substrate on which an insulating film is selectively formed under a reduced-pressure flow of a growth gas which is formed by mixing a silane group silicon source gas into a carrier gas comprising hydrogen. CONSTITUTION:A field silicon dioxide (SiO2) film 2 is formed so as to separate/ expose an element formation region DA on a surface of a p-type Si substrate 1 by a selective oxidation method and concurrently a p-type channel stopper 3 is formed. Vapor growth of a Si layer is performed under a reduced-pressure flow of a growth gas which is formed by mixing a silane group gas as a Si source into a H2 carrier gas. An epitaxial Si layer ES and a poly Si layer PS are smoothly and continuously formed on the exposed element formation region DA of the Si substrate 1 and on the field SiO2 film 2, respectively, without an broken layer. Then, boron (B) of desired concentration is introduced to provide p-type continuity for the epitaxial Si layer ES and the poly Si layer PS.

Description

【発明の詳細な説明】 〔概 要〕 シリコン(Si)基板上に気相成長するエピタキシャル
Si層と、同時に該Si基板上の絶縁膜上に気相成長す
る多結晶St (ポリsD Nとを、シラン系のSiソ
ースガス及び水素(H2)キャリアガスを用い減圧下に
おいて成長させることによって滑らかに連続した層とし
て形成し、これによってSi5板上のエピタキシャルS
ii電層と良好な電気的接続を有する絶縁膜上のポリS
i導電層を得る。
[Detailed Description of the Invention] [Summary] An epitaxial Si layer is grown in vapor phase on a silicon (Si) substrate, and a polycrystalline St (poly-sDN) layer is simultaneously grown in vapor phase on an insulating film on the Si substrate. The epitaxial S layer on the Si5 plate is grown by using a silane-based Si source gas and a hydrogen (H2) carrier gas under reduced pressure to form a smooth continuous layer.
ii PolyS on the insulating film with good electrical connection with the electrical layer
i Obtain a conductive layer.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に係り、特に半導体基板
上のエピタキシャルSi層と絶縁膜上のポリ511gと
を滑らかに連続した状態で同時に形成する方法に関する
The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of simultaneously forming an epitaxial Si layer on a semiconductor substrate and a poly layer 511g on an insulating film in a smooth continuous state.

MO3型半導体集積回路装置(MOS I C>におい
ては、ソース・ドレイン領域の接合容量を減少させて高
速化を図るためにエレベーテド・ソースドレイン(el
evated−S/D)構造が用いられる。
In MO3 type semiconductor integrated circuit devices (MOS IC), an elevated source/drain (el
An evalated-S/D) structure is used.

またバイポーラICにおいては、ベース領域の接合容量
を減少させて高速化を図るためにポ’JSiベース電極
引出し構造が用いられる。
Furthermore, in bipolar ICs, a po'JSi base electrode lead structure is used in order to reduce the junction capacitance of the base region and increase the speed.

第4図は上記エレベーテド・ソースドレイン構造を示す
模式側断面図で、図中、51は例えばp−型シリコン基
板、52はフィールド絶縁膜、53はp型チャネル形成
領域、54はゲート絶縁膜、55はゲート電極、56は
n゛゛ソース領域、57はn゛゛ソース引上げ領域、5
8はn゛型トドレイン領域59はn4型ドレイン引上げ
領域、ESはエピタキシャルSi層、psはポリSi層
を示す。
FIG. 4 is a schematic side sectional view showing the elevated source/drain structure, in which 51 is a p-type silicon substrate, 52 is a field insulating film, 53 is a p-type channel forming region, 54 is a gate insulating film, 55 is a gate electrode, 56 is an n' source region, 57 is an n' source pulling region, 5
Reference numeral 8 indicates an n-type drain region 59, an n4-type drain pull-up region, ES an epitaxial Si layer, and ps a poly-Si layer.

また第5図は上記ベース電極引出し構造を示す模式側断
面図で、図中、51は例えばp−型シリコン基板、52
はフィールド絶縁膜、60はn゛゛埋込み(n″b)層
、61はn−型コレクタ領域、62はp型ベース領域、
63はp型ベース引出し電極、64は絶縁膜、65はn
゛゛エミッタ領域、ESはエピタキシャルSil”!、
PSはポリSi層を示す。
Further, FIG. 5 is a schematic side sectional view showing the above-mentioned base electrode extraction structure, in which 51 is a p-type silicon substrate, 52 is a
is a field insulating film, 60 is an n'' buried (n''b) layer, 61 is an n-type collector region, 62 is a p-type base region,
63 is a p-type base extraction electrode, 64 is an insulating film, and 65 is an n-type base electrode.
゛゛Emitter region, ES is epitaxial Sil''!
PS indicates a poly-Si layer.

かかる構造を形成する際、St基基板51裏に形成され
チャネル形成領域53、ソース領域56、ドレイン領域
58、ベース領域62等が形成されるエピタキシャルS
i層ESと、フィールド絶縁膜52上に形成されソース
引上げ領域57、ドレイン引上げ領域59及びベース引
出し電極63等が形成されるポリ5iJiWpsとが気
相成長手段により同時に形成されるが、この際上記エピ
タキシャル5iFiJESとポリ31層psO間に断層
を生じ易く、配線が接続されるソース引上げ領域57、
ドレイン引上げ領域59、ベース引出し電極63等とソ
ース領域56、ドレイン領域58、ベース領域62等と
の電気的な接続が不完全になって半導体装置の性能が損
なわれるという問題がある。
When forming such a structure, an epitaxial S layer is formed on the back side of the St-based substrate 51 in which the channel formation region 53, source region 56, drain region 58, base region 62, etc. are formed.
The i-layer ES and the poly 5iJiWps formed on the field insulating film 52 and in which the source pull-up region 57, drain pull-up region 59, base extraction electrode 63, etc. are formed are simultaneously formed by vapor phase growth means. A source pull-up region 57 where a fault is likely to occur between the epitaxial 5iFiJES and the poly 31 layer psO and where wiring is connected;
There is a problem in that the electrical connections between the drain pull-up region 59, the base extraction electrode 63, etc. and the source region 56, the drain region 58, the base region 62, etc. become incomplete, and the performance of the semiconductor device is impaired.

そこで、Stt板上に成長するエピタキシャルSi層(
ES)とフィールド絶縁膜上に成長するポリSi層(P
S)とを、断層なく滑らかに連続して形成する技術が要
望される。
Therefore, an epitaxial Si layer (
ES) and a poly-Si layer (P) grown on the field insulating film.
There is a need for a technology to form S) smoothly and continuously without any faults.

〔従来の技術〕[Conventional technology]

上記エピタキシャルSi層(ES)とポリSi層(PS
)との同時成長は従来、シラン系のガスをソースガスと
し水素をキャリアガスとして常圧気相成長法により行わ
れていた。
The above epitaxial Si layer (ES) and poly-Si layer (PS)
) has conventionally been carried out by atmospheric vapor phase growth using a silane-based gas as a source gas and hydrogen as a carrier gas.

その代表的な成長条件例は、 モノシラン(SiH4)流量50cc/min水素(n
2)キャリアガス流i1   11/min成長ガス圧
         常圧 成長温度      950〜1050℃である。
Typical growth conditions include monosilane (SiH4) flow rate of 50cc/min, hydrogen (n
2) Carrier gas flow i1 11/min Growth gas pressure Normal pressure growth temperature 950 to 1050°C.

しかし上記従来方法によると、第6図に示すように、シ
リコン基板51の表出面上に成長するエピタキシャル5
iJiESとフィールド絶縁膜52上に同時成長するポ
リSi層psとがその界面(遷移面)に生ずる断層C1
によって不連続になり勝ちであり、且つ絶縁膜上に成長
するポリSi層(PS)も図示のように粒状に成長して
、ポリSi層(PS)のにも極端な凹凸や断Fczを生
じ易く、前記エレベーテド・ソースドレイン構造のMi
s)ランジスタ、或いはベース電極引出し構造のバイポ
ーラトランジスタを有する半導体rcにおける絶縁膜上
のポリ5tr5を介してのソース領域、ドレイン領域、
或いはペース領域等への良好な電気的接続が阻害され、
該半βπ体ICの性能や歩留りが低下するという問題が
あった。
However, according to the above conventional method, as shown in FIG.
A fault C1 occurs at the interface (transition plane) between iJiES and the poly-Si layer ps grown simultaneously on the field insulating film 52.
In addition, the poly-Si layer (PS) grown on the insulating film also grows in granular form as shown in the figure, causing extreme unevenness and cut-off Fcz in the poly-Si layer (PS). Mi of the elevated source-drain structure is easily
s) A source region and a drain region via a poly 5tr5 on an insulating film in a semiconductor rc having a transistor or a bipolar transistor with a base electrode extraction structure;
Or a good electrical connection to the pace area etc. is inhibited,
There is a problem in that the performance and yield of the half-βπ body IC are reduced.

なお上記現象は、図示のようにリソグラフィ手段でパタ
ーンニングされた垂直な側面を有するフィールド絶縁膜
に限らず、選択酸化(LOCO3法)によって形成した
傾斜側面を有するフィールド絶縁膜においても同様に生
じていた。
Note that the above phenomenon occurs not only in field insulating films with vertical side surfaces patterned by lithography as shown in the figure, but also in field insulating films with inclined side surfaces formed by selective oxidation (LOCO3 method). Ta.

そこで従来、フィールド絶縁膜上に窒化シリコン(Si
J4)膜を設けて上記問題点を除去する方法も試みられ
ているが、製造工程の増加、基板面段差の拡大等が問題
になっていた。
Therefore, conventionally, silicon nitride (Si
J4) A method has been attempted to eliminate the above problems by providing a film, but this has resulted in problems such as an increase in the number of manufacturing steps and an enlargement of the step difference on the substrate surface.

〔発明が解決しようとする問題点〕 本発明が解決しようとする問題は、従来の方法において
、シリコン基板510表出面上に成長するエピタキシャ
ルSi層(ES)とフィールド絶縁膜52上に同時成長
するポリSi層(PS)とが、断層を生ぜずに滑らかに
連続して成長できず、エピタキシャルSi層(US)と
ポリ5iN(PS)との間に良好な導通がとれなかった
点である。
[Problem to be Solved by the Invention] The problem to be solved by the present invention is that in the conventional method, an epitaxial Si layer (ES) grown on the exposed surface of the silicon substrate 510 and the field insulating film 52 are grown simultaneously. The problem is that the poly-Si layer (PS) could not be grown smoothly and continuously without causing faults, and good conduction could not be achieved between the epitaxial Si layer (US) and the poly-5iN (PS).

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は、表面に選択的に絶縁膜(2)を形成して
なるシリコン基板(1)上に、シラン系のシリコンソー
スガスを水素よりなるキャリアガスに混入してなる成長
ガスを用い、該成長ガスの減圧流通下においてシリコン
の気相エピタキシャル成長を行い、該シリコン基板(1
)の表出面上にエピタキシャルシリコン層(ES)を成
長せしめると同時に、該絶縁膜(2)上に該エピタキシ
ャルシリコン]’W (ES)と滑らかに連続した多結
晶シリコン層 (PS)を成長せしめる工程を有する本
発明による半導体装置の製造方法により解決される。
The above problem can be solved by using a growth gas made by mixing a silane-based silicon source gas with a hydrogen carrier gas on a silicon substrate (1) on which an insulating film (2) is selectively formed on the surface. Vapor phase epitaxial growth of silicon is performed under reduced pressure flow of the growth gas, and the silicon substrate (1
An epitaxial silicon layer (ES) is grown on the exposed surface of the insulating film (2), and at the same time a polycrystalline silicon layer (PS) smoothly continuous with the epitaxial silicon W (ES) is grown on the insulating film (2). The problem is solved by a method of manufacturing a semiconductor device according to the present invention, which includes steps.

〔作 用〕[For production]

即ち本発明によれば、シラン系のガス及び水素ガスによ
る絶縁膜即ち二酸化シリコン(SiOz)膜の高温還元
反応によって生ずるSiOを、減圧することによってS
iO2膜表面から速やかに気化除去せしめてSiOz膜
表面に活性なSiの成長核を多量に生成表出させ、該多
量の表出成長核を介して5in2膜上にポリSi層を成
長させる。
That is, according to the present invention, SiO produced by a high-temperature reduction reaction of an insulating film, that is, a silicon dioxide (SiOz) film, with silane-based gas and hydrogen gas is reduced to S by reducing the pressure.
It is quickly vaporized and removed from the iO2 film surface to generate and expose a large amount of active Si growth nuclei on the SiOz film surface, and a poly-Si layer is grown on the 5in2 film via the large amount of exposed growth nuclei.

成長核が多量に存在することによってSiO□膜上に断
層のない平滑なポリSi層が成長すると共に、St表出
面上に成長するエピタキシャルSi層とも断層なく平滑
に連続したポリSi層が形成される。
Due to the presence of a large number of growth nuclei, a smooth poly-Si layer with no faults grows on the SiO□ film, and a smooth continuous poly-Si layer without faults is formed with the epitaxial Si layer growing on the St exposed surface. Ru.

〔実施例〕〔Example〕

以下本発明を、図示実施例により具体的に説明する。 The present invention will be specifically explained below with reference to illustrated embodiments.

第1図(al〜(e)は本発明の方法の一実施例を示す
工程断面図、第2図は本発明の方法に用いた減圧成長装
置の模式側断面図、第3図(a) (b)は本発明の方
法におけるエピタキシャル5illとポリ5iFiの遷
移領域近傍の模式側断面図である。
Figures 1 (al to e) are process sectional views showing one embodiment of the method of the present invention, Figure 2 is a schematic side sectional view of a reduced pressure growth apparatus used in the method of the present invention, and Figure 3 (a). (b) is a schematic side sectional view of the vicinity of the transition region between epitaxial 5ill and poly 5iFi in the method of the present invention.

第1図(a)参照 本発明の方法によりエレベーテド・ソースドレイン構造
のMOS)ランジスタを形成するに際しては、例えば同
図に示すように、p−型Si層板1の表面に通常行われ
る選択酸化(LOGOS)法によって、素子形成領域D
Aを分離表出するフィールドニ酸化シリコン(SiO□
)膜2を形成する。なお通常通りフィールドSiO□膜
形成領域には予め選択的に不純物をイオン注入しておき
、選択酸化と同時にp型チャネルストッパ3を形成する
Refer to FIG. 1(a) When forming a MOS transistor with an elevated source-drain structure by the method of the present invention, for example, as shown in the same figure, selective oxidation is usually carried out on the surface of a p-type Si layer plate 1. (LOGOS) method, element formation area D
Field silicon dioxide (SiO□
) forming film 2; As usual, impurity ions are selectively implanted in advance into the field SiO□ film formation region, and the p-type channel stopper 3 is formed simultaneously with the selective oxidation.

第1図山)参照 次いで該基板上に、H2キャリアガスにSiソースとし
てシラン系のガス例えばジシラン(Sitllb)を混
入してなる成長ガスを用い、該成長ガスの減圧流通下に
おいて、例えば4000〜6000人程度の厚さにS変
色を気相成長させる。
Next, using a growth gas prepared by mixing a silane-based gas such as disilane (Sitllb) as a Si source into an H2 carrier gas, and under reduced pressure flow of the growth gas, the substrate is heated to The S discoloration is grown by vapor phase to a thickness of about 6,000 people.

第2図はこの気相成長の陸用いる減圧成長装置の一例を
示したもので、図中、31は基台、32は基台上に気密
に破裁され成長室を形成するペルジャー、33は基板加
熱用のグラファイトヒータ、34は被成長基板、35は
成長ガス導入管、36は置換用窒素(N2)流入用の流
量計、37はH2キャリアガス流入用の流量計、38は
Siソースガス例えばS i 、It 、流入用の流量
計、39は真空排気口、40は減圧用のメカニカルブー
スタポンプ、41は同ロークリポンプ、42はグラファ
イトヒータ加熱用の電力配線、43は同加熱電源、13
5は成長ガス噴射用シャワーを示す。
Figure 2 shows an example of a land-based vacuum growth apparatus for vapor phase growth. In the figure, 31 is a base, 32 is a Pelger which is airtightly cut on the base to form a growth chamber, and 33 is a A graphite heater for heating the substrate, 34 a growth substrate, 35 a growth gas introduction tube, 36 a flowmeter for inflowing nitrogen (N2) for substitution, 37 a flowmeter for inflowing H2 carrier gas, and 38 a Si source gas. For example, S i , It , a flow meter for inflow, 39 a vacuum exhaust port, 40 a mechanical booster pump for depressurization, 41 a rotary pump, 42 power wiring for heating the graphite heater, 43 a heating power source, 13
5 shows a shower for injecting growth gas.

成長条件は、例えば次の通りである。The growth conditions are, for example, as follows.

Si2H6流ff13〜5 cc/m1nH2キャリア
ガス流量   10β/min成長ガス圧      
200Torr以下成長温度    650〜1100
℃ 再び第1図(b)参照 上記Siの減圧気相成長において、Si基板1の表出す
る素子形成領域DA上にはエピタキシャルSi層ESが
形成され、フィールド5iOz膜2上にはポリSi層P
Sが形成されるが、上記条件においてSi基板1上のエ
ピタキシャル5iliESとフィールド5iOz膜2上
のポリSi層PSとは断層を介在させずに滑らかに連続
して形成される。(TAはエピタキシャルSi層ESと
ポリSi層psとの遷移領域) なおここで成長ガスの減圧度は通常の減圧成長に用いら
れる圧力である200Torr以下であれば支障はない
が、実用し得る成長レート例えば700人/min以上
を得るためには少なくとも3 Torr以上であること
が望ましい。
Si2H6 flowff13~5 cc/m1nH2 carrier gas flow rate 10β/min Growth gas pressure
200 Torr or less Growth temperature 650-1100
℃ Refer again to FIG. 1(b) In the above-mentioned low pressure vapor phase growth of Si, an epitaxial Si layer ES is formed on the exposed element formation area DA of the Si substrate 1, and a polySi layer is formed on the field 5iOz film 2. P
However, under the above conditions, the epitaxial 5iliES on the Si substrate 1 and the poly-Si layer PS on the field 5iOz film 2 are formed smoothly and continuously without any intervening fault. (TA is the transition region between the epitaxial Si layer ES and the poly-Si layer ps) Note that if the degree of decompression of the growth gas is less than 200 Torr, which is the pressure used for normal reduced-pressure growth, there will be no problem, but it is not suitable for practical growth. In order to obtain a rate of, for example, 700 people/min or more, it is desirable that the pressure is at least 3 Torr or more.

またシラン系のStソースガスには、上記以外にモノシ
ラン(Sills)、トリシラン(Sislla)等も
用いられる。
In addition to the above, monosilane (Sills), trisilane (Sislla), etc. are also used as the silane-based St source gas.

次いで所望濃度に硼素(B)を導入し、上記エピタキシ
ャルSi層ES及びポリSi層PSにp−型の導電性を
付与する。
Next, boron (B) is introduced to a desired concentration to impart p-type conductivity to the epitaxial Si layer ES and poly-Si layer PS.

第3図(a)は上記成長におけるエピタキシャルSi層
ESとポリSi層psとの遷移領域T^近傍を示した模
式側断面図で、Si基板1上に成長するエピタキシャル
5iJiESとフィールドSi島膜2上に成長するポリ
5iWJPSとは断層を生ぜずに滑らかに接続して成長
することを示している。
FIG. 3(a) is a schematic side sectional view showing the vicinity of the transition region T^ between the epitaxial Si layer ES and the poly-Si layer ps during the above growth, and shows the epitaxial 5iJiES grown on the Si substrate 1 and the field Si island film 2. It is shown that the poly5iWJPS that grows on top grows while being connected smoothly without creating any faults.

なお第3図(b)に示すように、リソグラフィ手段によ
りフィールドSiO□膜2の側面が垂直に形成される場
合でも、上記エピタキシャルSi層BSとポリSi層p
sとは、実施例同様断層を生ぜずに滑らかに接続して成
長する。
As shown in FIG. 3(b), even when the side surfaces of the field SiO□ film 2 are vertically formed by lithography, the epitaxial Si layer BS and the poly-Si layer p
s grows smoothly connected to each other without causing any faults as in the example.

第1図(C)参照 次いで熱酸化によりエピタキシャルSi層ES及びポリ
5i層PS上にエピタキシャルSi層ES上において厚
さ300人程変色有するゲー)SiO□膜酸化脱酸化膜
4し、次いで該ゲー) 5i(h膜酸化膜4上に化学気
相成長(CVD)法により厚さ4000人程度変色VO
ポリSi層105を形成し、次いで不純物導入を行って
該CVDポリ5iJi105に導電性を付与する。
Refer to FIG. 1(C). Next, thermal oxidation is applied to the epitaxial Si layer ES and the poly5i layer PS to form a SiO□ film oxidized and deoxidized film 4 with a thickness of about 300 layers on the epitaxial Si layer ES. ) 5i (h film) A discolored VO film with a thickness of about 4,000 layers is deposited on the oxide film 4 by chemical vapor deposition (CVD).
A poly-Si layer 105 is formed, and then impurities are introduced to impart conductivity to the CVD poly 5iJi 105.

第1図(d)参照 次いで通常のりソグラフイ手段によりCVDポリ5ii
iosをパターンニングしてポリSiゲート電極5を形
成し、次いでポリSiゲート電極5をマスクにしてエピ
タキシャルSi層ES及びポリ5iFiPSに高濃度に
砒素(As)をイオン注入し、該^Sの活性化処理を行
い、通常のりソグラフィ手段でパターンニングを行う。
Referring to FIG. 1(d), CVD poly 5ii is then bonded by conventional glue lithographic means.
A poly-Si gate electrode 5 is formed by patterning the ios, and then, using the poly-Si gate electrode 5 as a mask, arsenic (As) is ion-implanted at a high concentration into the epitaxial Si layer ES and the poly-5iFiPS to activate the ^S. patterning by normal gluing lithography means.

ここでエピタキシャルSi層ESの領域にn4型ソース
領域6、nゝ型ドレイン領域7及びp−型チャネル形成
領域8が、フィールドSiO2膜2上にポリSi層ps
よりなりソース領域6と良好な電気的接続を有するn゛
゛ソース引上げ領域9及びドレイン領域7と良好な電気
的接続を有するn゛型トドレイン引上領域10が形成さ
れる。
Here, an n4-type source region 6, an n-type drain region 7, and a p-type channel forming region 8 are formed in the region of the epitaxial Si layer ES, and a poly-Si layer ps is formed on the field SiO2 film 2.
As a result, an n-type source pull-up region 9 having good electrical connection with the source region 6 and an n-type drain pull-up region 10 having good electrical connection with the drain region 7 are formed.

第1図(e)参照 次いで通常通り表出するゲートSiO□膜4を選択的に
除去した後Si表出面上に不純物ブロック用のSin、
膜11を形成し、次いでCVD法により該基板上に燐珪
酸ガラス(PSG)等よりなる絶縁膜12を形成し、該
絶縁膜12にソース引上げ領域9及びドレイン引上げ領
域10を個々に表出するコンタクト窓を形成し、該コン
タクト窓上にAt等よりなるソース配線13及びドレイ
ン配線14をそれぞれ形成する。
Refer to FIG. 1(e). Next, after selectively removing the exposed gate SiO□ film 4 as usual, Si for impurity blocking is deposited on the Si exposed surface.
A film 11 is formed, and then an insulating film 12 made of phosphosilicate glass (PSG) or the like is formed on the substrate by a CVD method, and a source pulling region 9 and a drain pulling region 10 are individually exposed on the insulating film 12. A contact window is formed, and a source wiring 13 and a drain wiring 14 made of At or the like are respectively formed on the contact window.

そして以後図示しないが被覆絶縁11iの形成等がなさ
れてエレベーテド・ソースドレイン構造のMOS)ラン
ジスタが完成する。
Thereafter, although not shown, an insulating cover 11i is formed, and a MOS transistor having an elevated source/drain structure is completed.

〔発明の効果〕〔Effect of the invention〕

以上実施例に示すように本発明の方法によれば、選択的
にSing等の絶縁膜を有するSi基板上に気相成長手
段によりSi層を成長せしめる際に、S s 基iff
表出面に成長するエピタキシャルS、7Jと絶縁膜上に
成長するポリSi層とを断層を生ぜずに滑らかに連続し
て成長させることができるので、該エピタキシャルSi
層とポリSi層との間には極めて良好な導通状態が得ら
れる。
As shown in the examples above, according to the method of the present invention, when a Si layer is selectively grown by vapor phase growth on a Si substrate having an insulating film such as Sing, S s
Since the epitaxial S, 7J grown on the exposed surface and the poly-Si layer grown on the insulating film can be grown smoothly and continuously without creating a fault, the epitaxial
A very good conduction state is obtained between the layer and the poly-Si layer.

従って本発明によれば絶縁膜上にポリSi層によりソー
ス・ドレイン領域が引上げられ該ポリSi層上で配線の
接続がなされるエレベーテド・ソースドレイン構造のM
is型半導体装置、或いは絶縁膜上に上記ポリSi層を
用いてベース領域の引出し電極が形成されるベース電極
引出し構造のバイポーラトランジスタ等、寄生容重を減
少させて高速化が図られる半導体装置の性能及び歩留り
が向上する。
Therefore, according to the present invention, an elevated source/drain structure in which the source/drain regions are raised by a poly-Si layer on an insulating film and wiring connections are made on the poly-Si layer is provided.
Performance of semiconductor devices that reduce parasitic load and increase speed, such as IS-type semiconductor devices or bipolar transistors with a base electrode extraction structure in which an extraction electrode of the base region is formed using the above-mentioned poly-Si layer on an insulating film. and yield is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al〜telは本発明の方法の一実施例を示す
工程断面図、 第2図は本発明の方法に用いた減圧成長装置の模式側面
、面図、 第3図(al (b)は本発明の方法におけるエピタキ
シャルSi層とポリSi層の遷移領域近傍の模式側断面
図、 第4図はエレベーテド・ソースドレイン構造を示す模式
側断面図、 第5図はベース電極引出し構造を示す模式側断面図、 第6図は従来方法の問題点を示す模式側断面図である。 図において、 1はp−型Si基板、 2はフィールドSiO□膜、 ESはエピタキシャルSiN。 psはポリSi層、 TAは遷移領域 を示す。 本件ト明の一害J伝仔・IoL手z、1作山4ト1某 
1m 到ミ合ら■月″0−ス5ホ24ダ)+:)fJいr;j
ベノEβ(Jε惨ら1(θイ莫べ1・Ffi図=3 圀 第4図 3力きAと/17拗到卓上ε示すJ美メ(イ貝・1縁ゴ
を山1図寥 6 図
Figure 1 (al to tel is a process sectional view showing an example of the method of the present invention, Figure 2 is a schematic side view and plan view of the reduced pressure growth apparatus used in the method of the present invention, Figure 3 (al (b) ) is a schematic side sectional view of the vicinity of the transition region between the epitaxial Si layer and the poly-Si layer in the method of the present invention, FIG. 4 is a schematic side sectional view showing the elevated source/drain structure, and FIG. 5 is the base electrode extraction structure. Fig. 6 is a schematic side sectional view showing problems with the conventional method. In the figure, 1 is a p-type Si substrate, 2 is a field SiO□ film, ES is epitaxial SiN, and ps is poly-Si. layer, TA indicates the transition area.
1m to meet the ■month''0-su5ho24da)+:)fJir;j
BenoEβ(Jεmiserable 1(θimobe1・Ffi diagram=3 Kuni No. 4 diagram 3 force A and/17 reach tabletop ε show J beauty (I shell・1 edge go mountain 1 diagram 6 figure

Claims (1)

【特許請求の範囲】 表面に選択的に絶縁膜(2)を形成してなるシリコン基
板(1)上に、 シラン系のシリコンソースガスを水素よりなるキャリア
ガスに混入してなる成長ガスを用い、該成長ガスの減圧
流通下においてシリコンの気相エピタキシャル成長を行
い、 該シリコン基板(1)の表出面上にエピタキシャルシリ
コン層(ES)を成長せしめると同時に、該絶縁膜(2
)上に該エピタキシャルシリコン層(ES)と滑らかに
連続した多結晶シリコン層(PS)を成長せしめる工程
を有することを特徴とする半導体装置の製造方法。
[Claims] On a silicon substrate (1) having an insulating film (2) selectively formed on its surface, a growth gas made by mixing a silane-based silicon source gas with a hydrogen carrier gas is used. , performing vapor phase epitaxial growth of silicon under reduced pressure flow of the growth gas, growing an epitaxial silicon layer (ES) on the exposed surface of the silicon substrate (1), and simultaneously growing the insulating film (2).
1.) A method for manufacturing a semiconductor device, comprising the step of growing a polycrystalline silicon layer (PS) smoothly continuous with the epitaxial silicon layer (ES) on the epitaxial silicon layer (ES).
JP61239910A 1986-10-08 1986-10-08 Manufacture of semiconductor device Pending JPS6394684A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP61239910A JPS6394684A (en) 1986-10-08 1986-10-08 Manufacture of semiconductor device
KR1019870011063A KR900007686B1 (en) 1986-10-08 1987-10-02 Vapor-phase growth process
DE3789852T DE3789852D1 (en) 1986-10-08 1987-10-08 Method for producing a semiconductor device with simultaneous growth of epitaxial and polycrystalline Si layers on a selectively oxidized Si substrate by means of gas phase deposition.
EP87402250A EP0267082B1 (en) 1986-10-08 1987-10-08 A method for fabricating a semiconductor device comprising simultaneous growing of epitaxial and polycristalline Si layers over a selectively oxydized Si substrate, by vapor deposition
US07/344,439 US4966861A (en) 1986-10-08 1989-04-25 Vapor deposition method for simultaneously growing an epitaxial silicon layer and a polycrystalline silicone layer over a selectively oxidized silicon substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61239910A JPS6394684A (en) 1986-10-08 1986-10-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6394684A true JPS6394684A (en) 1988-04-25

Family

ID=17051669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61239910A Pending JPS6394684A (en) 1986-10-08 1986-10-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6394684A (en)

Similar Documents

Publication Publication Date Title
US4966861A (en) Vapor deposition method for simultaneously growing an epitaxial silicon layer and a polycrystalline silicone layer over a selectively oxidized silicon substrate
JPS61177770A (en) Manufacture of semiconductor having complementary area
JPS6394684A (en) Manufacture of semiconductor device
JPH04367277A (en) Thin film transistor and manufacture thereof
JPS63174366A (en) Manufacture of semiconductor device
JPS63136568A (en) Semiconductor device
JPH03205830A (en) Manufacture of semiconductor device and polycrystalline germanium
GB2143083A (en) Semiconductor structures
JP2002026027A (en) Semiconductor device and its manufacturing method
JPH021936A (en) Manufacture of bipolar semiconductor device
US6936530B1 (en) Deposition method for Si-Ge epi layer on different intermediate substrates
JPH0249019B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPH0669430A (en) Manufacture of semiconductor device
JPH0546097B2 (en)
JPS6058651A (en) Semiconductor device
JPS6218758A (en) Manufacture of semiconductor device
JPH0831468B2 (en) Method for manufacturing semiconductor device
JPH0467779B2 (en)
JPS6384156A (en) Forming method of bipolar transistor
JPS61139063A (en) Semiconductor device and manufacture thereof
JPH05267321A (en) Bipolar transistor and its manufacture
JPH0982957A (en) Manufacture of semiconductor device
JPS6019142B2 (en) Manufacturing method of semiconductor device
JPS61274323A (en) Manufacture of semiconductor device
JPH0232790B2 (en)