JPS61267347A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61267347A
JPS61267347A JP10952085A JP10952085A JPS61267347A JP S61267347 A JPS61267347 A JP S61267347A JP 10952085 A JP10952085 A JP 10952085A JP 10952085 A JP10952085 A JP 10952085A JP S61267347 A JPS61267347 A JP S61267347A
Authority
JP
Japan
Prior art keywords
wiring
film
polycrystalline silicon
films
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10952085A
Other languages
Japanese (ja)
Inventor
Yasuo Ito
伊東 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10952085A priority Critical patent/JPS61267347A/en
Publication of JPS61267347A publication Critical patent/JPS61267347A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor device with the resistance presented by its wiring decreased and the cover improved on a step attributable to the wiring by a method wherein a wiring of a three-layer structure is formed wherein a high-melting metal or its alloy is sandwiched between two polycrystalline silicon films. CONSTITUTION:A gate electrode 18 of a three-layer structure to serve as a word line is constituted of polycrystalline silicon film 15, 17 and a metal film 16 sandwiched between the two films 15, 17. On an oxide film 21, a poly crystalline silicon film 22, a metal film 23, and a polycrystalline silicon film 24 are deposited, in that order, for the formation of a bit line 25 of three-layer structure. Electrical resistance is made as low as in a conventional polycite structure and, further, polycrystalline silicon films 17, 24 are laid on the metal films 16, 23 to reinforce the metal films 16, 23. In a semiconductor device of this design, a step that may be produced on the semiconductor surface is pro vided with a coverage approximately similar to that in a design wherein the bit line 25 and gate electrode 18 are built of polycrystalline silicon only.

Description

【発明の詳細な説明】 〔発明の技術分野) 本発明は、半導体集積回路に係り、特に配線の低抵抗化
とステップカバレージの向上とを同時に満足させた′4
′轡体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit, and particularly to a semiconductor integrated circuit which satisfies both low wiring resistance and improved step coverage.
'Relating to the body device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に」′導体集積回路にお()る回路構成のための配
線には、アルミニウム、不純物を拡散させたポリシリコ
ン或いはモリブデンやチタン等の高融点金属t′にとが
利用されている。アルミニウムは上記高融点金属などに
比較し電気II(抗が低くしがも柔軟でステップカバレ
ージもそれ程悪(ないため集積回路の配線には好適なの
であるが、融点が低いため(500℃稈疫)に配線後に
熱■稈を加えることができない。従って、高密度集積比
のためには多層配線が必要(計すかかわらず、アルミニ
ウムでの多層配線は非常に難しい。ぞこで多層配線にお
いては、最上層にはアルミ配線を使用し下層の配線には
ポリシリ」ンや高融点金属又はぞの化合物が一般に使用
されている。
In general, aluminum, polysilicon with impurities diffused therein, or high-melting point metals such as molybdenum and titanium are used for wiring for circuit configuration in conductor integrated circuits. Compared to the above-mentioned high melting point metals, aluminum is suitable for wiring of integrated circuits because it has low resistance but is flexible and has poor step coverage, but its melting point is low (500℃ culm). It is not possible to apply heat to the wire after wiring.Therefore, multilayer wiring is required for high density integration (multilayer wiring with aluminum is extremely difficult, regardless of the plan.In multilayer wiring, Generally, aluminum wiring is used for the top layer, and polysilicon, high melting point metals, or other compounds are used for the lower layer wiring.

第2図は、この上うイf多層配線を有する従来の半導体
装置の配線M4造をダイノミツクRAMを例にして示し
た断面図で・ある。
FIG. 2 is a sectional view illustrating the wiring M4 structure of a conventional semiconductor device having multilayer wiring, using a dynamic RAM as an example.

同図に示されるJ、うに、RAMの各メモリセルは、P
型半導体基板10内に形成されたN 型拡散層をソース
19とドレイン20とりるMOS l〜ランジスタど、
ドレイン20に隣接して形成されたN−型拡散層12に
第1グー1〜M化Ml!11を介して取付けられた。1
−ヤパシタ雷極13とから構成されている。RAMのワ
ード線を構成する各MO8l−ランジスタのグー1−電
極28は、電気抵抗を下げるためにポリシリコン膜15
の上に高融点金属又はその化合物から成る金属膜16を
積層したいわゆるポリシーイド構造で形成されている。
Each memory cell of J, Uni, and RAM shown in the figure is P
A MOS transistor, etc., which uses an N type diffusion layer formed in a type semiconductor substrate 10 as a source 19 and a drain 20, etc.
The N-type diffusion layer 12 formed adjacent to the drain 20 is coated with the first goo 1 to M1! It was attached via 11. 1
- Yapasita lightning pole 13. Each MO8l-transistor G1-electrode 28 constituting the word line of the RAM is covered with a polysilicon film 15 to reduce electrical resistance.
A metal film 16 made of a high-melting point metal or a compound thereof is laminated thereon to have a so-called polyside structure.

このグーし・電極28の」一方にはMO8I−ランジス
タのソース19に接続されたビット線29が設けられて
おり、これもポリシリコン膜22に金属FrJ23を積
層したボリリイド114造で形成されている。更に、ビ
ット線29のV方には、グー]・電極28に接続され(
接続状況は図示lず)だアルミ配線27が設けられてお
り、このゲート電極28どアルミ配線27とでワード線
が構成されている。アル1    ミ配線27はワード
線の電気抵抗を更に低下させるよう機能する。
A bit line 29 connected to the source 19 of the MO8I transistor is provided on one side of the goo-electrode 28, and this bit line 29 is also made of a polysilicon film 22 and a metal FrJ23 layered thereon. . Furthermore, the V side of the bit line 29 is connected to the electrode 28 (
An aluminum wiring 27 (the connection state of which is not shown) is provided, and the gate electrode 28 and the aluminum wiring 27 constitute a word line. The aluminum wiring 27 functions to further reduce the electrical resistance of the word line.

ところが、このJ、うイ1従来の配線描);5においで
は、配線の11(抵抗化のために使用されているポリリ
”イド構造にお【)る高融点金属やその化合物から成る
金属膜が、その硬度が高いために段差部においでクラッ
クが人−)たり断ち切れIこりし易いというステップカ
バレージの悪さが問題に成っている。
However, in this J, U1 (conventional wiring drawing); However, due to its high hardness, poor step coverage has become a problem, as it tends to crack or break off at stepped portions.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点に鑑みイ1されたもので、配線を低
抵抗化さけるとともにそのステップカバレージを向上さ
けた崖導体装置を提供覆ることを目的どする。
The present invention was developed in view of the above-mentioned problems, and an object of the present invention is to provide a cliff conductor device that avoids reducing the resistance of wiring and improving its step coverage.

〔発明の概要〕[Summary of the invention]

1龍目的を達成りるため本発明は、一層のポリシリコン
膜 化合物の層から成る三層構造の配線を備えた半導体装F
?を構成したものである。
In order to achieve the above object, the present invention provides a semiconductor device F having a three-layer wiring structure consisting of one polysilicon film compound layer.
? It is composed of

〔発明の実施例〕[Embodiments of the invention]

以下、図面に示す実施例により本発明を説明する。 The present invention will be explained below with reference to embodiments shown in the drawings.

第1図は、本発明を第2図ど同一・構造のダイナミンク
RAMに適用した一実施例の配線構造を示す断面図rあ
り、第2図と同一物には同一符号を付しである。
FIG. 1 is a cross-sectional view showing the wiring structure of an embodiment in which the present invention is applied to a DYNAMIC RAM having the same structure as that in FIG. 2, and the same parts as in FIG. .

第1図において、ρ型半導体基板10表面に第1グー1
〜酸化膜11を形成した後、基板10の所定表面領域に
リン等の熱拡散を行つUN−型拡散層12を形成する。
In FIG. 1, a first goo 1 is formed on the surface of a ρ-type semiconductor substrate 10.
- After forming the oxide film 11, a UN-type diffusion layer 12 for thermally diffusing phosphorus or the like is formed in a predetermined surface area of the substrate 10.

次に、第1ゲート酸化膜11表面上にポリシリ−コンの
層を気相成長法等により形成し、これにリン等のイオン
注入を行い写真触法等によりキャパシタ電極13を形成
する。
Next, a polysilicon layer is formed on the surface of the first gate oxide film 11 by a vapor phase growth method or the like, and ions such as phosphorus are implanted into this layer to form a capacitor electrode 13 by a photolithography method or the like.

その後、MOSトランジスタを形成すべき領域における
第1ゲーI−酸化膜11を取り除いた後、第2ゲート酸
化膜14を形成する。そして、第2ゲー1− M化膜1
4表面上にポリシリ−]ン膜15を気相成長法等により
形成し、このポリシリコン膜15表面上に高融点金属や
その化合物から成る金属膜16をスパッタ法等により形
成する。この金属膜16は例えばモリブデンシリサイド
やヂタンシリザイド等からなり、ポリシリコン膜15と
オーミックコンタク1へ性を1りるにうに形成される。
After that, the first gate I-oxide film 11 in the region where the MOS transistor is to be formed is removed, and then the second gate oxide film 14 is formed. Then, the second gate 1-M film 1
A polysilicon film 15 is formed on the surface of the polysilicon film 15 by a vapor phase growth method or the like, and a metal film 16 made of a high melting point metal or a compound thereof is formed on the surface of the polysilicon film 15 by a sputtering method or the like. This metal film 16 is made of, for example, molybdenum silicide, ditan silicide, etc., and is formed to have a similar property to the polysilicon film 15 and the ohmic contact 1.

さらに、金属膜16表面1−にポリシリlコン膜17を
気相成長法qにより形成し、このポリシリコン膜17表
面1−からリン等の不純物をF層のポリシリコン膜15
まで到達するようにイオン注入し写真蝕刻法等を用いて
ゲート・電J!i 18を形成り−る。
Furthermore, a polysilicon film 17 is formed on the surface 1- of the metal film 16 by a vapor phase growth method q, and impurities such as phosphorus are removed from the surface 1- of the polysilicon film 17 into the polysilicon film 15 of the F layer.
Ion implantation was performed to reach the gate and electric field J! using photolithographic techniques. Form i18.

これにより、二層のポリシリコン膜15,17及びこの
ポリシリ]ンII!J15.17間に形成された金属膜
16から成る三相構造のゲート電極18が形成される。
This results in two layers of polysilicon films 15 and 17 and this polysilicon film II! A gate electrode 18 having a three-phase structure made of the metal film 16 formed between J15 and J17 is formed.

このゲート電極18は図面に垂直な方向に延びている。This gate electrode 18 extends in a direction perpendicular to the drawing.

このグー1〜電極18を形成した後、基板10の所定の
表面領域にリン拡散を行ってN+型拡改層であるソース
19及びドレイン20を形成する。
After forming the goo 1 to the electrode 18, phosphorus is diffused into a predetermined surface region of the substrate 10 to form a source 19 and a drain 20, which are N+ type expansion layers.

次に、これらの上に酸化膜21を成長させそのソース1
9に対応する位置に]ンタク1〜ホールを開【フた後、
酸化膜21表面」−にグー1〜電極18と同様の方法で
ポリシリコン膜22、金属膜23及びポリシリコン膜2
/Iを順次堆積し三層構造のピッ1〜線25を形成する
。このビット線25はゲート電極18に直行する方向へ
延びている。
Next, an oxide film 21 is grown on these and the source 1
After opening holes 1 to 9 in the position corresponding to number 9,
Polysilicon film 22, metal film 23 and polysilicon film 2 are formed on the surface of oxide film 21 in the same manner as for goo 1 to electrode 18.
/I is sequentially deposited to form a three-layer structure of pins 1 to 25. This bit line 25 extends in a direction perpendicular to the gate electrode 18.

その後、これらのトに更に酸化膜26を形成した後、酸
化膜26.21を員いてゲート電極16への]ンタク1
−ホール(図示「ず)を所定箇所に聞ける。そして、酸
化膜26表面上にシリコンをドープしたアルミ膜を形成
し写負蝕刻法等を用いてアルミ配線27を形成する。こ
のアルミ配線27はグーl−電極18に平行に延びでお
り、前記]ンタ]トボールを通ってゲート電極18に接
続されている。このゲート電極18とアルミ配線27と
でワード線が構成されている。
After that, an oxide film 26 is further formed on these plates, and then the oxide film 26 and 21 are used to form a contact 1 to the gate electrode 16.
- Holes (not shown) are formed at predetermined locations. Then, an aluminum film doped with silicon is formed on the surface of the oxide film 26, and an aluminum wiring 27 is formed using a photolithography method or the like. The gate electrode 18 extends parallel to the electrode 18 and is connected to the gate electrode 18 through the contact ball.The gate electrode 18 and the aluminum wiring 27 constitute a word line.

このようにして構成され/、: RA MにおいCは、
ビット線25及びワード線を構成づるゲート電極18ど
がポリシリコン膜15.22の上に金属膜16.23を
積層した構造となっているためこれらの電気抵抗は従来
のポリ1ノイド構造の場合と同程度に低抵抗となる。更
に、金属膜16.23の上にポリシリコン膜17.24
を重ねで金属膜16.23を補強するようにしでいるの
でポリシリ:1ンのみでピッ1−線25やグー1−電極
18を形成した場合に近いステップカバレージが得られ
る。
In this way, C is configured as follows:
Since the gate electrodes 18, which constitute the bit lines 25 and word lines, have a structure in which metal films 16 and 23 are laminated on polysilicon films 15 and 22, their electrical resistance is lower than that of the conventional poly-1-noid structure. The resistance is as low as that of . Further, a polysilicon film 17.24 is formed on the metal film 16.23.
Since the metal films 16 and 23 are reinforced by overlapping the metal films 16 and 23, step coverage similar to that obtained when the pin 1-line 25 and the goo 1-electrode 18 are formed using only one layer of polysilicon is obtained.

〔発明の効果) 以上説明したように本発明にJ:れば、配線を二層のポ
リシリコン膜及びこのポリシリ−1ン膜の間に形成され
た高融点金属又はその化合物から成る三N 4’434
aど1ノているlζめ、低抵抗でかつステップカバレー
ジのQい配線を得ることができる。
[Effects of the Invention] As explained above, according to the present invention, the wiring is made of a two-layer polysilicon film and a high melting point metal or a compound thereof formed between the polysilicon film and the polysilicon film. '434
As a result, it is possible to obtain a high-quality wiring with low resistance and step coverage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る半導体装置の一実施例の構造を承
り断面図、第2図は従来の半導体装置の構造を示す断面
図ぐある。 10・・・半導体V板、15.17.22.24・・・
ポリシリ−1ン膜、16.23・・・金属膜、18・・
・ゲート電極、25・・・ピッ]へ線。
FIG. 1 is a sectional view showing the structure of an embodiment of a semiconductor device according to the present invention, and FIG. 2 is a sectional view showing the structure of a conventional semiconductor device. 10...Semiconductor V board, 15.17.22.24...
Polysilicon film, 16.23...Metal film, 18...
・Gate electrode, wire to 25...beep].

Claims (1)

【特許請求の範囲】 1、半導体基板上に二層の多結晶シリコン膜及びこの二
層の多結晶シリコン膜の間に形成された高融点金属又は
この高融点金属の化合物からなる三層構造の配線を備え
た半導体装置。 2、多層に複数の配線を有し最上層の配線はアルミ配線
であり最上層以外の配線は二層の多結晶シリコン膜及び
この二層の多結晶シリコン膜の間に形成された高融点金
属層又はこの高融点金属の化合物からなる三層構造とな
っている特許請求の範囲第1項記載の半導体装置。
[Claims] 1. A three-layer structure consisting of two layers of polycrystalline silicon films on a semiconductor substrate and a high melting point metal or a compound of the high melting point metal formed between the two layers of polycrystalline silicon films. A semiconductor device with wiring. 2. It has multiple interconnects in multiple layers, the top layer interconnect is aluminum interconnect, and the interconnects other than the top layer are two layers of polycrystalline silicon film and a high melting point metal formed between these two layers of polycrystalline silicon film. 2. The semiconductor device according to claim 1, which has a three-layer structure consisting of a layer or a compound of the high melting point metal.
JP10952085A 1985-05-22 1985-05-22 Semiconductor device Pending JPS61267347A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10952085A JPS61267347A (en) 1985-05-22 1985-05-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10952085A JPS61267347A (en) 1985-05-22 1985-05-22 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61267347A true JPS61267347A (en) 1986-11-26

Family

ID=14512339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10952085A Pending JPS61267347A (en) 1985-05-22 1985-05-22 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61267347A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421168A2 (en) * 1989-09-13 1991-04-10 Kabushiki Kaisha Toshiba Semiconductor memory with metallic interconnection layer of the same potential as the word line and connected thereto outside of the memory cell region

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0421168A2 (en) * 1989-09-13 1991-04-10 Kabushiki Kaisha Toshiba Semiconductor memory with metallic interconnection layer of the same potential as the word line and connected thereto outside of the memory cell region
EP0421168A3 (en) * 1989-09-13 1994-07-13 Toshiba Kk Semiconductor memory with metallic interconnection layer of the same potential as the word line and connected thereto outside of the memory cell region

Similar Documents

Publication Publication Date Title
US4970564A (en) Semiconductor memory device having stacked capacitor cells
US6603203B2 (en) Semiconductor device having capacitive element structure and multilevel interconnection structure and method of fabricating the same
KR100199258B1 (en) Semiconductor integrated circuit device
US5930624A (en) Method of producing semiconductor integrated circuit device having switching MISFET and capacitor element including wiring
US5744394A (en) Method for fabricating a semiconductor device having copper layer
US5880020A (en) Method of making a semiconductor device having local connections formed by conductive plugs
US4803534A (en) Semiconductor device sram to prevent out-diffusion
JPH06275724A (en) Semiconductor device and manufacture thereof
JP2894740B2 (en) MOS type semiconductor device
JPS62174968A (en) Semiconductor device
JP4148615B2 (en) Manufacturing method of semiconductor device
JPH0818011A (en) Semiconductor device and its production
JP2805765B2 (en) Semiconductor memory device
JPS61267347A (en) Semiconductor device
JP2970858B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2679146B2 (en) Semiconductor memory device and method of manufacturing the same
JP2531345B2 (en) Semiconductor memory device
JPS62154784A (en) Semiconductor device
JP3013407B2 (en) Semiconductor memory device
JPH02257671A (en) Semiconductor storage device and manufacture thereof
JPH05211131A (en) Semiconductor device
JPH02114532A (en) Semiconductor device
JPH02237062A (en) Manufacture of semiconductor device
JPH0235769A (en) Semiconductor device
JPS5842257A (en) Semiconductor device