JPS6392028A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6392028A
JPS6392028A JP23845386A JP23845386A JPS6392028A JP S6392028 A JPS6392028 A JP S6392028A JP 23845386 A JP23845386 A JP 23845386A JP 23845386 A JP23845386 A JP 23845386A JP S6392028 A JPS6392028 A JP S6392028A
Authority
JP
Japan
Prior art keywords
film
oxide film
cvd
bpsg
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23845386A
Other languages
Japanese (ja)
Other versions
JPH0777232B2 (en
Inventor
Shinji Obara
伸治 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61238453A priority Critical patent/JPH0777232B2/en
Publication of JPS6392028A publication Critical patent/JPS6392028A/en
Publication of JPH0777232B2 publication Critical patent/JPH0777232B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To prevent diffusion of impurities when high temperature reflow of a BPSG film for insulation and isolation is performing, by providing insulating and isolating films having three layers of a thermal oxide film, a CVD oxide film and a BPSG (boro-phospho-silicate glass) film on a semiconductor substrate. CONSTITUTION:A thermal oxide film 2 is provided on one surface of a semiconductor substrate 1 by a thermal oxidation method. A CVD oxide film 3 is formed by a CVD method. A BPSG film 4 is laminated by a CVD method. Thereafter, a light sensitive resin 5 is applied by a spinner method and the like. Then, the BPSG film 4 and the CVD oxide film 3 are etched away. The amount of etching of the CVD oxide film is adjusted so that the thickness of the CVD oxide film 3 becomes the sufficient thickness together with the thermal oxide film so as to prevent the diffusion of impurities that are yielded at the high temperature reflow of the BPSG film 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に人工衛星搭載用等強い
放射?IMiうける環境での使用に適する、放射腺に強
い半導体装置に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to semiconductor devices, particularly those for use onboard artificial satellites, etc. that emit strong radiation. The present invention relates to a semiconductor device that is resistant to radiation and is suitable for use in an environment exposed to IMi.

〔従来の技術〕[Conventional technology]

強い放射Mをうけた半導体装置は電子・、正孔対の発生
等により動作状態に変化が生じる。
A semiconductor device subjected to strong radiation M changes its operating state due to the generation of electron/hole pairs.

変化を最小限に抑えるには熱酸化膜の代りにCVi) 
(chemical  −vapor  depos 
it ion  )@ミ3j;=用イタeials、特
&CB P SG (boro −phospho −
5ilicate glass )  膜の使用が有効
でろり、従来の耐放射線半導体装置の絶縁分離膜は第3
図に示した通り、半導体基板41上に熱酸化膜42を形
成した後、CVL)法によって形成したBPSG膜43
の不要部分をエツチング除去し、BP8G膜43全43
リフローして作られる構造になっていた。
To minimize changes, use CVi instead of thermal oxide film)
(chemical-vapor depos.
it ion )@mi3j;= for ita eials, special & CB P SG (boro -phospho -
The use of 5ilicate glass) films is effective, and the insulating separation film of conventional radiation-resistant semiconductor devices is the third
As shown in the figure, after forming a thermal oxide film 42 on a semiconductor substrate 41, a BPSG film 43 was formed by CVL method.
The unnecessary parts of the BP8G film 43 were removed by etching.
The structure was made by reflowing.

また、第3図におけるBP8G膜43全43チングの制
御を容易にするため、第4図に示した様な構造も用いら
れていた。この構造を作るには半導体基板51上に熱酸
化膜52を形成した後、多結晶シリコン膜53を積層し
、さらにBPSG954を形成する。次1c、13PS
G膜54の不要部分を多結晶シリコン膜53が露出する
までエツチングするが、この際多結晶シリコン膜53が
エツチングのストッパーとして働くため、エツチング除
去残りや半導体基板表面への損傷を防止することが可能
となる。BP 5GpIA54のエグテング後、多結晶
シリコン膜53を等方性エツチング除去し、B)’8G
膜54を高温リフローして絶縁分離膜が得られる。
Further, in order to facilitate the control of all 43 tings of the BP8G film 43 in FIG. 3, a structure as shown in FIG. 4 was also used. To create this structure, a thermal oxide film 52 is formed on a semiconductor substrate 51, a polycrystalline silicon film 53 is laminated, and a BPSG 954 is further formed. Next 1c, 13PS
The unnecessary portion of the G film 54 is etched until the polycrystalline silicon film 53 is exposed. At this time, the polycrystalline silicon film 53 acts as an etching stopper, so that it is possible to prevent etching residue and damage to the semiconductor substrate surface. It becomes possible. After etching the BP 5GpIA 54, the polycrystalline silicon film 53 is removed by isotropic etching, and B) '8G
An insulating isolation film is obtained by reflowing the film 54 at a high temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の半導体装置は、その絶縁分離膜の構造が
、半導体基板上の熱酸化膜を薄くした代シに、耐放射線
特性の優れたB)’SG膜を用いて放射線の影響を最小
限に抑えるようになっており、従って、半導体基板上の
熱酸化膜をできるだけ薄くする必要がるるため、熱処理
時にBPSG膜からのリン、ボロン等の不純物の拡散を
抑えることができす、これらの不純物が半導体基板中に
拡散し、絶縁分離膜としての効果がなくなり、M(JS
 )ランジスタのしきい電圧が変動する等の欠点がある
The structure of the insulating separation film of the conventional semiconductor device described above minimizes the effects of radiation by using a B)'SG film, which has excellent radiation resistance, in place of a thin thermal oxide film on the semiconductor substrate. Therefore, since it is necessary to make the thermal oxide film on the semiconductor substrate as thin as possible, it is possible to suppress the diffusion of impurities such as phosphorus and boron from the BPSG film during heat treatment. diffuses into the semiconductor substrate, loses its effectiveness as an insulating separation film, and causes M(JS
) There are drawbacks such as fluctuations in the threshold voltage of the transistor.

上述した従来の半導体装置に対し、本発明は半導体基板
上の熱酸化膜を薄くすることにエフで放射疎か半導体装
置に与え全形@を減らし、かつ、熱酸化膜上に耐放射線
特性が、BPSG膜エクは劣るものの、熱酸化1iar
:り浚れたCVD酸化膜を積層することにエフ、絶縁分
離用BPSG膜の高温リフローの際に生じる牛導体基叡
内への不純物拡散を防止することが可能でろるという独
11」的内容を有する。
In contrast to the conventional semiconductor device described above, the present invention reduces the overall size of the semiconductor device by thinning the thermal oxide film on the semiconductor substrate. Although the BPSG film is inferior, thermal oxidation is 1iar.
:It is possible to prevent the diffusion of impurities into the conductor substrate that occurs during high-temperature reflow of the BPSG film for insulation isolation by laminating the dredged CVD oxide film. has.

〔問題慮を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、半導体基板上に熱酸化膜とCV
D酸化膜とBF2(J膜との3層を弔する絶縁分離膜を
儂えて悄成される。
The semiconductor device of the present invention includes a thermal oxide film and a CV film on a semiconductor substrate.
It is formed by forming an insulating separation film that covers three layers: a D oxide film and a BF2 (J film).

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(alは本発明の第一の実施例の縦断面図でるる
。図において、1は半尋体基叡、2は熱酸化法によって
形成したシリコン酸化M(以下熱酸化膜というン、3は
CVD法によって形成したシリコン酸化膜(以下CVL
)酸化膜という)、4はCVD法によって形成したBF
50膜、6はゲート用の多結晶シリコン膜、7・8はP
型%L<はへ型の不純@を拡散することによって形成し
たソース領域2よひドレイン領域、9はシリコン酸化膜
等の杷hfi、10はソース・ドレインΦゲートのコン
タクト部に形成した電極用彊W4膜、11はPSG膜咎
で形成した半導体装置表面の保薩膜でろる。
FIG. 1 (Al is a longitudinal cross-sectional view of the first embodiment of the present invention. In the figure, 1 is a semi-solid substrate, and 2 is a silicon oxide M formed by a thermal oxidation method (hereinafter referred to as a thermal oxide film). , 3 is a silicon oxide film (hereinafter referred to as CVL) formed by the CVD method.
) oxide film), 4 is a BF formed by CVD method.
50 film, 6 is polycrystalline silicon film for gate, 7 and 8 are P
Source region 2 and drain region formed by diffusing impurities of type %L<, 9 are silicon oxide films, etc., and 10 is for electrodes formed at the contact part of the source/drain Φ gate. The W4 film 11 is a protective film on the surface of the semiconductor device formed of a PSG film.

次に、第1図(a)に示す実施例を製造方法によシ、第
1図(bl〜(glを蚕照して詳細に説明する。
Next, the embodiment shown in FIG. 1(a) will be explained in detail based on the manufacturing method, with reference to FIGS.

第1図(b)は、半導体基板1の一表面に熱酸化法によ
って熱酸化膜2を50〜300Aに設け、次にCVI)
 法ニ1 つテCVD 酸(tJK 3 k 500〜
1500Xの厚さに形成し、BP8G膜4をCVD法に
より3000〜6000Aの厚さに積層後、感光性樹脂
5をスピンナ法等によって塗布する工程を示している。
In FIG. 1(b), a thermal oxide film 2 is provided on one surface of a semiconductor substrate 1 to a thickness of 50 to 300 A by a thermal oxidation method, and then CVI)
CVD acid (tJK 3k 500~
The process is shown in which a BP8G film 4 is formed to a thickness of 1,500× and a thickness of 3,000 to 6,000 Å is laminated by a CVD method, and then a photosensitive resin 5 is applied by a spinner method or the like.

次に、P33層離領域に相当する部分を残した感光性樹
脂5をマスクとしてBP8G膜4およびCVD酸化膜3
をエツチング除去する工Sを第1図(C)に示す。この
とさ、エツチング後に残ったCVD酸化膜3の膜厚が熱
酸化膜2と共にBPSu膜4の高温リフローの際に生じ
る不純物拡散を防止するのに十分な厚さとなるようにC
VL)酸化膜3のエツチング量ヲ調節する。
Next, the BP8G film 4 and the CVD oxide film 3 are removed using the photosensitive resin 5 with a portion corresponding to the P33 delamination region left as a mask.
Fig. 1(C) shows a process S for removing the etching by etching. At this time, the CVD oxide film 3 remaining after etching is made thick enough to prevent impurity diffusion that occurs during high-temperature reflow of the BPSu film 4 together with the thermal oxide film 2.
VL) Adjust the amount of etching of the oxide film 3.

第1図(dlに、マスク用の感光性樹脂5を除去した後
、J:1PSG膜4を高温の熱処理でり70−し、この
バターニングされたBPSG膜4をマスクとして、CV
D酸化膜3および熱酸化膜2を半導体基板1の表面が露
出するまでエツチング除去する工程を示す。
In FIG. 1 (dl), after removing the photosensitive resin 5 for the mask, the J:1 PSG film 4 is heat-treated at a high temperature (70-), and this patterned BPSG film 4 is used as a mask to perform CV
A step of etching away the D oxide film 3 and the thermal oxide film 2 until the surface of the semiconductor substrate 1 is exposed is shown.

次に、ゲート酸化膜となるシリコン酸化Mを熱酸化法に
よって形成した後、ゲート用の多結晶シリコン膜6を形
成する(第1図(C))。
Next, after silicon oxide M, which will become a gate oxide film, is formed by thermal oxidation, a polycrystalline silicon film 6 for the gate is formed (FIG. 1(C)).

第1図げ)に、感光性樹脂を用いてゲート用の多結晶シ
リコン膜6の不要部分をエツチング除去した後に、P型
もしくはN型の不純物を拡散することによりソース領域
7およびドレイン領域8を形成する工程を示す。
1), after removing unnecessary parts of the polycrystalline silicon film 6 for the gate by etching using a photosensitive resin, the source region 7 and drain region 8 are formed by diffusing P-type or N-type impurities. The process of forming is shown.

次に、シリコン酸化膜等の絶縁膜9をCVIJ法によっ
て形成し、ソース、ドレイン、ゲートのコンタクト部を
感光性樹脂のマスク分用いてエツチング除去する(第1
図(g))。
Next, an insulating film 9 such as a silicon oxide film is formed by the CVIJ method, and the contact portions of the source, drain, and gate are removed by etching using a photosensitive resin mask (the first
Figure (g)).

ついで、電極用金稽膜10の形成とバターニングを公知
の方法によって行ない、表面に保護膜11を形成するこ
とによって第1図(alに示す実施例が得られる。
Next, the formation and patterning of the metal film 10 for the electrode are performed by a known method, and the protective film 11 is formed on the surface, thereby obtaining the embodiment shown in FIG. 1 (al).

第2凶(alは不発明の第二の実施例の縦断面図でめる
。図において、21は半導体基板、22は熱酸化膜−,
23はCVD酸化膜、24はBP8G膜のエツチングの
際にストツパーとして用いる多結晶シリコ:7M%25
はCVD法によって形成し之BPSG膜、27はゲート
用の多結晶シリコン膜、28−29はソース領域および
ドレイン領域、30はシリコン酸化膜等の絶縁膜、31
はソース・ドレイン−ゲートのコンタクト部に形成した
!極用金PA膜、32は表面の保護膜である。
The second example (al) is a vertical cross-sectional view of the second embodiment of the invention. In the figure, 21 is a semiconductor substrate, 22 is a thermal oxide film,
23 is a CVD oxide film, 24 is polycrystalline silicon used as a stopper when etching the BP8G film: 7M% 25
27 is a polycrystalline silicon film for gates, 28-29 are source and drain regions, 30 is an insulating film such as a silicon oxide film, 31 is a BPSG film formed by the CVD method;
is formed at the source/drain-gate contact area! The electrode gold PA film 32 is a surface protective film.

次に、第2図(alに示す実施例を製造方法により、第
2図(b)〜←)を診照して詳細に説明する。
Next, the embodiment shown in FIG. 2 (al) will be explained in detail by the manufacturing method with reference to FIGS. 2(b) to ←).

第2図(blは、前述の第1図(a)に示す実施例にお
けると同様に半導体基板21上に熱酸化膜22とCVD
酸化膜23を形成した後、多結晶シリコン膜24を50
0〜2000Xの厚さに形成し、さらにBPSG膜25
全25後、感光性樹脂26を塗布する工程を示している
FIG. 2 (bl) shows a thermal oxide film 22 and a CVD film formed on a semiconductor substrate 21 as in the embodiment shown in FIG.
After forming the oxide film 23, the polycrystalline silicon film 24 is
A BPSG film 25 is formed to have a thickness of 0 to 2000X.
The process of applying photosensitive resin 26 after all 25 is shown.

第2図fc)に、絶縁分離領域に相当する部分を残した
感光性樹脂26をマスクとしてBPSO膜25全25晶
ンリコン腺24が露出する1でエツチングする工程を示
す。このとき、BPSGi25の下にエツチングのスト
ツパとなるべき多結晶シリコン膜24が存在するため、
前述の実施例で問題となる下地基板の損傷等を生ずるこ
と7k < 、 B)’SG膜25のエツチングを容易
に行なうことができる。
FIG. 2fc) shows the step of etching the BPSO film 25 at step 1 in which the entire 25-crystalline silicon gland 24 is exposed using the photosensitive resin 26 as a mask, leaving a portion corresponding to the insulation isolation region. At this time, since there is a polycrystalline silicon film 24 under the BPSGi 25 that should act as an etching stopper,
B)' Etching of the SG film 25 can be easily performed without causing damage to the base substrate, which is a problem in the above-mentioned embodiments.

次に、多結晶シリコン膜24を等方性エツチング除去し
た後、感光性樹脂26を除去する工程を第2図1dlK
示す。
Next, after removing the polycrystalline silicon film 24 by isotropic etching, the process of removing the photosensitive resin 26 is shown in FIG.
show.

第2図(e)Ic%BPSG膜25を高温膜島5理でリ
フローした後、このバターニングされたhlPsG膜2
5をマスクとしてCVD酸化膜23と熱酸化膜22を半
導体基板210表面が現れるまでエツチング除去する工
程を示す。
FIG. 2(e) After reflowing the Ic%BPSG film 25 using a high-temperature film process, the patterned hlPsG film 2
5 as a mask, the CVD oxide film 23 and the thermal oxide film 22 are etched away until the surface of the semiconductor substrate 210 is exposed.

ついで、前述の第1図(alに示す実施例におけると同
様にしてゲート用の多結晶シリコン膜27、電極用金属
膜31等を形成することによって第2図(a)に示す実
施例が得られる。
Next, the embodiment shown in FIG. 2(a) is obtained by forming the polycrystalline silicon film 27 for the gate, the metal film 31 for the electrode, etc. in the same manner as in the embodiment shown in FIG. 1(a). It will be done.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、絶縁分離領域の半導体基
板上に薄い熱酸化族を形成した俊K CVD酸化膜を形
成し、さらにJ:IPSG膜を積層することにより、半
導体装置の耐放射線特性分保持したまま、絶縁分離用B
PSG膜の高温す7a−の際に生じる不純物拡散が基板
へ達するのを防ぐことができる効果がある。
As explained above, the present invention improves the radiation resistance of a semiconductor device by forming a Shunk CVD oxide film with a thin thermal oxide group formed on the semiconductor substrate in the insulation isolation region, and further laminating a J:IPSG film. B for insulation separation while holding the
This has the effect of preventing impurity diffusion that occurs when the PSG film is heated to a high temperature from reaching the substrate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は本発明の第一の実施例の縦断面図、第1
図(bl〜(glは第1図(a)に示す実施例の製造工
程を示す断面図、第2図(a)は本発明の第二の実施例
の縦断面図、第2図fbl 〜(elは$2図(atに
示す実施例の製造工程を示す断面図、第3図Q第4図は
従来の半導体装置の二つの例のそれぞれの断面図である
。 1・21・・・・・・半導体基板、2・22・・・・・
・熱酸化族、3・23・・・・・・CVD酸化膜、4・
25・・・・・・BP S(j膜、6−24−27・・
・・・・多結晶シリコン膜、7・28・・・・・・ソー
ス領域、8・29・・・・・・ドレイン領域、9・30
・・・・・・絶縁膜、10・31・・・・・・電極出金
M膜。 イヤ御人  −#伸−μ   内  1白     晋
(ctフ キ l 圀 井11 C−1) clノ $lrgJ (1!i−ン 華 2 図 (Q) 茅 2 図
FIG. 1(a) is a vertical cross-sectional view of the first embodiment of the present invention.
Figures (bl ~ (gl are sectional views showing the manufacturing process of the embodiment shown in Figure 1 (a), Figure 2 (a) are longitudinal sectional views of the second embodiment of the present invention, Figure 2 fbl ~ (El is a cross-sectional view showing the manufacturing process of the embodiment shown in Figure 2 (at), and Figures 3 and 4 are cross-sectional views of two examples of conventional semiconductor devices. 1.21... ...Semiconductor substrate, 2.22...
・Thermal oxidation group, 3.23...CVD oxide film, 4.
25...BP S (j membrane, 6-24-27...
...Polycrystalline silicon film, 7.28...Source region, 8.29...Drain region, 9.30
...Insulating film, 10.31... Electrode deposit M film. Iya Gonin - #Shin-μ Inside 1 Haku Susumu (ct Fuki l Kunii 11 C-1) clノ$lrgJ (1!i-nhua 2 Figure (Q) Kaya 2 Figure

Claims (1)

【特許請求の範囲】 半導体基板上に熱酸化膜とCVD酸化膜と BPSG膜との3層を有する絶縁分離膜を備えることを
特徴とする半導体装置。
[Scope of Claims] A semiconductor device comprising an insulating isolation film having three layers of a thermal oxide film, a CVD oxide film, and a BPSG film on a semiconductor substrate.
JP61238453A 1986-10-06 1986-10-06 Semiconductor device Expired - Lifetime JPH0777232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61238453A JPH0777232B2 (en) 1986-10-06 1986-10-06 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61238453A JPH0777232B2 (en) 1986-10-06 1986-10-06 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS6392028A true JPS6392028A (en) 1988-04-22
JPH0777232B2 JPH0777232B2 (en) 1995-08-16

Family

ID=17030446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61238453A Expired - Lifetime JPH0777232B2 (en) 1986-10-06 1986-10-06 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0777232B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215432A (en) * 1990-12-14 1992-08-06 Mitsubishi Electric Corp Microworking method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324289A (en) * 1976-08-19 1978-03-06 Toshiba Corp Production of semiconductor device
JPS566452A (en) * 1979-06-27 1981-01-23 Toshiba Corp Production of semiconductor device
JPS59155127A (en) * 1983-02-24 1984-09-04 Toshiba Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5324289A (en) * 1976-08-19 1978-03-06 Toshiba Corp Production of semiconductor device
JPS566452A (en) * 1979-06-27 1981-01-23 Toshiba Corp Production of semiconductor device
JPS59155127A (en) * 1983-02-24 1984-09-04 Toshiba Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215432A (en) * 1990-12-14 1992-08-06 Mitsubishi Electric Corp Microworking method

Also Published As

Publication number Publication date
JPH0777232B2 (en) 1995-08-16

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JPS63314868A (en) Manufacture of mos semiconductor device
JPS63153A (en) Charge transfer device
US4276099A (en) Fabrication of infra-red charge coupled devices
JPH0463546B2 (en)
JPS6392028A (en) Semiconductor device
JPH0227716A (en) Manufacture of semiconductor device
JPS62266829A (en) Formation of shallow junction layer
JPS63227060A (en) Manufacture of semiconductor device
JPS6011473B2 (en) MIS type semiconductor device
JP3332825B2 (en) Method for manufacturing semiconductor device
EP0712152A1 (en) Semiconductor device and method for its manufacture
JPS6038864B2 (en) semiconductor equipment
JPH0430194B2 (en)
JP2685493B2 (en) Method for manufacturing semiconductor device
JPS5830160A (en) Mis type semiconductor device
JPS6028247A (en) Semiconductor device
GB2034972A (en) Method of controlling penetration of dopant into semiconductor devices
JPS631071A (en) Thin-film semiconductor device
JP2633092B2 (en) Method for manufacturing semiconductor device
RU1295971C (en) Method of manufacturing igfet large-scale integrated circuit
JPH0521374A (en) Semiconductor device and manufacture of the same
JPS6193641A (en) Semiconductor device
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JPS61179575A (en) Manufacture of semiconductor device