JP2689946B2 - Manufacturing method of infrared detector - Google Patents

Manufacturing method of infrared detector

Info

Publication number
JP2689946B2
JP2689946B2 JP7082886A JP8288695A JP2689946B2 JP 2689946 B2 JP2689946 B2 JP 2689946B2 JP 7082886 A JP7082886 A JP 7082886A JP 8288695 A JP8288695 A JP 8288695A JP 2689946 B2 JP2689946 B2 JP 2689946B2
Authority
JP
Japan
Prior art keywords
layer
infrared detector
manufacturing
cdte
hgcdte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7082886A
Other languages
Japanese (ja)
Other versions
JPH08278194A (en
Inventor
昭 味澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7082886A priority Critical patent/JP2689946B2/en
Publication of JPH08278194A publication Critical patent/JPH08278194A/en
Application granted granted Critical
Publication of JP2689946B2 publication Critical patent/JP2689946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は禁制帯幅の狭い半導体、
特にHgを含む化合物半導体を用いた赤外線検出器の製
造方法に関するものである。
BACKGROUND OF THE INVENTION The present invention relates to a semiconductor having a narrow band gap,
In particular, the present invention relates to a method for manufacturing an infrared detector using a compound semiconductor containing Hg.

【0002】[0002]

【従来の技術】一般に赤外線検出器においては禁制帯幅
の狭い半導体を用いたものが高感度であることが知られ
ている。特に検出部分にpn接合を有する光起電力型素
子、すなわちフォトダイオードは単素子を二次元に配列
した構成を採った配列型赤外線検知器にも適用でき非常
に有効である。その代表的なものにHgCdTe半導体
結晶を用いた赤外線検出器がある。
2. Description of the Related Art It is generally known that an infrared detector using a semiconductor having a narrow band gap has high sensitivity. In particular, the photovoltaic element having a pn junction in the detecting portion, that is, the photodiode is very effective because it can be applied to an array type infrared detector having a configuration in which single elements are two-dimensionally arrayed. A typical example thereof is an infrared detector using HgCdTe semiconductor crystal.

【0003】HgCdTe結晶の場合、結晶中のキャリ
ア極性及びキャリア濃度は成長中に制御するのが比較的
難しく、一般には成長終了後Hg雰囲気中での熱処理に
よってHgCdTe結晶中のHgの量を制御することに
より行っていた。従って、キャリア濃度制御の工程の後
にイオン注入によるpn接合形成、表面保護膜形成、電
極形成等の工程を経て素子が作成されていた。
In the case of HgCdTe crystal, it is relatively difficult to control the carrier polarity and carrier concentration in the crystal during growth, and generally, the amount of Hg in the HgCdTe crystal is controlled by heat treatment in an Hg atmosphere after the growth. I was doing it. Therefore, the device has been produced through the steps of forming a pn junction by ion implantation, forming a surface protective film, and forming an electrode after the step of controlling the carrier concentration.

【0004】ところで、HgCdTeを用いた赤外線検
出器の特性は表面保護膜の種類、形成方法に対し非常に
敏感である。膜の種類に関しては表面特性、付着強度の
点で優れているCdTe膜が近年多く用いられ、主流と
なっている。また形成方法に関しては、MBE法、蒸着
法等いろいろあるが、膜形成前の表面状態が特性を支配
する重要なポイントと考えられている。
By the way, the characteristics of the infrared detector using HgCdTe are very sensitive to the type of the surface protective film and the forming method. Regarding the type of film, a CdTe film, which is excellent in surface characteristics and adhesion strength, has been widely used in recent years and has become the mainstream. There are various MBE methods, vapor deposition methods, etc. regarding the forming method, but it is considered that the surface state before the film formation controls the characteristics.

【0005】[0005]

【発明が解決しようとする課題】前述した赤外線検出器
の製造方法においては、HgCdTe結晶のキャリア濃
度制御を成長終了後のHg雰囲気中の熱処理により行っ
ており、HgCdTe結晶表面が露呈されているため、
保護膜形成はその後の工程で行わなければならなかっ
た。保護膜形成の工程では、膜形成直前にエッチング等
の表面処理を行うが、一時的にでもHgCdTe結晶が
大気中に露呈されるため、表面酸化膜の影響を十分に解
決することは困難であった。これが素子特性のばらつき
や劣化を招く原因と考えられていた。
In the above-described method for manufacturing an infrared detector, the carrier concentration of the HgCdTe crystal is controlled by heat treatment in an Hg atmosphere after growth, and the surface of the HgCdTe crystal is exposed. ,
The protective film had to be formed in the subsequent process. In the step of forming the protective film, surface treatment such as etching is performed immediately before forming the film, but since the HgCdTe crystal is exposed to the atmosphere even temporarily, it is difficult to sufficiently solve the influence of the surface oxide film. It was This has been considered to be the cause of variation and deterioration of element characteristics.

【0006】本発明の目的は、前述の問題を解決し、表
面特性の良好なフォトダイオードよりなる赤外線検出器
の製造方法を提供することにある。
An object of the present invention is to solve the above problems and to provide a method of manufacturing an infrared detector comprising a photodiode having good surface characteristics.

【0007】[0007]

【課題を解決するための手段】本発明は、基板上に少な
くとも赤外線検出部となるHgCdTe層と表面保護層
となるCdTe層を有する赤外線検出器の製造方法であ
って、少なくとも前記HgCdTe層をエピタキシャル
成長させた後に前記CdTe層を連続して数原子層分エ
ピタキシャル成長する工程と、その後にHg雰囲気中に
おいて熱処理をすることで前記HgCdTe層のキャリ
ア濃度を制御する工程とを含むことを特徴としている。
The present invention is a method for manufacturing an infrared detector having at least an HgCdTe layer which serves as an infrared detecting portion and a CdTe layer which serves as a surface protective layer on a substrate, and at least the HgCdTe layer is epitaxially grown. After that, a step of continuously epitaxially growing the CdTe layer for several atomic layers and a step of controlling the carrier concentration of the HgCdTe layer by performing a heat treatment in an Hg atmosphere after that are included.

【0008】[0008]

【作用】本発明の赤外線検出器の製造方法では、表面保
護膜となるCdTe層を赤外線検出部となるHgCdT
e層と同時に連続的にエピタキシャル成長しているため
にHgCdTe層の表面であるCdTe層との界面は表
面反転や表面準位に影響する酸化膜や不純物がなく非常
に清浄な状態となっている。さらに、前記CdTe層の
厚さは、従来1000オングストローム(以後、Aと略
す)〜5000A程度であったのに対して数原子層であ
るために、Hg雰囲気中での熱処理によりHgCdTe
結晶内のHgの量のコントロール、すなわちキャリア濃
度の制御も十分可能である。
In the method of manufacturing an infrared detector according to the present invention, the CdTe layer that serves as a surface protective film is formed of HgCdT that serves as an infrared detecting section.
Since the epitaxial layer is continuously epitaxially grown at the same time as the e layer, the interface with the CdTe layer, which is the surface of the HgCdTe layer, is in a very clean state without any oxide film or impurities that affect the surface inversion or the surface level. Further, the thickness of the CdTe layer is about 1000 angstrom (hereinafter abbreviated as A) to about 5000 A, whereas it is several atomic layers. Therefore, the heat treatment in the Hg atmosphere causes HgCdTe to grow.
It is also possible to sufficiently control the amount of Hg in the crystal, that is, the carrier concentration.

【0009】ここでCdTeの格子定数は面によって異
なるが6〜7Aである。また、本発明の効果が確認でき
るCdTe層の厚さは20原子層程度である。従って、
CdTe層の厚さとしては6〜150A程度であれば本
発明の効果を得ることが出来る。
Here, the lattice constant of CdTe varies depending on the plane, but is 6 to 7 A. Further, the thickness of the CdTe layer in which the effect of the present invention can be confirmed is about 20 atomic layers. Therefore,
If the thickness of the CdTe layer is about 6 to 150 A, the effect of the present invention can be obtained.

【0010】[0010]

【実施例】本発明の赤外線検出器の製造方法を、図1を
用いて具体的に説明する。
EXAMPLE A method for manufacturing an infrared detector of the present invention will be specifically described with reference to FIG.

【0011】図1(a)に示す結晶成長工程において、
GaAs基板1上にCdTeバッファ層2を5μm 、H
gCdTe層3を10μm 、CdTe保護膜4を50A
程度MBE法により連続的に成長する。この時HgCd
Te層3とCdTe保護膜4の界面には当然のことなが
ら酸化膜がなく、また不純物による界面準位等も少なく
非常に正常な状態である。一方、HgCdTe層3はH
g空孔と格子間のHgが混在しており、極性やキャリア
濃度が所望の値になっていない状態である。
In the crystal growth step shown in FIG. 1 (a),
CdTe buffer layer 2 of 5 μm, H on GaAs substrate 1
gCdTe layer 3 is 10 μm, CdTe protective film 4 is 50 A
Continuously grows by the MBE method. At this time HgCd
As a matter of course, the interface between the Te layer 3 and the CdTe protective film 4 does not have an oxide film, and the interface state due to impurities is small, which is a very normal state. On the other hand, the HgCdTe layer 3 is H
This is a state in which g holes and Hg between lattices are mixed, and the polarity and carrier concentration are not at desired values.

【0012】次に図1(b)に示すようにHg雰囲気中
での熱処理によりHgCdTe層3中のキャリア濃度を
制御する。CdTe保護膜4は非常に薄いため、膜を通
してのHgの出し入れは十分可能である。ここでは試料
5の領域の温度を315度に設定し、12時間熱処理を
施し、p型キャリア濃度2×1016cm-3を得た。
Next, as shown in FIG. 1 (b), the carrier concentration in the HgCdTe layer 3 is controlled by heat treatment in an Hg atmosphere. Since the CdTe protective film 4 is very thin, Hg can be sufficiently taken in and out through the film. Here, the temperature of the region of Sample 5 was set to 315 ° C., and heat treatment was performed for 12 hours to obtain a p-type carrier concentration of 2 × 10 16 cm −3 .

【0013】その後、図1(c)に示すように、配線電
極等の絶縁用及び表面からのHg抜け防止のためのCd
Te絶縁膜6を形成した後、フォトダイオードが形成さ
れる部分のCdTe絶縁膜6等を部分的に除去し、イオ
ン注入によるpn接合形成、電極形成等通常のプロセス
を行い赤外線検出器を作製する。
Thereafter, as shown in FIG. 1 (c), Cd for insulating the wiring electrodes and the like and for preventing Hg removal from the surface.
After forming the Te insulating film 6, the CdTe insulating film 6 and the like in the portion where the photodiode is formed are partially removed, and a normal process such as pn junction formation by ion implantation and electrode formation is performed to manufacture an infrared detector. .

【0014】このように、本発明の赤外線検出器の製造
方法によれば、HgCdTe層3の表面、特にpn接合
近傍の部分を一度も大気中に露呈する異なるプロセスを
遂行することが出来る。従って、表面酸化膜等による特
性劣化の影響もなく、表面特性の優れた素子を得ること
が出来る。
As described above, according to the method of manufacturing the infrared detector of the present invention, it is possible to perform different processes in which the surface of the HgCdTe layer 3, particularly the portion near the pn junction, is exposed to the atmosphere even once. Therefore, it is possible to obtain an element having excellent surface characteristics without the influence of characteristic deterioration due to the surface oxide film or the like.

【0015】なお、以上の説明において結晶成長方法、
基板材料、各層の膜厚や熱処理条件、図1(c)以降の
工程はあくまでも一例であり、CdTe絶縁膜6の代わ
りにZnS等を用いても良く、バッファ層2等は基板の
性質によって必要に応じて形成すればよい。また絶縁膜
形成工程前にイオン注入工程を取り入れても何等問題は
ない。
In the above description, the crystal growth method,
The substrate material, the film thickness of each layer, the heat treatment conditions, and the steps after FIG. 1C are merely examples, and ZnS or the like may be used instead of the CdTe insulating film 6, and the buffer layer 2 or the like is necessary depending on the properties of the substrate. It may be formed according to Further, there is no problem even if the ion implantation step is introduced before the insulating film forming step.

【0016】[0016]

【発明の効果】以上説明したように、本発明の赤外線検
出器の製造方法によれば、表面特性の優れたフォトダイ
オードを提供することができ、赤外線検出器の高性能化
に十分貢献することが出来る。
As described above, according to the method of manufacturing an infrared detector of the present invention, it is possible to provide a photodiode having excellent surface characteristics, and to sufficiently contribute to the high performance of the infrared detector. Can be done.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の赤外線検出器の製造方法を示す図であ
る。
FIG. 1 is a diagram showing a method for manufacturing an infrared detector according to the present invention.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 CdTeバッファ層 3 HgCdTe層 4 CdTe保護膜 5 試料 6 CdTe絶縁膜 1 GaAs substrate 2 CdTe buffer layer 3 HgCdTe layer 4 CdTe protective film 5 Sample 6 CdTe insulating film

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基板上に少なくとも赤外線検出部となるH
gCdTe層と表面保護層となるCdTe層を有する赤
外線検出器の製造方法であって、少なくとも前記HgC
dTe層をエピタキシャル成長させた後に前記CdTe
層を連続して数原子層分エピタキシャル成長する工程
と、その後にHg雰囲気中において熱処理をすることで
前記HgCdTe層のキャリア濃度を制御する工程とを
含むことを特徴とする赤外線検出器の製造方法。
1. An H which serves as at least an infrared detecting portion on a substrate.
A method for manufacturing an infrared detector having a gCdTe layer and a CdTe layer serving as a surface protective layer, comprising at least the above HgC.
After epitaxially growing the dTe layer, the CdTe
A method for manufacturing an infrared detector, comprising: a step of continuously epitaxially growing a layer for several atomic layers; and a step of controlling the carrier concentration of the HgCdTe layer by subsequently performing heat treatment in an Hg atmosphere.
【請求項2】Hg雰囲気中において熱処理を行った後、
CdTe層上に絶縁膜を形成する工程を有することを特
徴とする請求項1記載の赤外線検出器の製造方法。
2. After heat treatment in an Hg atmosphere,
The method for manufacturing an infrared detector according to claim 1, further comprising a step of forming an insulating film on the CdTe layer.
【請求項3】CdTe層の厚さが6オングストローム以
上150オングストローム以下であることを特徴とする
請求項1ないし2記載の赤外線検出器の製造方法。
3. The method for manufacturing an infrared detector according to claim 1, wherein the thickness of the CdTe layer is 6 angstroms or more and 150 angstroms or less.
JP7082886A 1995-04-07 1995-04-07 Manufacturing method of infrared detector Expired - Lifetime JP2689946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7082886A JP2689946B2 (en) 1995-04-07 1995-04-07 Manufacturing method of infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7082886A JP2689946B2 (en) 1995-04-07 1995-04-07 Manufacturing method of infrared detector

Publications (2)

Publication Number Publication Date
JPH08278194A JPH08278194A (en) 1996-10-22
JP2689946B2 true JP2689946B2 (en) 1997-12-10

Family

ID=13786763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7082886A Expired - Lifetime JP2689946B2 (en) 1995-04-07 1995-04-07 Manufacturing method of infrared detector

Country Status (1)

Country Link
JP (1) JP2689946B2 (en)

Also Published As

Publication number Publication date
JPH08278194A (en) 1996-10-22

Similar Documents

Publication Publication Date Title
US4717681A (en) Method of making a heterojunction bipolar transistor with SIPOS
US6597057B2 (en) Epitaxial growth in a silicon-germanium semiconductor device with reduced contamination
JPH1064917A (en) Silicon wafer and its manufacturing method
JPS62123716A (en) Manufacture of semiconductor device
JP2689946B2 (en) Manufacturing method of infrared detector
JPH05234927A (en) Method of forming diffusion region of semiconductor device by solid-phase diffusion
JPS6158879A (en) Preparation of silicon thin film crystal
JPS6362313A (en) Manufacture of semiconductor device
JPH04233219A (en) Manufacture of products comprising semiconductor devices
JP2793837B2 (en) Semiconductor device manufacturing method and heterojunction bipolar transistor
JPH04206932A (en) Semiconductor device and manufacture thereof
JPH09232603A (en) Manufacture of infrared detector
JPS6185815A (en) Method for formation of polycrystalline silicon film
JP2734034B2 (en) Processing method of silicon semiconductor substrate
JPH05152304A (en) Manufacture of semiconductor substrate
JPS63291897A (en) Method for growing single crystal membrane
JPH01149488A (en) Photosensor and manufacture thereof
JP2518378B2 (en) Method for manufacturing semiconductor device
JPS6012775B2 (en) Method for forming a single crystal semiconductor layer on a foreign substrate
JPS60234312A (en) Formation of soi film
JP3541332B2 (en) Method for manufacturing semiconductor device
JP2578917B2 (en) Method for producing Cd-based II-VI compound semiconductor thin film
JPS61145823A (en) Molecular beam epitaxial growth method
JP2943006B2 (en) Semiconductor substrate manufacturing method
JPS6229398B2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970729