JPS6390140A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6390140A
JPS6390140A JP23536986A JP23536986A JPS6390140A JP S6390140 A JPS6390140 A JP S6390140A JP 23536986 A JP23536986 A JP 23536986A JP 23536986 A JP23536986 A JP 23536986A JP S6390140 A JPS6390140 A JP S6390140A
Authority
JP
Japan
Prior art keywords
type
semiconductor device
substrate
resistivity
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23536986A
Other languages
Japanese (ja)
Other versions
JPH0810694B2 (en
Inventor
Nobuyuki Izawa
伊沢 伸幸
Toshihiko Suzuki
利彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP23536986A priority Critical patent/JPH0810694B2/en
Publication of JPS6390140A publication Critical patent/JPS6390140A/en
Publication of JPH0810694B2 publication Critical patent/JPH0810694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a desired N-type region of high resistivity for a device by a method wherein, after a P-type substrate whose resistivity is more than 1000OMEGA.cm and whose oxygen concentration is 2 X 10<17>m 1 X 10<18>/cm<3> has been heat-treated at over 650 deg.C which is necessary for the production process of a semiconductor device,the substrate is heat-treated at 400-500 deg.C. CONSTITUTION:If an N-type region of high resistivity, which is necessary for a Schottky barrier or a PN junction, is to be formed on a prescribed semiconductor device after the prescribed semiconductor device has been manufactured by means of a P-type Si substrate which was processed by a Czochralski method, the following procedure is used. That is to say, if a semiconductor device having a Schottky barrier or a PN junction is to be manufactured by means of an Si wafer processed by a Czochralski method, the semiconductor device is first manufactured by an ordinary method wherein a P-type wafer whose resistivity is more than 1000A.cm and whose oxygen concentration is 2 X 10<17>m1 X 10<18>/cm<3> is heattreated at over 650 deg.C. After that, the wafer is heat-treated at 400-500 deg.C, and a desired N-type region of high resistivity is obtained by making use of contained oxygen as a donor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置、例えば放射線検出装置、光検出装
置、高耐圧半導体装置等の、特にn型の高比抵抗領域を
有する半導体装置の製法に関わる。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, such as a radiation detection device, a photodetection device, a high voltage semiconductor device, etc., especially a semiconductor device having an n-type high resistivity region. involved.

〔発明の概要〕[Summary of the invention]

本発明は比抵抗が1000Ω・0111以上で酸素濃度
が2 X 1017〜I X 10” cm−3のp型
基板に目的とする半導体装置を得るtJ造するもので、
この製造工程において650℃以上の熱処理を伴う場合
はこの熱処理工程を終了して後に400℃〜500℃の
熱処理を行ってn型の高比抵抗領域を形成するようにし
て当初のp型基板中に含有する酸素濃度をサーマルドナ
ー化して、このドナーによってp型基板中のp型不純物
を打ち消してその上n型のしかも高比抵抗の基板に変換
して放射線検出装置、光検出装置、高耐圧半導体装置等
に要求される高比抵抗のn型領域を安定に形成するよう
にする。
The present invention is to manufacture a target semiconductor device using a p-type substrate having a specific resistance of 1000Ω·0111 or more and an oxygen concentration of 2×1017 to I×10” cm−3.
If this manufacturing process involves heat treatment at 650°C or higher, heat treatment at 400°C to 500°C is performed after this heat treatment step to form an n-type high resistivity region in the original p-type substrate. The oxygen concentration contained in the substrate is converted into a thermal donor, the p-type impurity in the p-type substrate is canceled out by this donor, and the substrate is converted into an n-type substrate with high resistivity, which can be used for radiation detection devices, photodetection devices, and high voltage resistance. To stably form a high resistivity n-type region required for semiconductor devices and the like.

〔従来の技術〕[Conventional technology]

例えば放射線検出装置、光検出装置、高耐圧半導体装置
等の半導体装置においてn型の高比抵抗シリコン基板を
用い、これにショットキ障壁あるいはpn接合等を形成
して目的とする半導体装置を作製することが行われる。
For example, in semiconductor devices such as radiation detection devices, photodetection devices, and high voltage semiconductor devices, an n-type high resistivity silicon substrate is used, and a Schottky barrier or a pn junction is formed thereon to produce the desired semiconductor device. will be held.

この種のシリコン半導体基板を作製する方法としては、
例えばフローティングゾーン法(FZ法)によって育成
した結晶体からシリコン基板を切り出すという方法が採
られている。ところが、最近特に上述した半導体装置等
においての性能向上、コストの低廉化等の目的をもって
大口径シリコン基板、これに伴って大口径シリコン結晶
体の育成が要求されている。ところが、FZ法では直径
150mm以上の結晶体の作製は困難であり、さらにそ
の直径が大きくなるにつれ不純物のとり込みが大となっ
て高比抵抗の結晶体が得にくいという問題があり、これ
が為その価格、収率、品質等の点において問題があり、
上述の各種半導体装置の開発、普及に支障を来す傾向に
ある。また、FZ法によって得た結晶は、酸素の含有量
がI X 1017crs−’以下という低濃度である
ために、結晶が受ける熱ストレスに弱く結晶欠陥がむし
ろ発生し易く、これより切り出したシリコン基板を用い
て上述の各種半導体装置を形成した場合、特性劣化が生
じるなどの問題がある。これらの問題はその育成結晶の
直径が太き(なるにつれてより顕著になり、この点から
も上述の半導体装置の開発、普及が阻害されている。
The method for manufacturing this type of silicon semiconductor substrate is as follows:
For example, a method has been adopted in which a silicon substrate is cut out from a crystal grown by the floating zone method (FZ method). However, recently, there has been a demand for the growth of large-diameter silicon substrates and, along with this, large-diameter silicon crystals, especially for the purpose of improving performance and reducing costs in the above-mentioned semiconductor devices and the like. However, with the FZ method, it is difficult to produce crystals with a diameter of 150 mm or more, and furthermore, as the diameter increases, the amount of impurities incorporated increases, making it difficult to obtain crystals with high resistivity. There are problems in terms of price, yield, quality, etc.
This tends to hinder the development and popularization of the various semiconductor devices mentioned above. In addition, since the crystal obtained by the FZ method has a low oxygen content of less than I When the above-mentioned various semiconductor devices are formed using this method, there are problems such as deterioration of characteristics. These problems become more pronounced as the diameter of the grown crystal increases, and this point also hinders the development and popularization of the above-mentioned semiconductor devices.

一方、チックラルスキー法(CZ法)によって結晶育成
を行う場合、一般にこれに用いられる原料融液が収容さ
れるるつぼからの酸素の取り込みが大で、育成された結
晶中の酸素濃度は例えばIX 10” cm”3以上に
も及び、この酸素により生ずるサーマルドナーの濃度が
高くなり過ぎるとか、その結晶成長時に同様にるつぼか
らの取り入れ等によって混入する例えばボロンB等の電
気的活性不純物が多いなどから、目的とする高比抵抗結
晶体を安定、確実に得にくいという問題がある。
On the other hand, when crystal growth is performed by the Chickralski method (CZ method), a large amount of oxygen is generally taken in from the crucible containing the raw material melt used for this, and the oxygen concentration in the grown crystal is, for example, IX 10"cm"3 or more, the concentration of thermal donors generated by this oxygen becomes too high, or there are many electrically active impurities such as boron B that are mixed in from the crucible during crystal growth. Therefore, there is a problem that it is difficult to stably and reliably obtain the desired high resistivity crystal.

これに比し、磁場印加のもとてCZ法により結晶育成を
行ういわゆるMCZ法では、大口径の結晶を育成するこ
とができると共に、例えば特公昭58−50951号公
報等にもその開示があるように、導電性を有する結晶育
成原料融液に磁場印加がなされることによって磁気流体
効果による見かけ上の粘性が高められ融液の対流が減じ
られることにより、結晶性の向上と共に、例えばa素濃
度を充分像めることができ、更に必要に応じて例えばそ
の引き上げ結晶体と原料融液るっぽとの相対的回転数の
選定によって育成結晶中の酸素濃度を高めることもでき
、つまりはその濃度を広範囲に渡って確実に制御選定で
きるものである。
In contrast, the so-called MCZ method, in which crystal growth is performed by the CZ method under the application of a magnetic field, is capable of growing crystals with a large diameter, and is also disclosed in, for example, Japanese Patent Publication No. 58-50951. By applying a magnetic field to the conductive crystal growth raw material melt, the apparent viscosity due to the magnetohydrodynamic effect is increased and the convection of the melt is reduced. The oxygen concentration in the grown crystal can be sufficiently visualized, and if necessary, the oxygen concentration in the grown crystal can be increased by, for example, selecting the relative rotation speed between the pulled crystal and the raw material melt. The concentration can be reliably controlled and selected over a wide range.

しかしながらいずれの場合においても、rIJ、素濃度
が余り低い場合には結晶性に問題が生じ、高い場合には
サーマルドナーの発生による高比抵抗化の阻害の問題が
生じ、またこのサーマルドナーの発生は、半導体装置の
製造過程における熱処理によってサーマルドナーの発生
率が影響されることから、安定した特性の半導体装置が
得に(いなどの問題がある。
However, in either case, if the rIJ elementary concentration is too low, a problem will occur with crystallinity, and if it is high, there will be a problem of inhibiting the increase in specific resistance due to the generation of thermal donors. However, since the generation rate of thermal donors is affected by the heat treatment during the manufacturing process of the semiconductor device, it is difficult to obtain a semiconductor device with stable characteristics.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上述した諸問題の解決をはかることができ、安
定してn型の高比抵抗領域を有する半導体装置を確実に
製造することができるようにした半導体装置の製法を提
供するものである。
The present invention can solve the above-mentioned problems and provides a method for manufacturing a semiconductor device that can stably manufacture a semiconductor device having an n-type high resistivity region. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は少くともn型の高比抵抗領域を有してなる半導
体装置の製法において、比抵抗が1000Ω・cm以上
で酸素濃度が2 X 1017〜I X 10110l
8’のp型基板(以下これを出発基板という)を用意し
、これに対して例えばショットキ障壁あるいはpn接合
、さらには電極形成等を行って目的とする半導体装置を
製造するものであるが、その製法工程において特に65
0℃以上の熱拡散工程のように、650℃以上の熱処理
工程を伴う場合には、この工程を終了して後に改めて4
00℃〜500℃の熱処理を行って前述したp型基板中
の酸素濃度をサーマルドナー化した基板中のp型不純物
をサーマルドナーによって打ち消し、てさらにこのサー
マルドナーによって高比抵抗のn型に変換して少くとも
基板の一部にn型の高比抵抗領域を形成して目的とする
半導体装置を作製する。
The present invention provides a method for manufacturing a semiconductor device having at least an n-type high resistivity region, in which the resistivity is 1000 Ω·cm or more and the oxygen concentration is 2 x 1017 to I x 10110 l.
A 8' p-type substrate (hereinafter referred to as a starting substrate) is prepared, and a Schottky barrier, a pn junction, and an electrode are formed on it to manufacture the desired semiconductor device. Especially in the manufacturing process, 65
If a heat treatment process of 650°C or higher is involved, such as a thermal diffusion process of 0°C or higher, the process is repeated after completing this process.
Heat treatment is performed at 00°C to 500°C to convert the oxygen concentration in the p-type substrate into a thermal donor. The p-type impurity in the substrate is canceled out by the thermal donor, and the thermal donor converts it into an n-type with high specific resistance. Then, an n-type high resistivity region is formed in at least a part of the substrate, and a target semiconductor device is manufactured.

尚、本発明製法におけるp型出全基板は、MCZ法によ
って得たp型の結晶体から切り出して用い得るものであ
り、このMCZ法によれば、前述したようにその酸素濃
度の制御を正確に行うことができる。
The p-type full substrate in the manufacturing method of the present invention can be cut out from a p-type crystal obtained by the MCZ method, and the MCZ method allows accurate control of the oxygen concentration as described above. can be done.

〔作用〕[Effect]

上述の本発明製法によれば、p型出全基板の濃度を2 
X 10110l7”以上に選定したこと、すなわちこ
のp型基板を得るための例えばMCZ法によって育成し
た結晶中の酸素濃度を2 X 10110l7’以上と
したことによって熱ストレスしたがって結晶欠陥の発生
を効果的に抑制することができるにも拘わらず、出発基
板を予め比抵抗1000Ω・cm以上での高比抵抗のp
型基板としたことによって、酸素により発生させたサー
マルドナーによってそのアクセプタを打ち消してその導
電型を高比抵抗のn型に反転するので基板中の酸素濃度
は2 X 1017cta−”以上の比較的高い濃度、
したがって結晶性にすぐれ、安定した優れた特性を有す
る目的とする半導体装置例えば放射線検出装置、光検出
装置、高耐圧半導体装置を製造することができる。
According to the above-mentioned manufacturing method of the present invention, the concentration of the entire p-type substrate is reduced to 2.
X 10110l7" or more, that is, by setting the oxygen concentration in the crystal grown by, for example, the MCZ method to obtain this p-type substrate to 2x10110l7' or more, thermal stress and the generation of crystal defects can be effectively reduced Although it is possible to suppress the
By using a type substrate, thermal donors generated by oxygen cancel out the acceptors and invert the conductivity type to n-type with high resistivity, so the oxygen concentration in the substrate is relatively high at 2 x 1017 cta-" or more. concentration,
Therefore, target semiconductor devices such as radiation detection devices, photodetection devices, and high voltage semiconductor devices having excellent crystallinity and stable characteristics can be manufactured.

また、本発明においては650℃以上の熱処理を伴う工
程を終了して後400℃〜500℃の熱処理を行うもの
であるので、最終的に確実にサーマルドナーを存在せし
め得て確実にn型高比抵抗領域を形成できる。すなわち
サーマルドナーは、650℃以上の熱処理によって消失
してしまうことが確められたものであるが、本発明にお
いてはこの650℃以上の熱処理後に400℃〜500
℃の熱処理を行う工程を経たことによって確実にサーマ
ルドナーを発生させることができ、目的とする高比抵抗
例えば5000Ω・cmの高比抵抗の半導体領域を形成
することができるものである。
In addition, in the present invention, heat treatment at 400 to 500 degrees Celsius is performed after the process involving heat treatment at 650 degrees Celsius or higher is completed, so it is possible to ensure the presence of a thermal donor in the end and ensure the n-type high temperature. A resistivity region can be formed. That is, it has been confirmed that the thermal donor disappears by heat treatment at 650°C or higher, but in the present invention, after the heat treatment at 650°C or higher, the thermal donor is
By performing the heat treatment at .degree. C., it is possible to reliably generate thermal donors, and it is possible to form a semiconductor region with a desired high resistivity, for example, 5000 Ω·cm.

〔実施例〕〔Example〕

MCZ法によってp型の1500Ω・cmのシリコン単
結晶体を作製し、これより切り出したシリコン半導体基
板を用意し、これにショットキメタルをめっきあるいは
蒸着してショットキ障壁を形成してその表面に電極例え
ば金Auの被着を行って放射線検出装置を作製し、最終
的に450℃の熱処理を行って基板をn型の5000Ω
・cmに変換して、結果的にこの5000Ω・cmの比
抵抗のn型基板にショットキ障壁が形成された放射線検
出装置を作製した。
A p-type silicon single crystal of 1500 Ωcm is prepared by the MCZ method, a silicon semiconductor substrate is cut out from this, and a Schottky barrier is formed by plating or vapor-depositing a Schottky metal, and an electrode, for example, is formed on the surface of the silicon semiconductor substrate. A radiation detection device was fabricated by depositing gold (Au), and finally the substrate was heat-treated at 450°C to form an n-type 5000Ω
・cm, and as a result, a radiation detection device was manufactured in which a Schottky barrier was formed on an n-type substrate with a specific resistance of 5000 Ω・cm.

この場合、その出発基板すなわち初期のp型1500Ω
・clI+のシリコン基板におけるアクセプタ濃度はほ
ぼ9 X 1012c+++−’であり、最終的にn型
に変換された5000Ω・cmのn型領域におけるドナ
ー濃度はほぼ8 X 10” cm−’である。つまり
、この場合アクセプタ濃度に等しいドナー濃度及び50
00Ω・cIllに相当するドナー濃度が酸素によるサ
ーマルドナーによって供給するものであることからその
サーマルドナーとしては、9 X 10” (cm−”
) + 8x10” (cm−3) = 9.8X 1
011012(’)あればよいことになる。
In this case, the starting substrate, i.e. the initial p-type 1500Ω
・The acceptor concentration in the silicon substrate of clI+ is approximately 9 X 1012c+++-', and the donor concentration in the n-type region of 5000 Ω cm, which is finally converted to n-type, is approximately 8 X 10''cm-'. , in this case donor concentration equal to acceptor concentration and 50
Since the donor concentration corresponding to 00 Ω・cIll is supplied by a thermal donor using oxygen, the thermal donor is 9 X 10"(cm-"
) + 8x10” (cm-3) = 9.8X 1
011012(') would be sufficient.

一方、第1図は450℃の熱処理を行った場合の結晶中
の酸素濃度とサーマルドナー濃度の関係の測定結果を示
したもので、同図において(1) 、 (2)及び(3
)は夫々この熱処理を夫々1時間、16時間及び100
時間行った結果を示す。この第1図によれば、450°
Cの熱処理による場合、上述した9、8X 10′2c
m−3のサーマルドナーを得るには、当初7.5X 1
0110l7’の酸素濃度の場合は曲線(1)から1時
間の熱処理を、また5、4X 1017cm−3の場合
は曲線(2)から16時間の熱処理を、また3、5X 
10” cm−’の場合には100時間の熱処理をすれ
ば9.8X 10” cm−3のサーマルドナーが発生
し、上述した5000Ω・cmの高比抵抗のn型領域が
形成されることになる。
On the other hand, Figure 1 shows the measurement results of the relationship between the oxygen concentration in the crystal and the thermal donor concentration when heat-treated at 450°C.
) were subjected to this heat treatment for 1 hour, 16 hours and 100 hours, respectively.
Showing the results over time. According to this figure 1, 450°
In the case of heat treatment of C, the above-mentioned 9,8X 10'2c
To obtain a thermal donor of m-3, initially 7.5X 1
In the case of oxygen concentration of 0110l7', heat treatment for 1 hour from curve (1), and in the case of 5,4X 1017cm-3, heat treatment for 16 hours from curve (2), and 3,5
In the case of 10"cm-', 100 hours of heat treatment will generate 9.8X 10" cm-3 of thermal donors, forming the above-mentioned n-type region with high resistivity of 5000 Ωcm. Become.

そして、酸素濃度が高くなるにつれ、サーマルドナーの
発生量が多くなるため所定量のサーマルドナーを得るに
は熱処理時間を短くするということになるが、あまり短
い熱処理時間ではサーマルドナーの発生量の制御が困難
になる。しかしながら、ある程度の時間の選択は可能で
あり、例えばそのためには熱処理温度を強めて例えば4
00℃とすればサーマルドナーの発生速度が450℃の
場合の数分の1に低下することからその分、熱処理時間
を長くすることができる。
As the oxygen concentration increases, the amount of thermal donors generated increases, so in order to obtain a predetermined amount of thermal donors, the heat treatment time must be shortened, but if the heat treatment time is too short, the amount of thermal donors generated will be controlled. becomes difficult. However, it is possible to select a certain amount of time, for example, by increasing the heat treatment temperature, e.g.
If the temperature is set to 00°C, the generation rate of thermal donors will be reduced to a fraction of that at 450°C, so the heat treatment time can be increased accordingly.

これらのことから出発基板、すなわち結晶中のrlif
fi濃度はI X 10” cm−’以下であることが
望まれることを確認した。
From these facts, the starting substrate, that is, rlif in the crystal
It has been confirmed that the fi concentration is desirably less than I x 10''cm-'.

また、第2図は前述した9、8x 1012cm″3の
サーマルドナーの発生に必要な熱処理時間と酸素濃度を
示したもので、横軸は時間tの平方根として示しである
。この測定結果によると酸素濃度が1×10” cm−
3に近ず(と、必要な熱処理時間が短くなるが、その4
50℃の熱処理すなわちアニールの温度を400℃程度
あるいは後述するところかられかるように500℃近く
に選定してサーマルドナーの発生速度を遅くする方法を
講することによってIX 10” cm−3まで酸素濃
度を高めても高比抵抗のn型の領域の形成が可能である
ことを確めた。
Furthermore, Fig. 2 shows the heat treatment time and oxygen concentration necessary to generate the aforementioned 9.8 x 1012 cm''3 thermal donor, and the horizontal axis is shown as the square root of time t. According to this measurement result, Oxygen concentration is 1×10” cm−
3 (and the required heat treatment time will be shorter, but 4)
By selecting the temperature of the heat treatment at 50°C, that is, annealing, at around 400°C or close to 500°C, as will be explained later, to slow down the generation rate of thermal donors, oxygen up to IX 10" cm-3 can be achieved. It was confirmed that it is possible to form an n-type region with high resistivity even if the concentration is increased.

第3図はすでに報告されているサーマルドナーの発生状
況を示す。すなわち、曲線(31)は酸素濃度が16X
 10110l7’のCZ法によって得たp型のSi結
晶、(32)は酸素濃度が4 X 10110l7’の
MCZ法によって得たp型のSi結晶を夫々 450℃
で熱処理したときの熱処理時間に対する比抵抗の測定結
果を示したものである(4ス・fンターナショナルシン
ポジウム オン シリコン マテリアルズサイエンス 
アンド テクノロジー(FourthInternat
ional Symposium on Sil’1c
on MaterialsScience and T
echnology )19815月pp90−100
参照)。これによれば酸素濃度が16X 1017cm
”3では、比抵抗が低(約10Ω・cllのp型の結晶
でもこれを450℃で熱処理すると約1時間の熱処理で
n型に変換するが、酸素濃度が4 X 10” cm−
3の場合、比抵抗が低い13Ω・Cl1lのp型の結晶
は200時間以上の熱処理でもp型のままであり、比抵
抗の変化も見られない、このように酸素濃度が高いとサ
ーマルドナーの発生が多くp型からn型に変換すること
ができるものの、比抵抗が10Ω・caのものを比抵抗
が数千Ω・CIという高比抵抗のn型にすることは困難
である。それはp型1oΩ・C1l比抵抗のアクセプタ
濃度は約1.4X 10” c+g−3であり、これを
打ち消して5000Ω・cmのn型にするには1.4X
 1015(cs−3) + 8 X 10” (cn
+−3)のサーマルドナーが必要である。しかし、制御
すべき8 X 10” cm−3は全体のサーマルドナ
ーに比べて僅か0.06%であることからその制御はほ
とんどできない。これに比し、前述した実施例では((
8XIO”) / (9×1017 + 8 X 10
”) ) X 100 = 8.2%であルノテその制
御が容易である。
Figure 3 shows the occurrence of thermal donors that has already been reported. In other words, curve (31) has an oxygen concentration of 16X.
(32) is a p-type Si crystal obtained by the CZ method with an oxygen concentration of 4 x 10110l7', and (32) is a p-type Si crystal obtained by the MCZ method with an oxygen concentration of 4 x 10110l7'.
This shows the measurement results of resistivity versus heat treatment time when heat treated (4th International Symposium on Silicon Materials Science).
and Technology (Fourth Internat)
ional Symposium on Sil'1c
on MaterialsScience and T
technology ) May 1981 pp90-100
reference). According to this, the oxygen concentration is 16X 1017cm
``3, even if a p-type crystal with a low resistivity (approximately 10 Ω・cll) is heat-treated at 450°C, it will be converted to an n-type crystal in about 1 hour, but the oxygen concentration is 4 x 10'' cm-
In case 3, the p-type crystal with low resistivity of 13Ω/Cl remains p-type even after heat treatment for more than 200 hours, and no change in resistivity is observed.With this high oxygen concentration, thermal donor Although it is possible to convert a p-type to an n-type due to the large number of occurrences, it is difficult to convert a resistivity of 10 Ω·ca into an n-type with a high resistivity of several thousand Ω·CI. The acceptor concentration of p-type 1oΩ・C1l resistivity is approximately 1.4X 10”c+g-3, and to cancel this and make it n-type with 5000Ω・cm, 1.4X
1015 (cs-3) + 8 x 10” (cn
+-3) thermal donor is required. However, since the amount of 8 X 10" cm-3 to be controlled is only 0.06% of the total thermal donor, it can hardly be controlled. In contrast, in the above-mentioned example ((
8XIO”) / (9×1017 + 8 X 10
”) ) X 100 = 8.2%, making it easy to control.

さらに、p型の比抵抗1oΩ・Cff1では、その比抵
抗自身の基板内の変化も数%であるため、さらに制御が
困難となる。このことから高比抵抗のn型基板をサーマ
ルドナーの発生を利用して得るには、比抵抗が高いp型
の結晶により作製することが望ましく、結晶育成をMC
Zによって構成した場合において実用上の限界等を考慮
して1000Ω・C11以上が望ましいことを確認した
Furthermore, in the case of a p-type resistivity of 1 oΩ·Cff1, the change in resistivity itself within the substrate is only a few percent, making control even more difficult. Therefore, in order to obtain an n-type substrate with high resistivity by utilizing the generation of thermal donors, it is desirable to use a p-type crystal with high resistivity, and the crystal growth is performed using MC.
It has been confirmed that in the case of a structure made of Z, a resistance of 1000 Ω·C11 or more is desirable in consideration of practical limits and the like.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明製法によれば予め積極的′   
にrI!、素を所定量含有した基板の用意すなわち結晶
成長を行わしめることによって熱ストレスの発生を抑制
でき、しかもこの酸素をサーマルドナーに活性化したこ
れによって基板中に含ましめたアクセプタを実質的に打
ち消しその上n型に転じて目的とする高比抵抗のn型基
板を得るようにしたので例えばMCZによる結晶育成の
適用によって大口径の基板を用い得ること、また熱スト
レスの減少による結晶欠陥密度の低減化、さらに低比抵
抗のn型領域を確実に形成できること等が相俟って例え
ば放射線検出装置、あるいは光検出装置等に通用して高
感度で安定した特性を有し、歩留りの向上、したがって
コストの低廉化を図ることができる。
As mentioned above, according to the production method of the present invention, active
Ni rI! The occurrence of thermal stress can be suppressed by preparing a substrate containing a predetermined amount of oxygen, that is, by performing crystal growth, and by activating this oxygen as a thermal donor, this substantially cancels out the acceptors contained in the substrate. Furthermore, since the target n-type substrate is converted to an n-type substrate with a high specific resistance, it is possible to use a large-diameter substrate by applying crystal growth using MCZ, and the crystal defect density can be reduced by reducing thermal stress. This combination of low resistivity and the ability to reliably form an n-type region with low resistivity results in high sensitivity and stable characteristics that can be used in, for example, radiation detection devices or photodetection devices, resulting in improved yields and Therefore, it is possible to reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は450℃の熱処理によるサーマルドナーの発生
量を示す曲線図、第2図は450℃熱処理で9.8x 
10110l2”のサーマルドナーを発生させるに必要
な時間と酸素濃度との関係の測定結果を示す曲線図、第
3図は450℃における熱処理時間と抵抗率の各酸素濃
度との関係を示す曲線図である。
Figure 1 is a curve diagram showing the amount of thermal donor generated by heat treatment at 450°C, Figure 2 is a curve diagram showing the amount of thermal donor generated by heat treatment at 450°C.
A curve diagram showing the measurement results of the relationship between the time required to generate a thermal donor of 10110 l2" and the oxygen concentration. Figure 3 is a curve diagram showing the relationship between the heat treatment time at 450°C and the resistivity with each oxygen concentration. be.

Claims (1)

【特許請求の範囲】[Claims] 少くともn型の高比抵抗領域を有してなる半導体装置の
製法において、比抵抗が1000Ω・cm以上で酸素濃
度が2×10^1^7〜1×10^1^8cm^−^3
のp型基板に、上記半導体装置の製造工程における65
0℃以上の熱処理を伴う工程を終了して後に400℃〜
500℃の熱処理を行って上記n型の高比抵抗領域を形
成することを特徴とする半導体装置の製法。
In a method for manufacturing a semiconductor device having at least an n-type high resistivity region, the resistivity is 1000 Ωcm or more and the oxygen concentration is 2 x 10^1^7 to 1 x 10^1^8 cm^-^3.
65 in the manufacturing process of the semiconductor device on the p-type substrate of
400℃ ~ after completing the process involving heat treatment at 0℃ or higher
A method for manufacturing a semiconductor device, comprising performing heat treatment at 500° C. to form the n-type high resistivity region.
JP23536986A 1986-10-02 1986-10-02 Manufacturing method of semiconductor device Expired - Fee Related JPH0810694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23536986A JPH0810694B2 (en) 1986-10-02 1986-10-02 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23536986A JPH0810694B2 (en) 1986-10-02 1986-10-02 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6390140A true JPS6390140A (en) 1988-04-21
JPH0810694B2 JPH0810694B2 (en) 1996-01-31

Family

ID=16985064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23536986A Expired - Fee Related JPH0810694B2 (en) 1986-10-02 1986-10-02 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0810694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267380A (en) * 2008-04-03 2009-11-12 Commissariat A L'energie Atomique Method of treating semiconductor substrate by thermal activation of light element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009267380A (en) * 2008-04-03 2009-11-12 Commissariat A L'energie Atomique Method of treating semiconductor substrate by thermal activation of light element

Also Published As

Publication number Publication date
JPH0810694B2 (en) 1996-01-31

Similar Documents

Publication Publication Date Title
JP4605876B2 (en) Silicon wafer and silicon epitaxial wafer manufacturing method
JP2000044389A (en) Production of epitaxial silicon single crystal wafer and epitaxial silicon single crystal wafer
JP2003124219A (en) Silicon wafer and epitaxial silicon wafer
KR100753169B1 (en) Epitaxial silicon wafer
JP2002226295A (en) Control method for manufacturing process of silicon single crystal by czochralski method, manufacturing method for high resistance-silicon single crystal by czochralski method, and silicon single crystal
US3129119A (en) Production of p.n. junctions in semiconductor material
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
JP2713310B2 (en) Method for manufacturing high-strength silicon wafer
JP4656788B2 (en) Manufacturing method of silicon epitaxial wafer
JPS6390141A (en) Manufacture of semiconductor substrate
JPS6158879A (en) Preparation of silicon thin film crystal
JPS6390140A (en) Manufacture of semiconductor device
JPH10223641A (en) Manufacture of semiconductor silicon epitaxial wafer and semiconductor device
US4929564A (en) Method for producing compound semiconductor single crystals and method for producing compound semiconductor devices
JP3412531B2 (en) Phosphorus-doped silicon single crystal wafer, epitaxial silicon wafer, and methods for producing them
JP3433678B2 (en) Antimony-doped silicon single crystal wafer and epitaxial silicon wafer, and methods for producing them
JP2779556B2 (en) Epitaxial substrate and method for manufacturing the same
JPS62275099A (en) Semi-insulating indium phosphide single crystal
JP2576131B2 (en) Method for treating compound semiconductor crystal
JPH0557239B2 (en)
JPH02229796A (en) P-type inp single crystal substrate material having low dislocation density
JPS63116420A (en) Semiconductor substrate
CA1271393A (en) Method of manufacturing a semi-insulating single crystal of gallium indium arsenide
JPH0411518B2 (en)
JP2689946B2 (en) Manufacturing method of infrared detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees