JPS5830160A - Mis type semiconductor device - Google Patents

Mis type semiconductor device

Info

Publication number
JPS5830160A
JPS5830160A JP12834981A JP12834981A JPS5830160A JP S5830160 A JPS5830160 A JP S5830160A JP 12834981 A JP12834981 A JP 12834981A JP 12834981 A JP12834981 A JP 12834981A JP S5830160 A JPS5830160 A JP S5830160A
Authority
JP
Japan
Prior art keywords
region
gate
wiring
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12834981A
Other languages
Japanese (ja)
Inventor
Masataka Shinguu
新宮 正孝
Kazunari Shirai
白井 一成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP12834981A priority Critical patent/JPS5830160A/en
Priority to EP82304305A priority patent/EP0072690A3/en
Publication of JPS5830160A publication Critical patent/JPS5830160A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To avoid the breakdown of elements due to parasitic charges, in the MIS type semiconductor device having a multilayered wiring structure, by connecting a part of a lower layer wiring which is connected to a gate to a substrate through a reverse direction junction having a lower breakdown voltage than that of a gate insulating film. CONSTITUTION:On a P<-> type Si substrate 11, a field oxide film 14, which has windows in a transistor forming region 12 and a protecting connection forming region 13, is provided. A thin gate oxide film 15 is deposited on the region 12 in the window, and an oxide film 15' having the same thickness is provided on the region 13. Then a polycrystal Si gate electrode 16 is provided on a film 15. With the electrode 16 and the film 14 as a mask, P<+> ions are implanted. Then, an N<+> type source region 17a and a drain region 17b are yielded in the substrate 11 on both sides of the electrode 16. A diffused protecting region 17c is yielded beneath the film 15'. Thereafter a PSG film 18 is deposited on the entire surface, windows are opened, the wirings 20a and 20b are attached to the regions 17a and 17b, and the same wiring 20c is attached to the electrode 16 and the region 17c.

Description

【発明の詳細な説明】 本発明はMI811半導体装置の構造に係り、特に多層
配線構造のMI8Il半導体装置におけるゲート絶縁膜
の保■構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of an MI811 semiconductor device, and more particularly to a structure for protecting a gate insulating film in a MI8I1 semiconductor device having a multilayer wiring structure.

MI8m半導体集積回路装置に多層配線構造を適用する
場合、多層配線形成工程の成る段階において、半導体素
子のゲートに接続されている下層配線は電気的に浮いた
状態(70−ティング)になり、核下層配線が何かの理
由(例えば層間絶縁膜にドライ・エツチング法で配線接
続窓を形成する場合等)によりチャージ・アップした場
合、このチャージの逃けるところがないために、ゲート
絶縁膜の耐圧以上の電圧になると、ゲート絶縁膜を通し
て放tを起こし素子を&1壊させる。
When applying a multilayer wiring structure to an MI8m semiconductor integrated circuit device, the lower wiring connected to the gate of the semiconductor element becomes electrically floating (70-ting) during the multilayer wiring formation process, and the core If the underlying wiring is charged up for some reason (for example, when a wiring connection window is formed in the interlayer insulating film by dry etching), there is no place for this charge to escape, so the voltage exceeds the withstand voltage of the gate insulating film. When the voltage reaches , radiation is generated through the gate insulating film and the device is destroyed by &1.

本発明は、上記寄生電荷による素子破壊を防止する構造
を提供し、多層配線構造のMIS型半導体装置の製造歩
留まりを向上せしめることを目的とする。・ 即ち本発明は多層配線構造のMIS型半導体装置におい
て、ゲートに接続する下層配線の一部が、ゲート絶JI
JIIの耐圧より低い降伏電圧を有する逆方向接合若し
くはシ1ットキ−バリアを介して半導体基板に接続され
てなることを特徴とする。
An object of the present invention is to provide a structure that prevents element destruction due to the parasitic charges described above, and to improve the manufacturing yield of MIS type semiconductor devices having a multilayer wiring structure.・In other words, the present invention provides an MIS type semiconductor device with a multilayer wiring structure in which a part of the lower wiring connected to the gate is disconnected from the gate.
It is characterized in that it is connected to a semiconductor substrate via a reverse junction or Schittky barrier having a breakdown voltage lower than the withstand voltage of JII.

以下本発明を図を用いて実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail by way of examples using figures.

なお、第1図は本発明の第1の実施例における等価回路
図(a)及び平面構造図(b)、第2図は本発明の第2
の実施例における勢価回路図(81)及び平面構造図Φ
)、第3図(1)乃至(f)は上記第1の実施例におけ
る製造工程断面図、第4図(a)乃至(f)は上記第2
の実施例における製造工程断面図である。
Note that FIG. 1 is an equivalent circuit diagram (a) and a planar structural diagram (b) of the first embodiment of the present invention, and FIG. 2 is a diagram of the second embodiment of the present invention.
Pricing circuit diagram (81) and planar structural diagram Φ in the example of
), FIGS. 3(1) to 3(f) are cross-sectional views of the manufacturing process in the first embodiment, and FIGS. 4(a) to (f) are sectional views of the manufacturing process in the second embodiment.
It is a manufacturing process sectional view in an Example.

本発明の第1項に該尚するMIa型半導体装置は、例え
ば第1図(1)の等価回路図に示すように、ゲートGに
接続する配線が、ゲート絶縁膜の耐圧より低い降伏電圧
を有する逆方向の保護用PN接合J1を介して半導体基
板Eに接続された構造を有している。なお図中8はソー
ス、Dはドレインを示す。
In the MIa type semiconductor device according to the first aspect of the present invention, for example, as shown in the equivalent circuit diagram of FIG. It has a structure in which it is connected to the semiconductor substrate E via a protective PN junction J1 in the opposite direction. In the figure, 8 indicates a source, and D indicates a drain.

そして咳MI8g半導体装置の平面構造は第1図の)に
示すように、フィールド酸化膜lにより画定表出された
例えばP″″製シリコン(Sl)基板の第1の領域上に
ゲート酸化膜を介して多結晶8iゲート電極2が設けら
れており、骸ゲート電極2の両側に表出するP″″!!
181 基板面には第1.第2のN + m拡散領域3
m、3b即ち炉1ソース・ドレイン領域が形成されてい
る。又フィールド酸化膜1により画定表出されたP″″
WiSt″WiSt基板面に、第3のN+型拡散領域3
Cが形成されている。そして上記拡散領域3a、3b、
3c及びゲート電極2が形成された基板上を覆う第1の
絶縁膜(下層絶縁膜)に第1、第2、第30) N+型
拡散領域3a、3b、3cの一部をそれぞれ表出する第
1、第2、第3のコンタクト窓4a、4b、4c及び多
結晶S[ゲート電極2の一部を表出する第4のコンタク
ト窓4dが設けらn1該第1の絶縁膜上に前記コンタク
ト窓4a成るいは4bにおいて前記第1のN+型拡散飴
城3a成るいは第2のN”型拡散領域3bにそれぞれ接
#Tるアルミニウム(A4)等からなる下層のソース・
ドレイン配置5a、5b 及び、前記コンタクト窓4d
lこおいて多結晶8iゲート電極2に接続し、且つ前記
コンタクト窓4Cにおいて第3のN+型拡散領域3Cに
接続するA4等からなる下層のゲート配線5Cが形成さ
れている。そして史(こ前記下層の配線5a、5b、5
cを有する基板上に、酌記下層ゲート配線5C面の一部
を表出する配線接続窓(スルーホール)6を有[る第2
の絶縁膜即ち層間絶縁膜が設けられており、該層間絶縁
膜上に前記配線接続窓6において下層ゲート配線5Cに
接続するAt等からなる上層配線7が形成された構造を
有している。
The planar structure of the MI8g semiconductor device is shown in FIG. A polycrystalline 8i gate electrode 2 is provided through the gate electrode 2, and P″″! is exposed on both sides of the skeleton gate electrode 2. !
181 The first . Second N+m diffusion region 3
m, 3b, that is, the furnace 1 source/drain regions are formed. In addition, P″″ defined and expressed by the field oxide film 1
WiSt″ A third N+ type diffusion region 3 is formed on the WiSt substrate surface.
C is formed. and the diffusion regions 3a, 3b,
Parts of the first, second, and 30th) N+ type diffusion regions 3a, 3b, and 3c are exposed in the first insulating film (lower layer insulating film) covering the substrate on which the gate electrode 2 and the gate electrode 2 are formed. First, second and third contact windows 4a, 4b, 4c and polycrystalline S [a fourth contact window 4d exposing a part of the gate electrode 2 is provided n1 on the first insulating film. A lower source layer made of aluminum (A4) or the like is in contact with the first N+ type diffusion region 3a or the second N'' type diffusion region 3b in the contact window 4a or 4b, respectively.
Drain arrangement 5a, 5b and the contact window 4d
A lower layer gate wiring 5C made of A4 or the like is formed to be connected to the polycrystalline 8i gate electrode 2 at the contact window 4C and to the third N+ type diffusion region 3C at the contact window 4C. And the history (this lower layer wiring 5a, 5b, 5
A second substrate having a wiring connection window (through hole) 6 that exposes a part of the surface of the lower layer gate wiring 5C is formed on the substrate having a
An insulating film, that is, an interlayer insulating film is provided, and an upper layer interconnect 7 made of At or the like is formed on the interlayer insulating film to connect to the lower gate interconnect 5C in the interconnect connection window 6.

又本発明の第2項に該尚するMIa型半導体装置は、例
えば第2図(a)の等価回路圀に示すように、ゲートG
に接続する配線が、グー1絶縁膜の耐圧より低い降伏電
圧を有するシ曹ット午・I(978勝を介して半導体基
板Eに接続された構造を有している。なお図中8はソー
ス、Dはドレインを示す・そして該MIS型半導体装置
の平面構造は第2図(b)に示すように、フィールド膜
化膜1により両足表出された例えばNJ11J8i基板
の第1の領域上に、ゲート酸化膜を介して多結晶Siゲ
ート電極2が設けられており、峡ゲート電極2の両側に
表出するN型8i基板面には第11第2のP+型拡散領
域ga、3b即ちP−型ソース・ドレイン領域が形成さ
れている。そして上記拡散領域8g、8b及びゲート電
極2が形成された基板上を覆う第1の絶縁膜(下層絶縁
膜)に第1、第2のP+型拡散領域ga、gbの一部を
それぞれ表出する第1、第2のコンタクト窓4a+4b
sNm8i遅゛板面の一部を表出する第3のコンタク)
f14c、及び多結晶Stゲートw極2の一部を表出す
る第4のコンタクト窓4dが設けられ、該第1の絶縁膜
上に前記コンタクト窓4a成るいは4bにおいて前記第
1のP+壓拡散領域8a及び第2のP+型拡散領域8b
にそれぞれ接続するA4等からなる下層のソース・ドレ
イン配線5a、5b及び、前記コンタク1134dにお
いて多結晶S1ゲート電極2に接続し、−ト配線5Cが
形成さイしている。そして更に前記下層の配Msat5
b+scを有する基板上ζこ、前記下層ゲート配線50
面の一部を表出する配船接続窓(スルーホール)6を有
する第2の絶縁膜即ち眉間絶縁膜が設けられており、該
層間絶縁膜上に前記配線接続窓6において下層ゲート配
線5Cに接続するAt等からなる上層配線7が形成され
た構造を有している。
Further, the MIa type semiconductor device falling under the second aspect of the present invention has a gate G as shown in the equivalent circuit diagram of FIG. 2(a), for example.
The wiring connected to the semiconductor substrate E has a structure in which the wiring connected to the semiconductor substrate E is connected to the semiconductor substrate E through the semiconductor substrate E, which has a breakdown voltage lower than the withstand voltage of the insulating film. The source and D indicate the drain.As shown in FIG. 2(b), the planar structure of the MIS type semiconductor device is as shown in FIG. , a polycrystalline Si gate electrode 2 is provided through a gate oxide film, and the N-type 8i substrate surface exposed on both sides of the gate electrode 2 has eleventh second P+ type diffusion regions ga, 3b, that is, P − type source/drain regions are formed.The first insulating film (lower layer insulating film) covering the substrate on which the diffusion regions 8g and 8b and the gate electrode 2 are formed has first and second P+ type regions. First and second contact windows 4a+4b exposing portions of diffusion regions ga and gb, respectively
sNm8i Third contact that exposes a part of the slow plate surface)
f14c, and a fourth contact window 4d exposing a part of the polycrystalline St gate w pole 2, and the first P + Diffusion region 8a and second P+ type diffusion region 8b
Lower layer source/drain wirings 5a, 5b made of A4 or the like are connected to the polycrystalline S1 gate electrode 2 at the contact 1134d, and a -t wiring 5C is formed. Furthermore, the lower layer distribution Msat5
On the substrate having b+sc, the lower gate wiring 50
A second insulating film, that is, a glabella insulating film having a wiring connection window (through hole) 6 that exposes a part of the surface is provided, and the lower gate wiring 5C is formed on the interlayer insulating film at the wiring connection window 6. It has a structure in which an upper layer wiring 7 made of At or the like is formed to be connected to.

次に上記第1.第2の実施例に示した構造を有するMO
a型半導体装置の製造方法について説明する・ 第1の実施例の構造を有するM08[半導体装置を形成
するに際しては、先ず通常の方法を用いて第39伽)に
示すように、例えば20(0−am)程度の比抵抗を有
するP″″fi8i基板11上にトランジスタ形成領域
12及び保護接続拡散領域13を表出する窓を有するフ
ィールド酸化層!4を形成した後、通常の熱酸化法によ
りトランジスタ形成領域13面に例えば500(1)程
度の厚さのゲート酸化1[15を形成する。なおこの際
保護接続形成領域13面上にも500(131i度の薄
い酸化M15′が形成される0次いで骸基板上に通常の
化学気相成長(OVD)法により1ooo〔1)mar
Next, the above 1. MO having the structure shown in the second embodiment
A method for manufacturing an a-type semiconductor device will be explained. As shown in M08 having the structure of the first embodiment [When forming a semiconductor device, first use a normal method, as shown in Chapter 39], for example, A field oxide layer having a window exposing the transistor formation region 12 and the protective connection diffusion region 13 on the P″″fi8i substrate 11 having a resistivity of about -am)! After forming the gate oxide 1[15], a gate oxide 1 [15] having a thickness of, for example, about 500(1) is formed on the surface of the transistor formation region 13 by a normal thermal oxidation method. At this time, a thin oxide M15' of 500 (131i degree) is also formed on the protective connection forming region 13 surface.
.

の厚さの多結晶81層を成長せしめ、通常の方法でパタ
ーンニングを行りて、第3図(ロ)に示すように、トラ
ンジスタ形成領域12上に多結晶81ゲート電極16を
形成し、次いで該多結晶Siゲート電極16及びフィー
ルド酸化膜14をマスクとしてP−型81基板11面に
選択的lこ、例えば5x10” Catm/cn? )
程度の注入量で1(μm3程度の深さにりんイオン(P
”)の注入を行りた後、該注入領域の活性化を行って、
トランジスタ形成領域12に1〔μm〕程度の深さの第
1.第2のN+派拡敞領域即ちN+型ソース・ドレイン
領域17m、17bを、又保護接続形成領域13に1C
μm3程度の深さの第3のN+型拡散領域即ちN+型保
5i1i!:続拡散領域17Cを形成する。次いで通常
のOVD法により該基板上着こりん珪酸ガラス(p S
 G)岬の第1の絶縁膜即ち下層絶縁膜を形成した彼、
通常のウェット・エツチング法等を用いて、第3図(C
)に示すように前記下層絶縁misおよびゲート酸化膜
15 、15’ に、ソース・ドレイン領域171.1
7b面、保護接続拡散領域170面を表出する第1.第
2.第3の=r7タクト窓19a、19b119C及び
、多結晶8iゲ一ト電極16面を表出する第4のコンタ
クト窓19dを形成するO次いで通常の蒸着等の方法に
より該基板上に1〔μm〕程度のAt層を被着し、通常
の方法によりノ(ターンニングを行って第3図(d)に
示すように、該下層絶縁膜18上に前記コンタクト窓1
9a、19bにおいてソース・ドレイン領域11.17
bにそれぞれ接続Tるソース−ドレイン配置1120m
、20b及び、前記コンタクト窓19dと190におい
てゲート電極16と保護接続拡散領域13に接続するゲ
ート配*ZOCを形成する。なおゲート電極16上のゲ
ート配#20Cと保護接続拡散領域17C上のゲート配
線20cとは図示外の領域において接続している一連の
配線である。又配線形成後通常の7aイング処理を施し
て各接続部をオーζツク接続とする。次いで該基板上に
通常のOVD法番こよりPSG等からなる第2の絶縁膜
即ち眉間絶縁膜をOVD法などで形成し、次いで第3図
(ei)に示すように該眉間絶縁膜21に前記ゲート配
線20Cの一部を表出する配線接続窓(スルーホール)
22を通常のドライ・エツチング法等を用いて形成し、
次いで該基板上Iこ蒸着等の方法により1〔μm)II
Kの厚さのAt層を形成し、通常のつjIlット一番羊
ツチygta等により諌^L一層のバタ!ン二ングを行
って、第3図(f)に示すように、層間絶縁膜21上に
前記配線接続窓22において下層のゲート配線20cに
接続する上層配線238形成する。
A polycrystalline 81 layer with a thickness of Then, using the polycrystalline Si gate electrode 16 and the field oxide film 14 as a mask, selective coating is applied to the surface of the P-type 81 substrate 11 (for example, 5x10" Catm/cn?).
Phosphorus ions (P
”), the implanted region is activated,
In the transistor formation region 12, a first . The second N+ type expansion region, that is, the N+ type source/drain region 17m, 17b is also placed in the protective connection forming region 13 by 1C.
A third N+ type diffusion region with a depth of about μm3, that is, an N+ type diffusion region 5i1i! : Form a subsequent diffusion region 17C. Next, the substrate is coated with phosphorus silicate glass (pS) by a conventional OVD method.
G) He who formed the first insulating film of the cape, that is, the lower insulating film,
Using the usual wet etching method etc.,
), source/drain regions 171.1 are formed in the lower layer insulation mis and the gate oxide films 15, 15'.
7b side, the first side exposing the protective connection diffusion region 170 side. Second. Third=r7 tact windows 19a, 19b 119C and a fourth contact window 19d exposing the surface of the polycrystalline 8i gate electrode 16 are formed on the substrate by a method such as ordinary vapor deposition. ] is deposited and turned by a normal method to form the contact window 1 on the lower insulating film 18, as shown in FIG. 3(d).
Source/drain regions 11.17 in 9a and 19b
Source-drain arrangement 1120m each connected to b
, 20b, and a gate wiring *ZOC connected to the gate electrode 16 and the protective connection diffusion region 13 in the contact windows 19d and 190. Note that the gate wiring #20C on the gate electrode 16 and the gate wiring 20c on the protective connection diffusion region 17C are a series of wirings connected in a region not shown. After the wiring is formed, a normal 7a ing process is performed to make each connection part an open connection. Next, a second insulating film, that is, a glabellar insulating film made of PSG or the like, is formed on the substrate by the OVD method or the like, and then, as shown in FIG. 3(ei), the glabellar insulating film 21 is coated with the Wiring connection window (through hole) that exposes a part of gate wiring 20C
22 is formed using a normal dry etching method etc.
Next, a layer of 1 [μm) II is deposited on the substrate by a method such as vapor deposition.
Form an At layer with a thickness of K, and use the usual method such as Ichibantsuchiygta to create a layer of butter! Then, as shown in FIG. 3(f), an upper layer wiring 238 is formed on the interlayer insulating film 21 to connect to the lower layer gate wiring 20c in the wiring connection window 22.

なお上記実施例の方法において、N+型保繰接続拡散領
域17CとP−壓Si基板11との間に形成されるPN
接合は、ゲート酸化膜15の耐圧40(V)程度より低
い20〜30 (V)程度の逆降伏電圧を有するので、
層間絶縁膜21にドライ・エツチング例えばりアクティ
ブ・イオ/・エツチング@−jこより配線接続窓22を
形成する際!1こ、ゲート配線20Cに前記PN接合の
逆降伏電圧を越えて蓄積された電荷は、保護接続拡散領
域17cを介してP′″98 i基板11に放出され、
ゲート酸化膜15が破壊されることかない。又核PN接
合の逆降伏電圧は、該半導体装置の%原電圧より充分に
高い伽であるから装置動作に支障は与んないO 次に第2の実施例の構造を有するMo5M半導体装置を
形成する方法ζこついて説明すると、第4vA(a)に
示すように、例えば1〔0−備〕程度の比抵抗を有する
N型81基板31上に、トランジスタ形成領域12及び
保護接続領域13を浅田する窓を有するフィールド酸化
膜14を形成した後、前記第1の実施例と同様の方法に
より、トランジスタ形成領域12面に500(JL)程
度の厚さのゲート酸化膜15を、又線膜接続形成領域1
3面に500(4)程度の薄い酸化膜15′を形成し、
更にゲート酸化膜15上に厚さ4000(X)程度の多
結晶Siゲート電極16を形成Tる。次いで第4図6)
に示すように保1Ii1ik絖形成領域13上をフォト
−レジスト膜32で覆った後、フィールド酸化膜14及
びゲート電極16をマスクとしてトランジスタ形成領域
12のNfi8i基板31面に、IX 10” (at
m/cll?)程度の注入量で1(am)程度の深さに
選択的にほう素イオン(B+)を注入し、次いでフォト
−レジスト膜32を除去した後所望の活性化処理を行り
て、第4図(C)に示すようにトランジスタ形成領域1
2に1〔μm)程度の深さの第1.第2のP+型拡散領
域即ちP+型ソース・ドレイン領域33m、33bを形
成し、次いで第1の実施例と同様の方法により該基板上
に、ソース・ドレイン領域aaa、33b面及びN型8
i基板31の保Il接続形成領域13面を表出する第1
゜第2 、ff13のコンタクト窓19a、19b、1
9c及び、多結晶Siゲート電極16面を表出する第4
のコンタクト窓19dを有する第1の絶縁膜即ち下層絶
111[1gを形成する。次いで第4図(d)に示すよ
うに、第1の実施例と同様の方法を用いて下層絶縁M2
S上に、第1.第2のコンタクト窓19m、19bにお
いてソース・ドレイン領域33a。
In the method of the above embodiment, the PN formed between the N+ type protection connection diffusion region 17C and the P- type Si substrate
Since the junction has a reverse breakdown voltage of about 20 to 30 (V), which is lower than the breakdown voltage of about 40 (V) of the gate oxide film 15,
When forming the wiring connection window 22 on the interlayer insulating film 21 by dry etching, such as active ion etching @-j! 1. Charges accumulated in the gate wiring 20C in excess of the reverse breakdown voltage of the PN junction are released to the P''98i substrate 11 via the protective connection diffusion region 17c.
The gate oxide film 15 will not be destroyed. In addition, the reverse breakdown voltage of the nuclear PN junction is sufficiently higher than the % original voltage of the semiconductor device, so it does not affect the operation of the device.Next, a Mo5M semiconductor device having the structure of the second embodiment is formed. To explain in detail, as shown in Section 4VA(a), for example, the transistor formation region 12 and the protective connection region 13 are formed on an N-type 81 substrate 31 having a specific resistance of about 1 [0-1]. After forming a field oxide film 14 having a window, a gate oxide film 15 with a thickness of about 500 mm (JL) is formed on the transistor forming region 12 by a method similar to that of the first embodiment. Formation area 1
A thin oxide film 15' of about 500 (4) is formed on three sides,
Furthermore, a polycrystalline Si gate electrode 16 having a thickness of about 4000 (X) is formed on the gate oxide film 15. Then Fig. 4 6)
As shown in FIG. 1, after covering the insulation layer 13 with a photoresist film 32, using the field oxide film 14 and gate electrode 16 as a mask, a layer of IX 10" (at
m/cll? ), boron ions (B+) are selectively implanted to a depth of approximately 1 (am), and then the photo-resist film 32 is removed and a desired activation process is performed to form a fourth Transistor formation region 1 as shown in Figure (C)
2 to 1 to a depth of about 1 [μm]. A second P+ type diffusion region, that is, a P+ type source/drain region 33m, 33b is formed, and then the source/drain region aaa, 33b surface and the N type 8
The first plate exposes the Il connection forming region 13 surface of the i-substrate 31.
゜2nd, ff13 contact windows 19a, 19b, 1
9c and a fourth surface exposing the polycrystalline Si gate electrode 16 surface.
A first insulating film, that is, a lower insulation film 111 [1g] having a contact window 19d is formed. Next, as shown in FIG. 4(d), the lower layer insulation M2 is formed using the same method as in the first embodiment.
On S, 1st. Source/drain regions 33a in second contact windows 19m, 19b.

33bにそれぞれ接続するAtからなるソース・ドレイ
ン配線20a、20b及び、第4のコンタクト窓19d
でゲート電極16に接続し、月つ第3のコンタクト窓1
9cで直かにN型81基板31に接触する、Atからな
るゲート配線20 Cを形成する。なお図においてゲー
ト亀!16上のゲート配#20cと線膜接続形成領域1
3上のゲート配線20Cとは図示外の領域において接続
している一連の配線である。次いで該基板上にOVD法
郷によりP2O等の眉間絶縁膜を形成し、次いで第3図
(e)に示すように該眉間絶縁膜21に前記ゲート配線
20Cの一部を表出する配線接続窓(スルーホール)2
2を通常のドライ骨エツチング法等を用いて形成し、次
いで第1の実施例と同様の方法を用いて、第4図(0に
示すように上記層間絶締膜21上に、前記配置’接続窓
22においてゲート配線20Cに接続する上層配線23
を形成する。
Source/drain wirings 20a, 20b made of At and connected to the fourth contact window 19d, respectively.
and connect to the gate electrode 16 through the third contact window 1.
A gate wiring 20C made of At and directly in contact with the N-type 81 substrate 31 is formed at 9c. In addition, there is a gate turtle in the figure! Gate wiring #20c on 16 and line film connection formation region 1
The gate wiring 20C on 3 is a series of wiring connected in a region not shown. Next, a glabellar insulating film such as P2O is formed on the substrate by OVD, and then a wiring connection window is formed in the glabellar insulating film 21 to expose a part of the gate wiring 20C, as shown in FIG. (Through hole) 2
2 is formed using a normal dry bone etching method, etc., and then, using the same method as in the first embodiment, as shown in FIG. Upper layer wiring 23 connected to the gate wiring 20C in the connection window 22
form.

なお上記実施例の方法において、第3のコンタニ・クト
窓19C部に形成されるN型St基板31とkAからな
るゲート配置/520Cとの間のシ曽ットキ・バリアは
層間絶縁膜形成時の加熱によりAtがN型8i基板とア
ロイングして形成される。そして該シ四ットキ・バリア
の降伏電圧はゲート酸化膜15の耐圧より低い15 (
V)程度の値を有するので、多層配線形成工程fこおい
てゲート配線20Cに前記降伏電圧を越えて蓄積された
電荷は、前記シ曹ットキ・バリアを介してN型SI基板
31に放出される。従って蓄積電荷によりゲート酸化膜
15が破壊されることがない。又該シ璽ットキ・バリア
の降伏電圧は、該半導体装置の電源電圧より充分に高い
電圧であるから装置動作に支障は与えない。
In addition, in the method of the above embodiment, the static barrier between the N-type St substrate 31 formed in the third contact window 19C and the gate arrangement/520C made of kA is formed during the formation of the interlayer insulating film. By heating, At is alloyed with the N-type 8i substrate. The breakdown voltage of the Shitsuki barrier is lower than the breakdown voltage of the gate oxide film 15 (15 (
V), the charge accumulated in the gate wiring 20C in the multilayer wiring formation step f in excess of the breakdown voltage is released to the N-type SI substrate 31 via the SI barrier. Ru. Therefore, the gate oxide film 15 is not destroyed by accumulated charges. Further, since the breakdown voltage of the shuttling barrier is sufficiently higher than the power supply voltage of the semiconductor device, it does not interfere with the operation of the device.

上記実施例においては、PN接合によるゲート保護構造
をN−MO8で、シ冒ットキ・バリアによるゲート保護
構造をP−MO8で説明したが一連にそれぞれP−MO
8およびN−MO8にも適用できるし、0−MO8にも
適用できる。
In the above embodiment, the gate protection structure using a PN junction was explained as N-MO8, and the gate protection structure using a shield barrier was explained as P-MO8.
It can be applied to 8 and N-MO8 as well as 0-MO8.

又シ嘗ットキ・バリア接続による保護構造は、アルf=
ウム(At)に限らない。例えばゲート電極に接続する
下層配線にチタニウム(Ti)やモリブデン(MO)を
用いても形成することができる。
In addition, the protection structure based on the shield barrier connection is
It is not limited to At. For example, titanium (Ti) or molybdenum (MO) can be used for the lower wiring connected to the gate electrode.

更に又シ曹ットキ・バリアを白金シリサイド(PtSt
)で形成しその上にアルミニウム(人t)を蒸着するこ
とによりて配線はムtでシ璽ットキ・バリアはptsi
となる。この場合降伏電圧は10(V)1i[となる。
Furthermore, the silica barrier is coated with platinum silicide (PtSt).
) and then vapor-depositing aluminum on top of it to form a PTSI wiring.
becomes. In this case, the breakdown voltage is 10 (V) 1i[.

又、半導体基板側もシリコン(8i)に限らないことは
言うまでもない。
Further, it goes without saying that the semiconductor substrate side is not limited to silicon (8i).

以上説明したように多層配線構造のMIS型半導体装置
に本発明の構造を適用すれば、多層配線形成工程等にお
いて、ゲート電極着こ接続された下層配線に蓄積される
電荷lこよってゲート絶縁膜が破壊されることがなくな
る。従って多層配線構造のMIS型半導体装置の製造歩
留まりが向上すも
As explained above, if the structure of the present invention is applied to a MIS type semiconductor device with a multilayer wiring structure, the charge l accumulated in the lower layer wiring connected to the gate electrode during the multilayer wiring formation process, etc. will no longer be destroyed. Therefore, the manufacturing yield of MIS type semiconductor devices with multilayer wiring structure is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第4の実施例における等価回路図(a
)及び平面構造図φ)、第2図は本発明の第2の実施例
における等価回路図(a)及び平面構造図(ロ)、第3
図(a)乃至(0は上記第1の実施例における製造工程
断面図、第4図(a)乃至(f)は上記第2の実施例に
おける製造工程断面図である。 図憂こおいて、Gはゲート、JBは保護用逆方向接合、
S脇はシ璽ットキ・バリア、Eは半導体基板、1はフィ
ールド酸化膜、2は多結晶シリコン・ゲート電極、3a
、3bは第1第2のN+減被拡散領域N+型ンソー−ド
レイン領域)、3Cは第3のN4m拡散領域、4g、4
b、4c、4dは下層絶縁膜のコンタクト窓、5a、5
bはソース・ドレイン配線、5Cはゲートに接続する下
層配線、6は配線接続窓(スルーホール)、7は上1配
線、ga、8bは第1第2のP”ll拡散領域(P+型
ソース・ドレイン領域)を示す。 第 1 図 6区)(8) 寥 2r2J <Qノ                      
         (匈第 3 口 第 4 図
FIG. 1 is an equivalent circuit diagram (a
) and a planar structural diagram φ), FIG. 2 is an equivalent circuit diagram (a) and a planar structural diagram (b) in the second embodiment of the present invention, and FIG.
Figures (a) to (0) are sectional views of the manufacturing process in the first embodiment, and Figures 4(a) to (f) are sectional views of the manufacturing process in the second embodiment. , G is the gate, JB is the protective reverse junction,
S side is a seal barrier, E is a semiconductor substrate, 1 is a field oxide film, 2 is a polycrystalline silicon gate electrode, 3a
, 3b is the first and second N+ reduced diffusion region (N+ type drain region), 3C is the third N4m diffusion region, 4g, 4
b, 4c, 4d are contact windows of the lower layer insulating film, 5a, 5
b is the source/drain wiring, 5C is the lower layer wiring connected to the gate, 6 is the wiring connection window (through hole), 7 is the upper first wiring, ga, 8b is the first and second P''ll diffusion region (P+ type source・Drain region). Fig. 1 Section 6) (8) 2r2J <Q
(Xiang No. 3 Port No. 4 Figure

Claims (1)

【特許請求の範囲】 1、多層配線構造のMI8111”?’導体装置におい
て、ゲートに!1続する下層配線の一部が、ゲート絶縁
膜の耐圧より低い降伏電圧を有する逆方向接合を介して
半導体基板に接続されてなることを特徴とするMIal
l亭導体装電導 体装置層配線構造のMI8m1半導体装置において、ゲ
ートに接続する下層配線の一部が、ゲート絶縁膜の耐圧
より低い降伏電圧を有するシ謬ットキOバリアを介して
半導体基板lこ接続されてなることを特徴とするMI8
111半導体装置。
[Claims] 1. In the MI8111"?' conductor device with a multilayer wiring structure, a part of the lower wiring connected to the gate is connected via a reverse junction having a breakdown voltage lower than the breakdown voltage of the gate insulating film. MIal characterized by being connected to a semiconductor substrate
In an MI8m1 semiconductor device with a conductor-packed conductor device layer wiring structure, a part of the lower layer wiring connected to the gate is connected to the semiconductor substrate through a shut-off barrier having a breakdown voltage lower than the withstand voltage of the gate insulating film. MI8 characterized by being connected
111 Semiconductor device.
JP12834981A 1981-08-17 1981-08-17 Mis type semiconductor device Pending JPS5830160A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP12834981A JPS5830160A (en) 1981-08-17 1981-08-17 Mis type semiconductor device
EP82304305A EP0072690A3 (en) 1981-08-17 1982-08-16 A mis device and a method of manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12834981A JPS5830160A (en) 1981-08-17 1981-08-17 Mis type semiconductor device

Publications (1)

Publication Number Publication Date
JPS5830160A true JPS5830160A (en) 1983-02-22

Family

ID=14982609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12834981A Pending JPS5830160A (en) 1981-08-17 1981-08-17 Mis type semiconductor device

Country Status (1)

Country Link
JP (1) JPS5830160A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061157A (en) * 1989-09-26 1991-10-29 Ebara Corporation Submersible pump
US5500542A (en) * 1993-02-12 1996-03-19 Fujitsu Limited Semiconductor integrated circuit with protection circuit against electrostatic breakdown and layout design method therefor
US6002155A (en) * 1993-02-12 1999-12-14 Fujitsu Limited Semiconductor integrated circuit with protection circuit against electrostatic breakdown and layout design method therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49391A (en) * 1972-04-15 1974-01-05
JPS53126875A (en) * 1977-04-13 1978-11-06 Hitachi Ltd Gate protecting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49391A (en) * 1972-04-15 1974-01-05
JPS53126875A (en) * 1977-04-13 1978-11-06 Hitachi Ltd Gate protecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061157A (en) * 1989-09-26 1991-10-29 Ebara Corporation Submersible pump
US5500542A (en) * 1993-02-12 1996-03-19 Fujitsu Limited Semiconductor integrated circuit with protection circuit against electrostatic breakdown and layout design method therefor
US5672895A (en) * 1993-02-12 1997-09-30 Fujitsu, Ltd. Semiconductor integrated circuit with protection circuit against electrostatic breakdown and layout design method therefor
US6002155A (en) * 1993-02-12 1999-12-14 Fujitsu Limited Semiconductor integrated circuit with protection circuit against electrostatic breakdown and layout design method therefor

Similar Documents

Publication Publication Date Title
JP3047986B2 (en) Semiconductor device
JPS6316658A (en) Semiconductor storage device
JPH07120653B2 (en) Manufacturing method of monolithic integrated circuit
JPH0463546B2 (en)
JPS60182161A (en) Mos dynamic memory element
JPS5830160A (en) Mis type semiconductor device
JPH0467671A (en) Manufacture of semiconductor device
JPH0370178A (en) Semiconductor device
JPS5974668A (en) Integrated circuit contact structure
JPH02110976A (en) Insulated-gate semiconductor device
JPH08116049A (en) Insulated-gate semiconductor device
JPS62154784A (en) Semiconductor device
JPS62108567A (en) Semiconductor integrated circuit device
JPS5858766A (en) Insulating gate type field-effect semiconductor device and its manufacture
JPS58135672A (en) Semiconductor device
JPS639658B2 (en)
JPS5851523A (en) Semiconductor device
JPH061775B2 (en) Method for manufacturing semiconductor device
JPS61228661A (en) Semiconductor device and manufacture thereof
RU2029393C1 (en) Dynamic memory location
JPS59204276A (en) Insulated gate field effect semiconductor device
JPH0441510B2 (en)
JPS62204566A (en) Complementary mos semiconductor device
JPS61267347A (en) Semiconductor device
JPS6089956A (en) Semiconductor device