JPS6393217A - Analog switch circuit - Google Patents
Analog switch circuitInfo
- Publication number
- JPS6393217A JPS6393217A JP23860486A JP23860486A JPS6393217A JP S6393217 A JPS6393217 A JP S6393217A JP 23860486 A JP23860486 A JP 23860486A JP 23860486 A JP23860486 A JP 23860486A JP S6393217 A JPS6393217 A JP S6393217A
- Authority
- JP
- Japan
- Prior art keywords
- switching circuit
- main switching
- reference potential
- circuit
- point
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003252 repetitive effect Effects 0.000 claims description 2
- 230000000295 complement effect Effects 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 27
- 238000002955 isolation Methods 0.000 abstract description 10
- 108091006146 Channels Proteins 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 102000004129 N-Type Calcium Channels Human genes 0.000 description 1
- 108090000699 N-Type Calcium Channels Proteins 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
Landscapes
- Electronic Switches (AREA)
Abstract
Description
本発明は交流回路や繰り返えしパルスを扱う回路のため
のMOSトランジスタを利用したアナログスイッチ回路
、とくに高耐圧で比較的大電力を扱うに適したアナログ
スイッチ回路に関する。The present invention relates to an analog switch circuit using MOS transistors for AC circuits and circuits that handle repetitive pulses, and particularly to an analog switch circuit suitable for handling high voltage and relatively large power.
上記のアナログスイッチは最近ますます種々の用途に利
用されるようになり、開閉可能な電圧電流また通過電流
の周波数の範囲も広がって来ている。よく知られている
ように、その利点は開閉容量が比較的大なものでも小形
のMOSトランジスタでよいので集積回路化が容易で、
かつ高い周波数の電力を高い開閉周波数で断続できるこ
とにある。最近の高性能のアナログスイッチでは、例え
ば100〜200 V、 I Aの繰返えし角波数10
MHz程度の大電力パルスを数十kHzの開閉周波数で
断続することができる。
しかし、かかる高性能アナログスイッチを多数個1例え
ば10個以上僅か数鶴角の半導体基板上に集積化しよう
とすると、種々の問題点が生じて来る0問題点の一つは
スイッチオフアイソレーションといわれる開路時の入出
力端子間の分離の問題であって、取り扱う電圧が高くな
りまた通過電流の周波数が高くなるほど、開路したはず
のアナログスイッチから信号が洩れやすくなる。もう一
つの問題点は、チャネル間アイソレージaンの問題であ
って、通過電流周波数や開閉周波数が高くなるほど、同
一基板上に集積化された複数個のアナログスイッチ間で
動作上の干渉が生じて、開閉の誤動作が起こりやすくな
る。かかる問題が生じる根源は、要するに1個のアナロ
グスイッチについてその入出力端子間がオフ時にも基板
を介してはつながっており、また複数個のアナログスイ
ッチチャネル間も常に基板を介してつながっていること
に帰着する。この種の問題点に対して従来から知られて
いる解決手段として、例えばチャネル間に分離層を介在
させるとか、各チャネル区間をガードリングで囲むとか
の手段をとることはできるが、いずれも高集積化の見地
からは非活性$I域のためにf!頂な基板面積を割かね
ねばならないので必ずしも有利な解決といえず、また前
述のスイッチオフアイソレーションの向上策となり得な
い。The above-mentioned analog switches have recently been increasingly used for various purposes, and the frequency range of the voltage and current that can be opened and closed and the frequency of passing current is also expanding. As is well known, the advantage is that even if the switching capacitance is relatively large, a small MOS transistor can be used, making it easy to integrate into an integrated circuit.
Another advantage is that high-frequency power can be switched on and off at a high switching frequency. Recent high-performance analog switches have, for example, 100 to 200 V, IA repetition angular wave number 10.
It is possible to intermittent high power pulses on the order of MHz at a switching frequency of several tens of kHz. However, when trying to integrate a large number of such high-performance analog switches (for example, 10 or more) onto a semiconductor substrate that is only a few square inches, various problems arise.One of the problems is called switch-off isolation. This is a problem of separation between input and output terminals when an open circuit occurs, and the higher the voltage handled and the higher the frequency of the passing current, the more likely it is that signals will leak from an analog switch that is supposed to be open. Another problem is the problem of isolation between channels, and as the passing current frequency and switching frequency become higher, operational interference occurs between multiple analog switches integrated on the same board. , opening/closing errors are more likely to occur. The root cause of this problem is that the input and output terminals of a single analog switch are connected via the board even when it is off, and multiple analog switch channels are also always connected via the board. It comes down to. Conventionally known solutions to this type of problem include, for example, interposing a separation layer between channels or surrounding each channel section with a guard ring, but these methods are expensive. From an integration standpoint, f! This is not necessarily an advantageous solution since it requires a significant substrate area, and it cannot be an improvement in the aforementioned switch-off isolation.
本発明はスイッチオフアイソレーションとチャネル間ア
イソレーシッンが良好で集積化が容易なアナログスイッ
チ回路を得ることを目的とする。SUMMARY OF THE INVENTION An object of the present invention is to provide an analog switch circuit that has good switch-off isolation and inter-channel isolation and is easy to integrate.
本発明においては、アナログスイッチ回路を互いに直列
接続されかつ開閉指令をそれぞれのゲートに共通に受け
る1対のMOSトランジスタからなる主開閉回路と、該
両MO3トランジスタの相互接続点と基準電位点との間
に挿入され主開閉回路の開閉動作とは常に逆の開閉動作
を行なう補助開閉回路とで構成することにより上述の目
的を達成する。
上述の構成にいう基準電位点はふつうは通例のように接
地電位点であってよい、一方、主開閉回路を構成する1
対のMOSトランジスタの相互接続点はふつうは基板な
いしは基板内のウェル層と同電位であるから、上述の構
成によりアナログスイッチのオフ時には補助開閉回路が
オンして該基板ないしはウェル層が基準電位に置かれる
0両MO3トランジスタ内の電流路であるチャネルはこ
の基準電位に置かれる相互接続点ないしはその近接のウ
ェル層のそれぞれ入力端子または出力端子側に位置し、
かつ公知のように基板の表面に形成されるのであるから
、アナログスイッチのオフ時には両チャネルはそれらの
間に介在する基準電位点ないしは基板内の基!1を電位
@IIk71によって完全に隔離される。従って、入出
力端子になんらかの原因で過電圧が掛かって、最悪時に
入力側または出力側チャネルで一時ないわゆるパンチス
ルーが起こっても、パンチスルー電流はすべて基準電位
点にバイパスされてしまい、入出力端子の一方から他方
に突き抜けるおそれがない、これが本発明によるアナロ
グスイッチ回路のスイッチオフアイソレーションが良好
な主因である。
一方、チャネル間アイソレーシッンについては、あるア
ナログスイッチがオフ状態にあるとき近くのアナログス
イッチのオンオフ動作に干渉されて誤ってオン状態に移
ってしまうのが最も危険な回避すべき事態である。しか
し、本発明においては干渉によりたとえ一時的なオン状
態が起こっても、前述のように入出力端子間のパンチス
ルーを生じることがないから、上述の最も危険な事態は
少なくとも回避され、また干渉信号やノイズのもつエネ
ルギは元来は微弱なものであるからチャネルのパンチス
ルーが起きたとき直ちにこれにより消耗されて、チャネ
ルのバンチスルーも少時後に回復される。逆にあるアナ
ログスイッチがオン状態にあるとき、わかりやすくいえ
ばその両MO3トランジスタのチャネルはともに低イン
ピーダンス状態にあるので、外部からの干渉を受けるお
それは非常に少ない、もちろんこの際にはそのアナログ
スイッチの主開閉回路のオン動作と同時に補助開閉回路
はオフ状態に入り、前述の相互接続点とその近接の半導
体領域は基準電位から解放される。
本発明回路の望ましい実施態様については次項を参照さ
れたい。In the present invention, there is provided a main switching circuit consisting of a pair of MOS transistors in which analog switch circuits are connected in series with each other and whose gates commonly receive switching commands, and a connection point between the two MO3 transistors and a reference potential point. The above object is achieved by constructing an auxiliary switching circuit which is inserted between the main switching circuits and always performs opening/closing operations opposite to those of the main switching circuits. The reference potential point referred to in the above-mentioned configuration may normally be the ground potential point, while the
Since the interconnection point of a pair of MOS transistors is usually at the same potential as the substrate or the well layer in the substrate, with the above configuration, when the analog switch is off, the auxiliary switching circuit is turned on and the substrate or well layer is at the reference potential. The channel, which is the current path in the two MO3 transistors, is located at the input terminal or output terminal side of the well layer at or near the interconnection point placed at this reference potential, respectively,
In addition, as is well known, since it is formed on the surface of the substrate, when the analog switch is off, both channels are connected to the reference potential point interposed between them or the base within the substrate. 1 is completely isolated by the potential @IIk71. Therefore, even if an overvoltage is applied to the input/output terminals for some reason and, in the worst case scenario, a temporary so-called punch-through occurs on the input or output side channel, all the punch-through current will be bypassed to the reference potential point, and the input/output terminals will be bypassed. This is the main reason why the switch-off isolation of the analog switch circuit according to the invention is good. On the other hand, with regard to inter-channel isolation, the most dangerous situation to be avoided is when one analog switch is in the OFF state and is interfered with by the on/off operation of a nearby analog switch, causing it to mistakenly turn on. However, in the present invention, even if a temporary ON state occurs due to interference, punch-through between the input and output terminals does not occur as described above, so the most dangerous situation described above is at least avoided, and the interference Since the energy of signals and noise is originally weak, it is immediately consumed when channel punch-through occurs, and channel punch-through is recovered after a short time. Conversely, when an analog switch is in the on state, the channels of both MO3 transistors are in a low impedance state, so there is very little risk of interference from the outside. Simultaneously with the ON operation of the main switching circuit of the switch, the auxiliary switching circuit enters the OFF state, and the aforementioned interconnection point and the semiconductor region in its vicinity are released from the reference potential. Please refer to the next section for a preferred embodiment of the circuit of the present invention.
以下、図を参照しながら本発明の詳細な説明する。第1
図は主開閉回路のMOSトランジスタ10.20にNチ
ャネル形を用いた例の本発明の基本回路を示すもので、
両MOSトランジスタ10.20のソースSL、S2は
図示のように通例に従ってサブストレートと内部接続さ
れ、両MOSトランジスタのドレイン01.02から入
出力端子T1.丁2が導出されている。この主開閉回路
は図示のように対称形であるから入出力端子Tl、T2
はどちらが入力側でどちらが出力側であっても差し支え
ない0両MO3トランジスタのゲー)Gl、G2は共通
接続され、ゲート端子Gとして導出される。もちろん、
両MOSトランジスタはふつうエンハンスメント形で、
ゲート端子Gに与えられる図示の正極性の開閉指令SS
の高または低の状態に応じて閉または開動作をし、閉動
作時には両MO3トランジスタからなる主開閉回路に端
子丁1側に示された操り返えしパルス状の電圧Vまたは
[流iあるいは交流の電圧。
電流を通過させることができる。
補助開閉回路は原理的には主開閉回路が集積化される基
板外に設けてもよいが、同一基板上に集積化するのがも
ちろん有利であり、図1の例では1個のNチャネルMO
Sトランジスタ30で構成され、主開閉回路の両MO3
トランジスタのソース31.32の相互接続点Jと図で
は接地点である基準電位点Eとの間に挿入されている。
このMOSトランジスタ30のソースSもサブストレー
トと内部接続された上で基準電位点已に接続され、反サ
ブストレート側のドレインdが前述の主開閉回路内の相
互接続点Jに接続されている。該MO3トランジスタの
ゲートは補助ゲート端子gとして導出され、前述の開閉
指令の補信号SSを受ける。容易にわかるように主開閉
回路の両MOSトランジスタ10.20と補助開閉回路
のMOSトランジスタ30とは互いに逆の開閉動作を行
ない、主開閉回路の開時にはその相互接続点JはMOS
トランジスタ3Gを介して基準電位点Eと接続され、逆
に主開閉回路の閉時には該点Jは高インピーダンス状態
のMOSトランジスタ30によって基準電位点Eと接続
されている。主開閉回路の閉時に、相互接続Jの電位が
外部から完全に浮いてしまうことはまず考えられないが
、両MO3トランジスタ10,20のオン動作に支障を
生じない程度の高インピーダンスで相互接続点Jを念の
ために基準電位点Eに接続しておく方が安全である。
第2図はその下部に主開閉回路の第1図に対応する両M
O3I−ランジスタ10.20が基板1内に集積化され
た状態を断面図で示すとともに、その上部に同一基板内
に集積化するに適する補助開閉回路の実施例を回路的に
示したものである。よく知られているようにこの種のM
OSトランジスタ10゜20は基板1の表面に付けられ
たゲート酸化II!22上にポリシリコンやアルミのゲ
ート電極3が配置され、それらのソースJiS1.S2
およびドレイン層DI。
02はP形のウェルでもある基板l内にN“ ドープ領
域として作り込まれる。基板1の大部分の表面とゲート
電極3の上面は別の酸化膜4によって覆われ、その窓を
通して蒸着されたアルミ電pJ15.・6から端子が取
られる。アルミ電極5の方はドレイン層01.02に接
する入出力端子Tl、T2用であり、アルミ電極6の方
はソースjis1.S2と基板1とに接する両MO3ト
ランジスタの直列接続用で、これが相互接続点Jになる
。オン時にゲート電極3に与えられる開閉指令によって
N形チャネルchが基板lの表面のドレイン、ソース間
に誘起されて通過電流を許すが、オフ時に入出力端子T
l、72間に掛かる電圧はドレイン11111.D2の
いずれかとウェルである基板1との接合によって分担さ
れる。
すなわち、端子T1の方が端子T2よりも正の電位であ
るとき、電圧はドレインNDl側の接合により分担され
、逆に端子T2の方が端子T1よりも正の電位であると
き、電圧はドレイン層02側の接合により分担される。
従って、ドレインJIDI、D2側の接合は図示のよう
にソース層側接合よりもその寸法や曲率が高圧にも耐え
るように構成され、P形の基板1であるウェル層にも固
存抵抗の高いものが用いられて、ドレインに正電位が掛
かってウェルとの間の接合が逆バイアス状態になったと
き、図示のような空乏層がウェル側に伸びやすい設計に
なっている。
さて、主開閉回路の開時には相互接続点Jには、図の上
部に示された補助開閉回路の閉状態のMOSトランジス
タ30を介して基準電位が与えられるが、この基t1!
電位点の選択に若干の注意が必要である。すなわち、令
弟1図に示すように端子T2が電源側であって、電圧V
で示すような交流電圧が掛かっているとし、もしある時
間内に端子T2の電位が相互接続点Jの電位よりも負に
なったとすると、端子12例のドレインJli[12の
接合が順バイアス状態になって電源が高抵抗の基板1を
通してであるがいわば短絡されてしまう、これを避ける
には、電圧Vがいつでも基準電位点Eよりも正になるよ
うに電源に正のバイアスを掛けるか、逆に電i′c1位
よたも負のバイアスをもつ点を基準電位点としてやれば
よい、を源にかけた正バイアスは、必要に応じて出力端
子側にカップリングコンデンサを設けることにより、負
荷に掛かるのを遮断することができる。もちろん、この
電位の正負の関係は、主開閉回路のMOSトランジスタ
がPチャネル形であるとき上記とは逆になる。また、第
1図の端子T1が電源側であつて、図示のように極性が
一定な繰り返えしパルス電圧を受けるときには問題はな
く、この場合の基準電位点は電源へのt流の帰路点、す
なわち通常は電源の接地電位点でよい。
第2図に示された別のMOSトランジスタ4】は主開閉
回路のゲート端子Gへの開閉指令ssをそのゲートに受
けて抵抗42との接続点から開閉指令の補信号SSを基
準電位点との接続用MO3トランジスタ30のゲートに
与えるインバータである。このMOSトランジスタ41
もMOSトランジスタ3oとともに主開閉回路用の基板
1内に集積化することができ、この場合は抵抗42も公
知の抵抗接続のMOSトランジスタとして同時に集積化
するのがよい、これらの主開閉回路と同一基板上に集積
化するときのMO3I−ランジスタ30.41はいずれ
も小形のものでよく、抵抗42を含めても個数は3個程
度であるから基板上のさほど大きな面積を割り当てる要
はない。
なお、アナログスイッチ回路によって誘導性の負荷を急
速遮断したとき、負荷側で振動電圧が発生するが、本発
明回路では負荷側電圧が負になると主開閉回路の負荷側
MO3トランジスタのドレイン層接合が順バイアスにな
って負電圧を有効に基準電位点側に吸収しかつ振動電圧
を減少させるので、本発明によりアナログスイッチが負
荷側の逆起電力により損傷することが少な(なる副次的
効果が得られる。
【発明の効果]
以上説明したとおり、本発明においてはアナログスイッ
チの主開閉回路の1対のMOSトランジスタの相互接続
点と基準電位点との間に補助開閉回路として例えばもう
一つのMOSトランジスタを挿入し、開閉指令による主
開閉回路の開閉とは逆の開閉動作を行なわせるようにし
たので、主開閉回路の開時にMOSトランジスタの相互
接続点が75′$電位点に接続されて、間違っても電源
端子からの電圧や電流が負荷端子側に洩れ出すようなこ
とがなく、アナログスイッチのスイッチオフアイソレー
シッン特性が従来より格段に向上される。
またこれに応じてチャネル間アイソレーシッンも改善さ
れるので、大電力用でかつ高周波用のアナログスイッチ
であっても高密度で5fI2回路化することができる。
また、主開閉回路のオン動作時には相互接続点は基準電
位点から開放されるので、試作の結果でもオン時特性と
くに閉動作速度が従来のアナログスイッチより悪化する
ようなこともない。
このように、本発明回路はとくに高耐圧の大電流用で高
いスイッチング周波数で動作させるアナログスイッチに
好適で、その適用範囲をさらに拡大させる上で貢献をす
るものと期待される。Hereinafter, the present invention will be described in detail with reference to the drawings. 1st
The figure shows the basic circuit of the present invention in which an N-channel type is used for the MOS transistors 10 and 20 of the main switching circuit.
The sources SL, S2 of both MOS transistors 10.20 are internally connected to the substrate as shown in the figure, as is customary, and the drains 01.02 of both MOS transistors are connected to input/output terminals T1. Ding2 has been derived. Since this main switching circuit is symmetrical as shown, the input/output terminals Tl and T2
G1 and G2 are connected in common and are led out as the gate terminal G. of course,
Both MOS transistors are usually enhancement type,
Positive polarity opening/closing command SS given to gate terminal G
It closes or opens depending on the high or low state of AC voltage. Can pass electric current. In principle, the auxiliary switching circuit may be provided outside the substrate on which the main switching circuit is integrated, but it is of course advantageous to integrate it on the same substrate, and in the example of FIG.
Consisting of S transistor 30, both MO3 of the main switching circuit
It is inserted between the interconnection point J of the sources 31, 32 of the transistors and the reference potential point E, which is the ground point in the figure. The source S of this MOS transistor 30 is also internally connected to the substrate and connected to the reference potential point, and the drain d on the side opposite to the substrate is connected to the interconnection point J in the above-mentioned main switching circuit. The gate of the MO3 transistor is led out as an auxiliary gate terminal g, and receives the aforementioned auxiliary signal SS of the opening/closing command. As can be easily seen, both the MOS transistors 10 and 20 of the main switching circuit and the MOS transistor 30 of the auxiliary switching circuit perform opposite opening and closing operations, and when the main switching circuit is open, the interconnection point J is a MOS transistor.
It is connected to the reference potential point E via the transistor 3G, and conversely, when the main switching circuit is closed, the point J is connected to the reference potential point E by the MOS transistor 30 in a high impedance state. When the main switching circuit is closed, it is highly unlikely that the potential of the interconnection J will completely float from the outside, but the interconnection point should have a high impedance that does not interfere with the ON operation of both MO3 transistors 10 and 20. It is safer to connect J to the reference potential point E just in case. Figure 2 shows both M and M corresponding to Figure 1 of the main switching circuit at the bottom.
This is a cross-sectional view showing a state in which O3I-transistors 10.20 are integrated in the substrate 1, and above the cross-sectional view, an example of an auxiliary switching circuit suitable for integration in the same substrate is shown in circuit form. . As is well known, this type of M
The OS transistor 10°20 has a gate oxide II attached to the surface of the substrate 1! A gate electrode 3 made of polysilicon or aluminum is arranged on the source JiS1. S2
and drain layer DI. 02 is fabricated as an N"-doped region in the substrate 1, which is also a P-type well. The surface of most of the substrate 1 and the top surface of the gate electrode 3 is covered with another oxide film 4, which is deposited through the window. Terminals are taken from the aluminum electrode pJ15.・6.The aluminum electrode 5 is for the input/output terminals Tl and T2 in contact with the drain layer 01.02, and the aluminum electrode 6 is connected to the source jis1.S2 and the substrate 1. This is for series connection of both MO3 transistors that are in contact with each other, and this becomes the interconnection point J. When turned on, an open/close command given to the gate electrode 3 causes an N-type channel ch to be induced between the drain and source on the surface of the substrate l, causing a passing current. Allowed, but input/output terminal T when off
The voltage applied between drain 11111. It is shared by the junction between one of D2 and the substrate 1, which is a well. That is, when the terminal T1 has a more positive potential than the terminal T2, the voltage is shared by the junction on the drain NDl side, and conversely, when the terminal T2 has a more positive potential than the terminal T1, the voltage is shared by the drain NDl side junction. This is shared by the bonding on the layer 02 side. Therefore, as shown in the figure, the junctions on the drain JIDI and D2 sides are constructed so that their dimensions and curvature can withstand higher pressure than the junctions on the source layer side, and the well layer, which is the P-type substrate 1, also has a high resistivity. The design is such that when a positive potential is applied to the drain and the junction with the well becomes reverse biased, the depletion layer as shown in the figure tends to extend toward the well. Now, when the main switching circuit is open, a reference potential is applied to the interconnection point J via the closed MOS transistor 30 of the auxiliary switching circuit shown at the top of the figure, but this base t1!
Some care must be taken in selecting the potential point. That is, as shown in Figure 1, the terminal T2 is on the power supply side, and the voltage V
Assuming that an alternating current voltage as shown by In this case, the power supply is short-circuited through the high-resistance substrate 1. To avoid this, either apply a positive bias to the power supply so that the voltage V is always more positive than the reference potential point E, or On the other hand, it is sufficient to use a point with a negative bias as the reference potential point.If necessary, a coupling capacitor can be installed on the output terminal side to reduce the load. It is possible to block it from being applied. Of course, the positive/negative relationship of this potential is opposite to the above when the MOS transistor of the main switching circuit is a P-channel type. Furthermore, if the terminal T1 in Fig. 1 is on the power supply side and receives a repeated pulse voltage of constant polarity as shown in the figure, there is no problem; the reference potential point in this case is the return path of the t current to the power supply. point, typically the ground potential point of the power supply. Another MOS transistor 4] shown in FIG. 2 receives an opening/closing command ss to the gate terminal G of the main switching circuit at its gate, and outputs a supplementary signal SS of the opening/closing command from the connection point with the resistor 42 as a reference potential point. This is an inverter applied to the gate of the MO3 transistor 30 for connection. This MOS transistor 41
The resistor 42 can also be integrated in the substrate 1 for the main switching circuit together with the MOS transistor 3o, and in this case, it is preferable that the resistor 42 is also integrated at the same time as a known resistor-connected MOS transistor. When integrated on the substrate, the MO3I transistors 30 and 41 may all be small, and the number of MO3I transistors 30, 41 including the resistor 42 is about three, so it is not necessary to allocate a very large area on the substrate. Note that when an inductive load is rapidly cut off by an analog switch circuit, an oscillating voltage is generated on the load side, but in the circuit of the present invention, when the load side voltage becomes negative, the drain layer junction of the load side MO3 transistor of the main switching circuit is Since it becomes a forward bias and effectively absorbs the negative voltage to the reference potential point side and reduces the oscillating voltage, the analog switch is less likely to be damaged by the back electromotive force on the load side. [Effects of the Invention] As explained above, in the present invention, for example, another MOS transistor is connected as an auxiliary switching circuit between the interconnection point of a pair of MOS transistors in the main switching circuit of an analog switch and the reference potential point. By inserting a transistor, the opening/closing operation is opposite to the opening/closing of the main switching circuit by the opening/closing command, so that when the main switching circuit is opened, the interconnection point of the MOS transistors is connected to the 75'$ potential point, Even if you make a mistake, the voltage or current from the power supply terminal will not leak to the load terminal side, and the switch-off isolation characteristics of the analog switch will be significantly improved compared to the conventional one. Since the voltage is also improved, even high-power and high-frequency analog switches can be configured into two 5fI circuits with high density.Also, when the main switching circuit is turned on, the interconnection point is disconnected from the reference potential point. Therefore, even in the prototype results, the on-state characteristics, especially the closing speed, are not worse than those of conventional analog switches.In this way, the circuit of the present invention is especially suitable for high voltage and large current applications and operates at a high switching frequency. It is suitable for analog switches and is expected to contribute to further expanding its range of application.
図はすべて本発明の説明用で、第1図は本発明によるア
ナログスイッチ回路の代表的な実施例を示す原理回路図
、第2図はその異なる実施例を主開閉回路のMOSトラ
ンジスタの断面とともに示す模式回路図である0図にお
いて、
1:半導体基板、10.20:主開閉回路を構成する1
対のMOSトランジスタ、30:補助開閉回路を構成す
るMOSトランジスタ、41:補助開閉回路の一部を構
成するMOSトランジスタ、42:抵抗ないしは抵抗接
tlEM OS トランジスタ、ch:チャネル、DI
、02. d ニドレイン、E:基準電位点、Gl。
G2:ゲート、G:主開閉回路に対するゲート端子、g
:補助開閉回路に対する補助ゲート端子、ss:開閉指
令、SS:開閉指令の補信号、Sl、S2. s :ソ
ース、Tl、T2:アナログスイッチの入出力端子、で
ある。
第1図
第2図All figures are for explanation of the present invention. Figure 1 is a principle circuit diagram showing a typical embodiment of an analog switch circuit according to the present invention, and Figure 2 shows a different embodiment thereof, together with a cross section of a MOS transistor in the main switching circuit. In Figure 0, which is a schematic circuit diagram, 1: semiconductor substrate, 10.20: 1 constituting the main switching circuit.
Pair of MOS transistors, 30: MOS transistor forming an auxiliary switching circuit, 41: MOS transistor forming a part of the auxiliary switching circuit, 42: Resistor or resistance-connected tlEM OS transistor, ch: channel, DI
, 02. d Nidrein, E: Reference potential point, Gl. G2: Gate, G: Gate terminal for main switching circuit, g
: Auxiliary gate terminal for the auxiliary opening/closing circuit, ss: Opening/closing command, SS: Supplementary signal of the opening/closing command, Sl, S2. s: source, Tl, T2: analog switch input/output terminal. Figure 1 Figure 2
Claims (1)
トに共通に受ける1対のMOSトランジスタからなる主
開閉回路と、該両MOSトランジスタの相互接続点と基
準電位点との間に挿入され主開閉回路の開閉動作とは常
に逆の開閉動作を行なう補助開閉回路とを備えてなるア
ナログスイッチ回路。 2)特許請求の範囲第1項記載の回路において、補助開
閉回路が開閉指令の補信号をゲートに受けるMOSトラ
ンジスタであることを特徴とするアナログスイッチ回路
。 3)特許請求の範囲第1項記載の回路において、基準電
位点が主開閉回路の電源側端子に電源電圧が常に所定の
極性で掛かるように選択されることを特徴とするアナロ
グスイッチ回路。 4)特許請求の範囲第1項記載の回路において、常に所
定の極性をもつ繰返えしパルス回路に対して用いられる
ことを特徴とするアナログスイッチ回路。[Claims] 1) A main switching circuit consisting of a pair of MOS transistors connected in series and receiving switching commands in common to their respective gates, and between the interconnection point of both MOS transistors and a reference potential point. An analog switch circuit comprising an auxiliary switching circuit that is inserted into the main switching circuit and always performs switching operations opposite to those of the main switching circuit. 2) An analog switch circuit according to claim 1, wherein the auxiliary switching circuit is a MOS transistor whose gate receives a complementary signal of the switching command. 3) An analog switch circuit according to claim 1, wherein the reference potential point is selected such that the power supply voltage is always applied to the power supply side terminal of the main switching circuit with a predetermined polarity. 4) An analog switch circuit according to claim 1, characterized in that it is used for a repetitive pulse circuit that always has a predetermined polarity.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23860486A JPS6393217A (en) | 1986-10-07 | 1986-10-07 | Analog switch circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23860486A JPS6393217A (en) | 1986-10-07 | 1986-10-07 | Analog switch circuit |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6393217A true JPS6393217A (en) | 1988-04-23 |
Family
ID=17032654
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23860486A Pending JPS6393217A (en) | 1986-10-07 | 1986-10-07 | Analog switch circuit |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6393217A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63253718A (en) * | 1987-04-09 | 1988-10-20 | Rohm Co Ltd | Gate circuit |
JPH02127815A (en) * | 1988-11-08 | 1990-05-16 | Matsushita Electric Ind Co Ltd | Thin film transistor switch circuit and its drive method |
FR2691858A1 (en) * | 1992-05-29 | 1993-12-03 | Fujitsu Ltd | FET transfer gate circuit for very high speed dynamic divider - has two series FET with common grid input controlling channel in both FET and with different threshold voltages |
EP0637136B1 (en) * | 1993-07-29 | 2001-09-19 | Kabushiki Kaisha Toshiba | Semiconductor relay for transmitting high frequency signals |
JP2006325044A (en) * | 2005-05-20 | 2006-11-30 | Hitachi Ltd | Switch circuit and signal processor using the same |
US7268606B2 (en) | 2002-02-25 | 2007-09-11 | Nxp B.V. | High-frequency signal switching |
JP2010206779A (en) * | 2009-02-06 | 2010-09-16 | Seiko Instruments Inc | Switch circuit |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS508847B1 (en) * | 1970-10-15 | 1975-04-08 | ||
JPS5360155A (en) * | 1976-11-10 | 1978-05-30 | Fujitsu Ltd | Analog fet switch |
JPS57192128A (en) * | 1981-05-20 | 1982-11-26 | Jido Keisoku Gijutsu Kenkiyuukumiai | Analog switch circuit |
JPS6159911A (en) * | 1984-08-30 | 1986-03-27 | Nec Corp | Changeover switch circuit |
-
1986
- 1986-10-07 JP JP23860486A patent/JPS6393217A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS508847B1 (en) * | 1970-10-15 | 1975-04-08 | ||
JPS5360155A (en) * | 1976-11-10 | 1978-05-30 | Fujitsu Ltd | Analog fet switch |
JPS57192128A (en) * | 1981-05-20 | 1982-11-26 | Jido Keisoku Gijutsu Kenkiyuukumiai | Analog switch circuit |
JPS6159911A (en) * | 1984-08-30 | 1986-03-27 | Nec Corp | Changeover switch circuit |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63253718A (en) * | 1987-04-09 | 1988-10-20 | Rohm Co Ltd | Gate circuit |
JPH0563050B2 (en) * | 1987-04-09 | 1993-09-09 | Rohm Kk | |
JPH02127815A (en) * | 1988-11-08 | 1990-05-16 | Matsushita Electric Ind Co Ltd | Thin film transistor switch circuit and its drive method |
FR2691858A1 (en) * | 1992-05-29 | 1993-12-03 | Fujitsu Ltd | FET transfer gate circuit for very high speed dynamic divider - has two series FET with common grid input controlling channel in both FET and with different threshold voltages |
US5541549A (en) * | 1992-05-29 | 1996-07-30 | Fujitsu Limited | Transfer gate circuit and dynamic divider circuit using the same |
EP0637136B1 (en) * | 1993-07-29 | 2001-09-19 | Kabushiki Kaisha Toshiba | Semiconductor relay for transmitting high frequency signals |
US7268606B2 (en) | 2002-02-25 | 2007-09-11 | Nxp B.V. | High-frequency signal switching |
JP2006325044A (en) * | 2005-05-20 | 2006-11-30 | Hitachi Ltd | Switch circuit and signal processor using the same |
JP4635713B2 (en) * | 2005-05-20 | 2011-02-23 | 株式会社日立製作所 | Switch circuit, semiconductor device, ultrasonic diagnostic device, semiconductor tester |
JP2010206779A (en) * | 2009-02-06 | 2010-09-16 | Seiko Instruments Inc | Switch circuit |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5502412A (en) | Method and circuit for driving power transistors in a half bridge configuration from control signals referenced to any potential between the line voltage and the line voltage return and integrated circuit incorporating the circuit | |
KR102461713B1 (en) | Level shifter | |
US4139880A (en) | CMOS polarity reversal circuit | |
US6836172B2 (en) | Semiconductor switch apparatus including isolated MOS transistors | |
CA1175115A (en) | Solid state optically coupled electrical power switch | |
US6211706B1 (en) | Method and circuit for driving power transistors in a half bridge configuration allowing for excessive negative swing of the output node and integrated circuit incorporating the circuit | |
US6307250B1 (en) | Electronic switch for decoupling capacitor | |
US4170740A (en) | High voltage switch and capacitive drive | |
US5430403A (en) | Field effect transistor with switchable body to source connection | |
US5473500A (en) | Electrostatic discharge circuit for high speed, high voltage circuitry | |
US4701642A (en) | BICMOS binary logic circuits | |
US4888504A (en) | Bidirectional MOSFET switching circuit with single gate bias | |
US4246502A (en) | Means for coupling incompatible signals to an integrated circuit and for deriving operating supply therefrom | |
JPS6393217A (en) | Analog switch circuit | |
US4924119A (en) | Electrically programmable erasable inverter device with deprogramming limitation | |
GB2384632A (en) | A power MOSFET with integrated short-circuit protection | |
USRE35836E (en) | Solid state optically coupled electrical power switch | |
IE33267L (en) | Semiconductor interface stage | |
JPS6049381B2 (en) | Logic circuit that performs Boolean logic functions | |
US5939899A (en) | MOSFET substrate current logic | |
JP2553600B2 (en) | BiMOS semiconductor integrated circuit | |
JPH05167412A (en) | Semiconductor relay circuit | |
JPH07193193A (en) | Semiconductor device | |
US20040150045A1 (en) | LSI alleviating hysteresis of delay time | |
JP3635953B2 (en) | High voltage power integrated circuit |