JPS6389622A - Production of grain oriented high-si silicon steel sheet - Google Patents

Production of grain oriented high-si silicon steel sheet

Info

Publication number
JPS6389622A
JPS6389622A JP23589386A JP23589386A JPS6389622A JP S6389622 A JPS6389622 A JP S6389622A JP 23589386 A JP23589386 A JP 23589386A JP 23589386 A JP23589386 A JP 23589386A JP S6389622 A JPS6389622 A JP S6389622A
Authority
JP
Japan
Prior art keywords
rolling
silicon steel
cold
cold rolling
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23589386A
Other languages
Japanese (ja)
Inventor
Shigeharu Hinotani
日野谷 重晴
Chihiro Hayashi
千博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23589386A priority Critical patent/JPS6389622A/en
Publication of JPS6389622A publication Critical patent/JPS6389622A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce a grain oriented high-Si silicon steel sheet having excellent cold workability by subjected a silicon steel having the specific compsn. consisting of C, Si, Al, Ti, V and Fe to specific hot rolling, warm rolling and cold rolling including intermediate annealing. CONSTITUTION:The steel having the compsn. contg. 0.02-0.08wt% C, 4.0-6.5% Si, and 0.002-0.02% solAl, and further, contg. at least one kind of 0.02-0.10% Ti, and 0.02-0.10% V, and the balance incidental impurities and Fe is heated to 1,250-1,150 deg.C and is hot rolled. The hot rolled sheet is then subjected to the warm rolling at 700-550 deg.C and at least at 20%, more preferably about 40-70% draft. The rolled sheet is thereafter subjected to a 1st time of the cold rolling in a 50-70% draft range and further to a 2nd time of the cold rolling including the intermediate annealing at 750-850 deg.C to preferably about <=0.2mm thickness. The grain oriented high-Si silicon steel sheet which has the good magnetic characteristics and is free from edge cracking is thereby obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、Siを4.0〜6.5%含有し、しかも冷間
加工性に優れる高シリコン珪素鋼板の製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a high-silicon steel sheet containing 4.0 to 6.5% Si and having excellent cold workability.

(従来の技術) Siを多量に含有する珪素鋼板は、いわゆる電磁鋼板と
して鉄損値が小さくなることや磁歪が小さくなることな
どの優れた磁気特性を示すことが知られているが、珪素
が多くなり4%を越えると、冷間加工性が著しく悪くな
るため4.0%を越える珪素鋼板はその製造が実用化さ
れていない、これに対し、石板らは冷間圧延の前に鋼板
を再結晶温度近傍で圧延することにより、冷間加工性が
改善されることを報告している(日本金属学会誌νol
(Prior art) Silicon steel sheets containing a large amount of Si are known to exhibit excellent magnetic properties as so-called electrical steel sheets, such as low core loss and low magnetostriction. If the silicon steel sheet exceeds 4%, the cold workability deteriorates significantly, so the production of silicon steel sheets exceeding 4.0% has not been put to practical use.On the other hand, for stone sheets, steel sheets are processed before cold rolling. It has been reported that cold workability is improved by rolling near the recrystallization temperature (Journal of the Japan Institute of Metals vol.
.

30.1966、p、562)、また溶湯より急冷凝固
させることで直接薄帯を製造することが可能であること
が特開昭55−69223号、特公昭60−32705
号に開示されている。急冷凝固法は溶鋼より直接成品と
なる薄帯が製造できるため、種々の圧延工程を省略でき
るという長所を有しているが、板厚側tnが困難なこと
や、磁気特性として優れる一方向性集合組織への制御が
困難であったり、広幅の成品の製造が難しいなどの欠点
を存している。また、組成的にも5ir4〜10%を含
有し、Al:2%以下、門n:2%以下、Co:10%
以下、Ni:3%以下の少なくとも1種を含有し、さら
にC,N、OlSの不可避不純物が合計で0.1%以下
であるものが開示されているが、これらは急冷凝固した
ものとしてその磁気特性が評価されるものであって、一
方、圧延法は広幅の成品を大量に製造する方法として有
効であるが、石板らの方法のみでは工業規模の製造への
適用に大きな隔りがある。特に2回冷延法により集合&
11織制御によって磁気特性を高めようとする場合には
、このような中間焼鈍後の冷間圧延における割れ問題も
克服せねばならない。
30.1966, p. 562), and that it is possible to directly produce a ribbon by rapidly solidifying a molten metal, as disclosed in JP-A-55-69223 and JP-A-60-32705.
Disclosed in the issue. The rapid solidification method has the advantage of being able to produce thin strips directly from molten steel, so it can omit various rolling processes. It has drawbacks such as difficulty in controlling the texture and difficulty in manufacturing wide-width products. In addition, it also contains 4 to 10% of 5ir in terms of composition, Al: 2% or less, gate n: 2% or less, Co: 10%
The following discloses a product containing at least one type of Ni: 3% or less, and a total of 0.1% or less of unavoidable impurities such as C, N, and OlS, but these are assumed to be rapidly solidified. Magnetic properties are evaluated. On the other hand, the rolling method is effective as a method for mass-producing wide-width products, but there is a big gap in the application of Ishiban et al.'s method alone to industrial-scale production. . In particular, it is assembled and
In order to improve the magnetic properties by controlling the 11 weave, it is also necessary to overcome the problem of cracking during cold rolling after intermediate annealing.

(問題点を解決するための手段) このような現状に鑑み、発明者らは珪素aiiFiの冷
間加工性と温間圧延法および成分組成との関連を詳細に
検討した。その結果、再結晶温度近傍での温間圧延加工
により結晶粒の微細化と可動転位の導入が図られ、これ
によって冷間圧延に際して双晶の発生が抑制されるため
温間圧延法による冷間加工性の改善が得られることを明
らかにし、このためには、TiC,VC等の析出粒子を
鋼中に分散させることが、粒成長の抑制に基づく結晶粒
の微細化と析出粒子による転位の増殖とを促進すること
、すなわち冷間加工性を著しく改善することを ′見い
出した。さらにこれら微細析出物粒子は1回冷延後の中
間焼鈍における結晶粒成長を抑制するため、2回目の冷
間圧延における加工性をも改善することを見い出し、こ
こに本発明を完成した。
(Means for Solving the Problems) In view of the current situation, the inventors conducted a detailed study on the relationship between the cold workability of silicon aiiFi, the warm rolling method, and the component composition. As a result, the warm rolling process near the recrystallization temperature aims to refine the crystal grains and introduce mobile dislocations, which suppresses the generation of twins during cold rolling. It was revealed that the workability could be improved, and for this purpose, dispersing precipitated particles of TiC, VC, etc. into the steel would lead to grain refinement based on grain growth suppression and dislocation caused by the precipitated particles. It has been found that this method significantly improves cold workability. Furthermore, it has been found that these fine precipitate particles suppress grain growth during intermediate annealing after the first cold rolling, and thus improve workability during the second cold rolling, and the present invention has now been completed.

すなわち、本発明は、重量%で、 C:0.02〜0.08%、 Si:4゜0〜6.5%
、sol、Al:0.002〜0.02%を含有し、さ
らにTi:0.02〜0.10%およびv:o、o2〜
o、to%の少なくとも1種、 残部付随不純物およびre の組成を有する鋼を1250〜1150℃に加熱して熱
間圧延したのち、700〜550℃で少なくとも20%
の圧下率で温間圧延を行い、その後1回目の冷間圧延を
圧下率50〜70%の範囲で行い、750〜850℃で
の中間焼鈍をはさんで2回目冷間圧延を行うことを特徴
とする、冷間加工性に著しくすぐれた一方向性高Si珪
素鋼板の製造方法である。
That is, in the present invention, in weight percent, C: 0.02 to 0.08%, Si: 4°0 to 6.5%.
, sol, Al: 0.002-0.02%, further Ti: 0.02-0.10% and v: o, o2-
A steel having a composition of at least one of o, to%, the balance incidental impurities, and re is heated to 1250-1150°C and hot rolled, and then at least 20% at 700-550°C.
Warm rolling is performed at a rolling reduction of 50% to 70%, followed by a second cold rolling with an intermediate annealing at 750 to 850°C. This is a method for producing a unidirectional high-Si silicon steel sheet that is characterized by excellent cold workability.

(作月) 次に、本発明において鋼組成その他を上述のように限定
した理由を次の通り訂正する。
(Sakugetsu) Next, the reason for limiting the steel composition and others as described above in the present invention will be corrected as follows.

Cは脱酸とTiまたはVの炭化物を形成させるために添
加するもので充分な炭化物形成のためには0.02%以
上を必要とするが0.08%を越えると磁気特性を劣化
させ、脱炭工程の時間が長くなる。
C is added to deoxidize and form carbides of Ti or V, and 0.02% or more is required for sufficient carbide formation, but if it exceeds 0.08%, the magnetic properties will deteriorate; The decarburization process takes longer.

“Siが4.0%未満であれば、このような冷間加工性
の劣化が問題とならないし、また6、5%を越えると本
発明にあっても冷間圧延時の割れを完全に取り除くこと
はできない。
“If Si is less than 4.0%, such deterioration of cold workability will not be a problem, and if it exceeds 6.5%, cracking during cold rolling will not be completely prevented even in the present invention. It cannot be removed.

Alは脱酸のために添加するもので、このためにはso
l、Al 0.002%以上必要とするが0.02%を
越えると磁気特性に有害となる。
Al is added for deoxidation, and for this purpose so
1, Al 0.002% or more is required, but if it exceeds 0.02% it will be harmful to the magnetic properties.

TiおよびVは炭化物の析出による冷間加工性同上のた
めに添加するもので、このためにはそれぞれ0.02%
以上必要とするが、0.10%を越えると析出粒子の密
度が高くなって、かえって冷間加工性を劣化させる。
Ti and V are added to improve cold workability due to precipitation of carbides, and for this purpose, each should be added at 0.02%.
However, if it exceeds 0.10%, the density of precipitated particles will increase, which will actually deteriorate cold workability.

TiおよびVの炭化物を適切な密度で鋼中に均一に分散
させるためには、本発明によれば、1150〜1250
℃に加熱して、Tic、V(、を分解固溶させたのち熱
間圧延し、700〜550℃で20%以上の圧下率で温
間圧延を行う。
In order to uniformly disperse Ti and V carbides in the steel with a suitable density, according to the present invention, 1150-1250
℃ to decompose and dissolve Tic and V(, into solid solution), followed by hot rolling at 700 to 550° C. with a rolling reduction of 20% or more.

温間圧延の条件が上記範囲を外れると、Ti、 Vの炭
化物の析出量が十分でなくなるか、あるいは過剰に析出
してしまい、本発明の目的が達成されない。好ましくは
、本発明における温間圧延は圧延温度が700〜550
℃の範囲内の再結晶温度近傍の温度、圧下率が40〜7
0%の圧延であり、その詳細は特に規定しない。
If the warm rolling conditions are outside the above range, the amount of Ti and V carbides precipitated will not be sufficient or will precipitate excessively, making it impossible to achieve the object of the present invention. Preferably, in the warm rolling in the present invention, the rolling temperature is 700 to 550.
Temperature near the recrystallization temperature within the range of °C, reduction rate of 40 to 7
It is 0% rolling, and its details are not particularly specified.

冷間圧延は(110) (001)再結晶集合Mi織を
得るために行うものであり、50〜70%の範囲をはず
れると(110) (001)再結晶集合Mi織が得ら
れず、磁気特性が向上しない。中間焼鈍を含むこの2回
冷延法は3%Si珪素鋼ではよく知られた方法であり、
MnS等のインヒビター効果による(110) (00
1〕2次再結晶を利用しく110) (001)に揃っ
た一方向性珪素鋼板が製造されている。しかし高Si鋼
ではインヒビターの利用は容易でない、しかし、真空中
や軟水素中で鉄の(110)面の表面エネルギーが小さ
いことを利用すれば、2回冷延によって得られる(11
0) (001)  1次再結晶集合組織の(110)
 (001)方位粒が他の粒を侵食して成長することに
よる表面エネルギー法によって(110) (001〕
2次再結晶集合組織を得ることができる。このためには
板厚をO,:’+m以下にすることが望ましく、焼鈍温
度も1150℃以上を必要とする。板厚が0.2ms超
であると、1150℃以上の高温でも板厚を貫通するよ
うな貫通粒を生じ難いため表面エネルギー法による2次
再結晶が困難である。真空度は10− ’ torr以
上の高真空を必要とし、乾水素を使用する場合には、露
点を一10℃以下にしないと、表面が酸化し、(100
)面方向の結晶粒の表面エネルギーが低下しく110)
面方向の結晶粒の成長が阻害される。
Cold rolling is performed to obtain a (110) (001) recrystallized Mi weave, and if it is outside the range of 50 to 70%, a (110) (001) recrystallized Mi weave will not be obtained and magnetic Characteristics do not improve. This two-time cold rolling method including intermediate annealing is a well-known method for 3% Si silicon steel.
(110) (00
1] A unidirectional silicon steel plate with a uniform grain size of 110 (001) is manufactured using secondary recrystallization. However, it is not easy to use inhibitors for high-Si steel, but if you take advantage of the small surface energy of the (110) plane of iron in vacuum or soft hydrogen, you can obtain it by cold rolling twice.
0) (001) (110) of primary recrystallization texture
(110) (001) by the surface energy method in which (001) oriented grains grow by eroding other grains.
A secondary recrystallized texture can be obtained. For this purpose, it is desirable that the plate thickness be 0,:'+m or less, and the annealing temperature must also be 1150°C or higher. When the plate thickness is more than 0.2 ms, it is difficult to produce penetrating grains that penetrate the plate thickness even at high temperatures of 1150° C. or higher, making secondary recrystallization by the surface energy method difficult. A high vacuum of 10-' torr or higher is required, and if dry hydrogen is used, the dew point must be kept below -10°C or the surface will oxidize (100°C or higher).
) The surface energy of crystal grains in the in-plane direction decreases110)
Growth of crystal grains in the plane direction is inhibited.

本発明を実施例によってさらに詳細に説明する。The present invention will be explained in more detail by way of examples.

実施例1 第1表に示すような珪素鋼をベースにTj、■、Cff
1を種々変えたものを溶製し、幅700IllI、板厚
50IIImの鋼塊とした。これを1200℃に加熱し
、仕上温度が700℃を下回る場合には再加熱して板厚
5IIに仕上げた。この鋼板を700℃に加熱し、圧延
仕上温度が400℃を下回る場合には再加熱して、板厚
2a+mとする温間圧延を行った。この圧延板を硫酸水
溶液中で酸洗することにより圧延スケールを除去したの
ち第1回冷間圧延を圧下率60%で行い、800℃で5
分間中間焼鈍を行い、次いで第2回冷間圧延を圧下率6
0%で行い、板の両端に生じるエッヂ割れの平均的な深
さを測定し、この値を用いて、冷間加工性を評価した。
Example 1 Based on silicon steel as shown in Table 1, Tj, ■, Cff
Various variations of 1 were melted into steel ingots with a width of 700IllI and a plate thickness of 50IIIm. This was heated to 1200° C., and if the finishing temperature was lower than 700° C., it was reheated and finished to a plate thickness of 5II. This steel plate was heated to 700°C, and if the rolling finish temperature was below 400°C, it was reheated to perform warm rolling to a plate thickness of 2a+m. After removing rolling scale by pickling this rolled plate in an aqueous sulfuric acid solution, the first cold rolling was performed at a rolling reduction rate of 60%, and the rolling plate was heated to
Intermediate annealing for 1 minute, followed by second cold rolling at a reduction rate of 6
0%, the average depth of edge cracks occurring at both ends of the plate was measured, and this value was used to evaluate cold workability.

これらの結果を第1図〜第6図にグラフにまとめて示す
0本発明で規定する含有量のTi、 V、 Cで冷間加
工性が著しく優れることが確認された。
These results are summarized in graphs in FIGS. 1 to 6. It was confirmed that the cold workability was significantly excellent with the contents of Ti, V, and C defined by the present invention.

第1図および第2図は、鋼A(4,5%Si)について
、TiとC,、vとCが冷間加工性に及ぼす影響をそれ
ぞれ示すグラフである。
FIGS. 1 and 2 are graphs showing the effects of Ti, C, v, and C on cold workability, respectively, for Steel A (4.5% Si).

第3図および第4図は、鋼B(5,5%Si)について
、ならびに第5図および第6図は、鋼C(6,5%Si
)についてのそれぞれ冷間加工性の結果を示すグラフで
ある。
Figures 3 and 4 are for steel B (5,5% Si), and Figures 5 and 6 are for steel C (6,5% Si).
) is a graph showing the results of cold workability for each.

図中、いずれもOはエツジ割れなしの場合、×は最大で
5mm以上のエツジ割れのあった場合、そして△はその
中間の場合をそれぞれ示す。
In the figures, O indicates no edge cracking, × indicates edge cracking of 5 mm or more at maximum, and Δ indicates an intermediate case.

実施例2 次に、第2表に示す本発明の範囲内の組成の鋼D−Fに
ついて実施例1を繰り返した。ただし、本例では1回目
の冷間圧延を圧下率60%、中間暁鐘を800℃、5分
間、2回目の冷間圧延を圧下率55%で板厚0.2ms
に圧延したのち、露点10℃の湿潤水素中で850℃X
5a+inの脱炭焼鈍にひきつづき5 X 10− ’
 torrの真空中に1200℃X3Hで真空焼鈍し、
その磁気特性を測定した。
Example 2 Example 1 was then repeated for steel D-F having a composition within the scope of the present invention as shown in Table 2. However, in this example, the first cold rolling was performed at a reduction rate of 60%, the intermediate temperature was 800°C for 5 minutes, and the second cold rolling was performed at a reduction rate of 55% with a thickness of 0.2 ms.
After rolling to 850℃X in wet hydrogen with dew point of 10℃
5 x 10-' following decarburization annealing of 5a+in
Vacuum annealing at 1200°C x 3H in a torr vacuum,
Its magnetic properties were measured.

結果を第3表にしめすが、第3表に示すように本発明に
かかる高Si珪素鋼板にあっては、良好な磁気特性が得
られ、例えば鋼Eの(200)極点図である第7回に示
す結果からも分かるように高密度の(110) (00
1) 2次再結晶集合組織の発達がみられる。
The results are shown in Table 3. As shown in Table 3, the high-Si silicon steel sheet according to the present invention has good magnetic properties. As can be seen from the results shown in section 2, the high density (110) (00
1) Development of secondary recrystallized texture is observed.

第3表 磁気特性 第2表の鋼Fについて、実施例2を繰り返した。Table 3 Magnetic properties Example 2 was repeated for Steel F in Table 2.

ただし、本件では熱間圧延に先立つ加熱温度、温間圧延
条件を変えてTiC,VCの分散の程度を変え、その影
響を評価した。結果は第4表にまとめて示す。
However, in this case, the degree of dispersion of TiC and VC was varied by changing the heating temperature and warm rolling conditions prior to hot rolling, and the effects thereof were evaluated. The results are summarized in Table 4.

第4表Table 4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第6図は、珪素含有量を種々変えたときの
冷間加工性をTr、 VおよびC含有量との関係で示し
たグラフ;および 第7図は、実施例2の鋼Eの(200)極点図であ第1
図 第2図 ■ (wt%) !a図 Ti (1,114%) 第4図 Ca1tダ) 第5図 第6図 ■(田七2) 第7図
Figures 1 to 6 are graphs showing cold workability in relation to Tr, V and C contents when the silicon content is varied; and Figure 7 is a graph showing the cold workability of steel E of Example 2. The first (200) pole figure of
Figure 2■ (wt%)! Figure a Ti (1,114%) Figure 4 Calt da) Figure 5 Figure 6 ■ (Tana 2) Figure 7

Claims (1)

【特許請求の範囲】 重量%で、 C:0.02〜0.08%、Si:4.0〜6.5%、
sol、Al:0.002〜0.02%を含有し、さら
にTi:0.02〜0.10%およびV:0.02〜0
.10%の少なくとも1種、 残部付随不純物およびFe の組成を有する鋼を1250〜1150℃に加熱して熱
間圧延したのち700〜550℃で少なくとも20%の
圧下率で温間圧延を行い、その後1回目の冷間圧延を圧
下率50〜70%の範囲で行い、750〜850℃での
中間焼鈍をはさんで2回目の冷間圧延を行うことを特徴
とする、一方向性高Si珪素鋼板の製造方法。
[Claims] In weight%, C: 0.02 to 0.08%, Si: 4.0 to 6.5%,
sol, Al: 0.002-0.02%, further Ti: 0.02-0.10% and V: 0.02-0
.. A steel having a composition of 10% of at least one kind, the balance of accompanying impurities and Fe is heated to 1250 to 1150°C and hot rolled, then warm rolled at 700 to 550°C with a reduction rate of at least 20%, and then Unidirectional high-Si silicon, characterized in that the first cold rolling is performed at a reduction rate of 50 to 70%, and the second cold rolling is performed after intermediate annealing at 750 to 850°C. Method of manufacturing steel plates.
JP23589386A 1986-10-03 1986-10-03 Production of grain oriented high-si silicon steel sheet Pending JPS6389622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23589386A JPS6389622A (en) 1986-10-03 1986-10-03 Production of grain oriented high-si silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23589386A JPS6389622A (en) 1986-10-03 1986-10-03 Production of grain oriented high-si silicon steel sheet

Publications (1)

Publication Number Publication Date
JPS6389622A true JPS6389622A (en) 1988-04-20

Family

ID=16992803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23589386A Pending JPS6389622A (en) 1986-10-03 1986-10-03 Production of grain oriented high-si silicon steel sheet

Country Status (1)

Country Link
JP (1) JPS6389622A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140607A (en) * 2011-03-17 2011-08-03 北京科技大学 Method for manufacturing hot rolled {111}(112) oriented high-silicon steel plates
CN104480386A (en) * 2014-11-27 2015-04-01 武汉钢铁(集团)公司 0.2mm-thick non-oriented silicon steel for high-speed motor and production method of 0.2mm-thick non-oriented silicon steel
CN105598164A (en) * 2016-01-20 2016-05-25 北京科技大学 Rolling preparation method for high-silicon electrical steel thin strip
CN106282779A (en) * 2016-09-29 2017-01-04 武汉科技大学 High silicon steel thin belt of a kind of orientation and preparation method thereof
US10032548B2 (en) 2014-09-28 2018-07-24 Northeastern University Preparation method of oriented high silicon steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102140607A (en) * 2011-03-17 2011-08-03 北京科技大学 Method for manufacturing hot rolled {111}(112) oriented high-silicon steel plates
US10032548B2 (en) 2014-09-28 2018-07-24 Northeastern University Preparation method of oriented high silicon steel
CN104480386A (en) * 2014-11-27 2015-04-01 武汉钢铁(集团)公司 0.2mm-thick non-oriented silicon steel for high-speed motor and production method of 0.2mm-thick non-oriented silicon steel
CN105598164A (en) * 2016-01-20 2016-05-25 北京科技大学 Rolling preparation method for high-silicon electrical steel thin strip
CN105598164B (en) * 2016-01-20 2017-11-17 北京科技大学 A kind of rolling preparation method of high-silicon electrical steel ribbon
CN106282779A (en) * 2016-09-29 2017-01-04 武汉科技大学 High silicon steel thin belt of a kind of orientation and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS5920731B2 (en) Manufacturing method for electric iron plates with excellent magnetic properties
JPS598049B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
EP0202336B1 (en) Process for producing a thin plate of a high ferrosilicon alloy
JPH03219020A (en) Production of nonoriented silicon steel sheet
JPS6389622A (en) Production of grain oriented high-si silicon steel sheet
KR101536465B1 (en) Soft silicon steel and manufacturing method thereof
JPH05306438A (en) Nonoriented electrical steel sheet extremely excellent in magnetic property and its manufacture
JPH0832927B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density
JPS6237094B2 (en)
JPH02258931A (en) Production of cr stainless steel sheet by thin-wall casting method
JPH02166233A (en) Manufacture of cr-series stainless steel thin sheet using thin casting method
KR910003880B1 (en) Making process for electrical sheet
JPS6261646B2 (en)
JPH06306467A (en) Production of nonoriented silicon steel sheet extremely excellent in magnetic property
JPS63176427A (en) Manufacture of grain-oriented high-silicon steel sheet
JPS6148761B2 (en)
JPH07216516A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JPH027374B2 (en)
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH05222456A (en) Production of hot rolled plate of ultrahigh silicon steel
JPS6179723A (en) Manufacture of high silicon steel strip having superior magnetic characteristic
JPH0689406B2 (en) Method for producing grain-oriented silicon steel sheet having good magnetic properties
JPS59173218A (en) Manufacture of single-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPS6346130B2 (en)
JPS6231050B2 (en)