JPS6231050B2 - - Google Patents

Info

Publication number
JPS6231050B2
JPS6231050B2 JP53098341A JP9834178A JPS6231050B2 JP S6231050 B2 JPS6231050 B2 JP S6231050B2 JP 53098341 A JP53098341 A JP 53098341A JP 9834178 A JP9834178 A JP 9834178A JP S6231050 B2 JPS6231050 B2 JP S6231050B2
Authority
JP
Japan
Prior art keywords
annealing
surface layer
secondary recrystallization
steel sheet
crystal grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53098341A
Other languages
Japanese (ja)
Other versions
JPS5524972A (en
Inventor
Jiro Harase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9834178A priority Critical patent/JPS5524972A/en
Publication of JPS5524972A publication Critical patent/JPS5524972A/en
Publication of JPS6231050B2 publication Critical patent/JPS6231050B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特にAlを含む一方向性珪素鋼板の製
造プロセスにおいて、脱炭焼鈍後に高温の短時間
焼鈍に於て、2次再結晶を完了させること、或は
更にその後、高温焼鈍を行なつて、磁束密度の極
めて高い一方向性珪素鋼板を安定して製造する方
法を提供するものである。 一般に本発明に供される含Al一方向性珪素鋼
板の結晶組織である(110)〔001〕集合組織は、
脱炭焼鈍後の仕上焼鈍過程での2次再結晶現象に
よつて得られる。この仕上焼鈍は通常コイルの形
でバツチ式で行われ、磁束密度が極めて高い、即
ち、B8(磁化力800A/mの時の磁束密度)が
1.90以上の特性を得るために種々の提案がなされ
て来た。たとえば、特開昭52−78615号公報に記
載されている如く、仕上焼鈍中の雰囲気ガスの窒
素含有量をある範囲に限定して2次再結晶させる
方法など箱焼鈍を種々の条件で実施する技術が開
示されているがコイルの位置即ちコイルの内側と
外側では昇温速度が変わり、又炉内雰囲気の状態
が変わつてくるため、コイルの長手方向一様に磁
束密度の高い珪素鋼板を製造するためにはきわめ
て高度の雰囲気制御、昇温制御技術が必要であ
る。 これに対し連続焼鈍方式により2次再結晶をさ
せることが出来れば、コイルのどの位置について
も一様な加熱条件、雰囲気条件を与えることが出
来る。連続焼鈍方式により、2次再結晶させる具
体的な方法としては、特開昭49−98721号公報、
特開昭49−95816号公報等に記載されているが、
これらの方法では、得られる磁束密度が1.90T以
下であり、その主眼とするところは、箱焼鈍で製
造するより品質的には劣るが、安価で安定して一
方向性珪素鋼板を製造することにあつた。 更に特開昭51−10119号公報には、脱炭焼鈍後
高温域で連続焼鈍する処理法が開示されている
が、これは引続く仕上焼鈍での2次再結晶生成を
安定化させる目的をもつている。 本発明は上述した先行技術と全く異なつた観点
にもとづき脱炭焼鈍後の短時間焼鈍、例えば連続
焼鈍(以下本発明の短時間焼鈍を連続焼鈍の例に
よつて説明する)の熱処理、雰囲気条件の適切な
コントロールにより、連続焼鈍過程で表面結晶粒
を発達させると共に2次再結晶粒を生成させ磁束
密度の極めてい、即ちB8が1.90以上の値を安定し
て得る方法を提供するものである。 従来の仕上焼鈍の目的は、2次再結晶粒を発達
させること以外に、鋼板表面の酸化膜と、焼鈍分
離剤のMgOとの反応でガラス質の絶縁被膜を形
成させることや鋼板中の不純物の除去を行うこと
等であつた。 本発明は、このような目的を満足させるため
に、1100℃以上の温度で簡単なサイクルの高温焼
鈍例えば箱焼鈍を前記連続焼鈍工程の後に更に加
えることで、従来法と比べて安定して極めて磁束
密度の高い一方向性珪素鋼板の製造を可能とする
ものである。この高温焼鈍を鈍化、絶縁被膜の形
成が目的で行う場合は、従来の様に昇温速度、雰
囲気ガスのN2分圧、露点には特に大きな注意を
払う必要がないため、作業が簡単になり、焼鈍時
間も1/3以下に短縮することが可能である。 本発明者は、連続焼鈍による2次再結晶挙動に
ついて種々研究した結果次のような新しい知見を
得た。即ち連続焼鈍過程の2次再結晶開始直前の
板の厚み方向の結晶粒の分布を調べたところ、第
1図aに示す如く表面層の結晶粒が粒成長を生じ
ているものは、第1図a′に示すごとく2次再結晶
粒の方位がよくなり、磁束密度B8が高い。一方
第1図bに示すごとく表面層の結晶粒が成長せず
に2次再結晶したものは第1図b′に示す如く、2
次再結晶方位が悪くB8も低いことが判つた。 本発明はこの新しい知見にもとづき連続焼鈍の
温度と雰囲気を制御して、表面層の粒成長を促進
させた後、2次再結晶させる方法を完成したもの
である。以下に本発明を詳細に説明する。 本発明において通常の工程において得られた冷
延鋼板とは例えば下記の如くして得られる。すな
わちまず通常の方法で精練された溶鋼を連続鋳造
法、或は鋼塊法によつて造塊し、これらの方法に
よつて得られたスラブを通常の方法で熱延板とす
る。熱延板の成分は重量%でC≦0.08%、Si≦4
%、Alsp10.01〜0.065%、その他Mn、Sを不純物
として含有している。その他インヒビター成分と
してのSb、Se、V、Cr、Ni、Cuなど微量成分を
含有してもよい。熱延板は必要に応じて焼鈍した
後、1回法又は2回法(中間焼鈍を含む)による
冷間圧延により最終板厚とする。本発明はこのよ
うな従来法で行われている工程によつて冷延板を
得、この鋼中には適度にAlNを析出させておく。
本発明は、体述した如く、脱炭焼鈍後、これに引
続いて連続焼鈍を比較的高温度で行ない、この連
続焼鈍で、目的とする組織を生成させる点に特徴
がある。 本発明の含Al一方向性珪素鋼は、インヒビタ
ーとしてAlNの析出物並びに補助的にMnSの析出
物が使用され、その他にSb等の粒界偏析型元素
など従来使用されているインヒビターを使用して
もよいがインヒビターの強さが強すぎると2次再
結晶しないし、弱すぎるといわゆる正常粒成長を
生じて2次再結晶しなくする。本発明に従い連続
焼鈍で2次再結晶を生成させるが2次再結晶焼鈍
におけるAlNの析出量、サイズは2次再結晶焼鈍
の温度及び雰囲気ガス中のPN2/PH2、PH2O/
PH2によつて著しく変わる。まず連続焼鈍過程の
前半で2次再結晶せず、鋼板表面層の結晶粒を粗
大化させることが必要であり、そのためには、雰
囲気のN2分圧を10%以上とし、温度を1150℃以
下にしなければならない。N2分圧を10%以下と
すると、鋼板表面層の結晶粒が粗大成長する前に
最表面層近くから2次再結晶が生じ、集積度の低
い(110)〔001〕2次再結晶組織となる。N2分圧
が高すぎると、高温、長時間の処理を行なわなけ
ればならず、1150℃で短時間の連続焼鈍を工業的
に有利に行う為には、N2分圧50%未満とする必
要がある。又温度を1150℃以下としたのは、これ
以上の温度では鋼板中のAlN、MnS等の析出量が
急激に減少するため、やはり、鋼板表面層の結晶
粒が粗大成長する前に2次再結晶が生じるからで
ある。温度を950℃以上としたのは、これ以下の
温度では、N2分圧を適当に制御しても表面層の
結晶粒を粗大化させるためには長時間を必要と
し、工業的に不利である。又N210%以上の雰囲
気で、雰囲気の露点を0℃〜60℃の範囲で湿度を
調整することは更に効果的である。雰囲気中に
H2Oを吹込むことにより、鋼板表面のSi及びAlが
選択的に酸化されこの酸化被膜のため、Nの拡散
しにくい表面層となり雰囲気ガスからのN吸収が
減少し、又鋼板表面層近傍のAlの濃度が低下す
るため表面層のAlNの析出量が減少し表面層のイ
ンヒビター効果が始まり表面層の結晶粒の粗大化
が促進されるためである。以上述べた温度及び雰
囲気条件に保つことで短時間、好ましくは10分以
内の短時間焼鈍で2次再結晶せず、表面層の結晶
粒のみを粗大化させることが出来る。つまり表面
層のみAlNの濃度低下をもたらし、表面層の結晶
粒は粗大成長させるが、表面層以外の部分は、イ
ンヒビター効果が強く、2次再結晶粒成長は起こ
させないような状況を作ることが出来る。 焼鈍温度、雰囲気のN2分圧、露点の最適範囲
は、1次結晶焼鈍後の鋼板に含まれている析出
AlNの量、freeのAl、freeのNによつて変えなけ
ればならないのは言うまでもない。即ちAlN又は
Al、Nの量が少なければ2次再結晶し易すくな
るので、相対的にN2分圧を増して、2次再結晶
せずに粒成長させるようにしなければならない
し、AlN又はAl、Nの量は多ければ、温度を高く
するとか、相対的なN2分圧を減らすとか、H2Oを
吹込む等して、表面層のAlNを積極的に低下させ
るようにしなければならない等である。 次に表面層の結晶粒が粗大化した材料は、連続
焼鈍の後半で短時間で2次再結晶粒を成長させ
る。前述した如く、2次再結晶粒成長が起こるた
めには、インヒビターの強度がある範囲になけれ
ばならない。前半の短時間焼鈍で2次再結晶粒成
長しないのは、インヒビターの強度が強すぎるた
めであり、後半でこのインヒビターの強度を弱め
ればよい。この知見にもとづいて種々実験した結
果後半の2次再結晶のための焼鈍雰囲気は前半よ
り雰囲気N2分圧を下げてやればよく、雰囲気の
N2分圧を下げることにより、表面層から漸時中
心層に向つてAlNの濃度低下が進むため2次再結
晶粒成長が起こることが判明した。この場合イン
ヒビターの相対的強度を一様に低下させ、より容
易に2次再結晶させるために前半より後半の温度
を若干高めることが一層効果的であることもわか
つた。表面層の結晶粒が粗大化した(中心層の結
晶粒径の少なくとも3倍以上)材料を2次再結晶
させると、表面層の結晶粒径と中心層の結晶粒径
の差の殆んどない材料の2次再結晶させた場合と
比べて、なぜ結晶方位が良くなるかの理由につい
ては、本質的にはまだ究明されていない。この粗
大結晶粒層の厚み効果には限界があり、約100μ
m以上となると、もはや2次再結晶の核となる
(110)〔001〕方位の結晶粒が殆んど存在しなくな
るためいわゆる「細粒」となり、磁束密度は著し
く低下する。 本発明に従つて更に必要に応じて行う2次再結
晶させた鋼板の例えば箱焼鈍型の焼鈍(以下最終
焼鈍と言う)について述べる。 本発明の方法によつて2次再結晶させた鋼板の
磁束密度は1.90〜1.94T程度の値があり、従来の
連続焼鈍法によつて2次再結晶させた材料と比較
して著しく磁束密度が高いが、このまゝの状態で
は、鋼板表面層に最初に粒成長した(110)
〔001〕方位以外の方位が、2次再結晶粒成長した
(110)〔001〕方位に喰われずに残つている場合も
あり、約300Gauss程度磁束密度が低い状態にあ
る。連続焼鈍時間を長くするとか、温度を更に高
くする等の方法を採用すれば、この結晶粒は、連
続焼鈍過程で(110)〔001〕結晶粒に喰われて、
完全に消滅させることが出来るが、最終焼鈍を表
面の結晶粒を消滅させると共に純化を行うことが
可能な箱型の焼鈍で行う方が連続焼鈍で行う方法
より効果的である。 本発明で行う最終焼鈍は、鋼板中の磁気特性に
有害なN、Sを除去すること及び、鋼板表面の
SiO2とMgOとを反応させて絶縁性のあるガラス
性の被膜を焼成させることであるから、昇温速度
は磁性に対し、全く影響せず、N、Sが拡散して
鋼板から除去できるよう、均熱温度を1100℃以
上、均熱中の雰囲気のH2分圧100%とすることが
望まれる以外、特に細かな制約条件がない。 (110)〔001〕の集積度の高い2次再結晶方位
を得るためには従来の仕上焼鈍に於ては、昇温過
程で複雑な温度、雰囲気制御が必要な為Batch
Typeの焼鈍炉で行われているのが一般である
が、本発明では昇温速度、露点制御、雰囲気制御
が不必要となる為、トンネル炉等の使用により、
コイルフオームの形のまゝで連続式の焼鈍が可能
であり、その経済的効果は絶大である。 次に本発明を実施例にもとづいて説明する。 実施例 1 C:0.050%、Si:2.91%、酸可溶性Al:0.029
%、S:0.023%、Mn0.08%を含有する200mm厚
みの連続鋳造法で製造したスラブを熱延して2.3
mmの熱延板を作り、これを1100℃で5分間の焼鈍
を行つた。次いで0.30mmまで冷延した後、850
℃、4分間湿水素雰囲気中で脱炭焼鈍を行い、引
続き、A、B、C、Dの4条件で連続焼鈍を行つ
た後、MgOを塗布し、200℃/hrで急速昇温し、
1200℃20hrの最終の鈍化焼鈍を行つた。
In particular, in the manufacturing process of unidirectional silicon steel sheets containing Al, the present invention involves completing secondary recrystallization in high-temperature short-time annealing after decarburization annealing, or further performing high-temperature annealing after that. The present invention provides a method for stably manufacturing a unidirectional silicon steel plate having an extremely high magnetic flux density. The (110) [001] texture, which is the crystal structure of the Al-containing unidirectional silicon steel sheet generally used in the present invention, is
It is obtained by the secondary recrystallization phenomenon during the final annealing process after decarburization annealing. This final annealing is usually done in a batch type in the form of a coil, and the magnetic flux density is extremely high.
Various proposals have been made to obtain characteristics greater than 1.90. For example, as described in JP-A-52-78615, box annealing is carried out under various conditions, such as a method in which the nitrogen content of the atmospheric gas during final annealing is limited to a certain range and secondary recrystallization is carried out. Although the technology has been disclosed, since the heating rate changes depending on the position of the coil, that is, the inside and outside of the coil, and the condition of the atmosphere inside the furnace changes, it is difficult to manufacture a silicon steel plate with a uniformly high magnetic flux density in the longitudinal direction of the coil. This requires extremely sophisticated atmosphere control and temperature rise control technology. On the other hand, if secondary recrystallization can be performed using a continuous annealing method, uniform heating conditions and atmospheric conditions can be provided to any position of the coil. A specific method of secondary recrystallization using a continuous annealing method is disclosed in Japanese Patent Application Laid-Open No. 49-98721,
Although it is described in Japanese Patent Application Laid-Open No. 49-95816,
With these methods, the obtained magnetic flux density is 1.90T or less, and the main objective is to produce unidirectional silicon steel sheets at low cost and stably, although the quality is inferior to box annealing. It was hot. Furthermore, JP-A-51-10119 discloses a treatment method in which decarburization annealing is followed by continuous annealing in a high temperature range, but this is for the purpose of stabilizing the formation of secondary recrystallization in the subsequent finish annealing. I have it too. The present invention is based on a viewpoint completely different from the prior art described above, and is based on heat treatment and atmospheric conditions for short-time annealing after decarburization annealing, for example, continuous annealing (the short-time annealing of the present invention will be explained below using an example of continuous annealing). Through proper control of the process, surface crystal grains are developed during the continuous annealing process, and secondary recrystallized grains are generated, thereby providing a method to stably obtain an extremely high magnetic flux density, that is, a value of B8 of 1.90 or more. be. In addition to developing secondary recrystallized grains, the purpose of conventional final annealing is to form a glassy insulating film through the reaction between the oxide film on the surface of the steel sheet and the annealing separator, MgO, and to eliminate impurities in the steel sheet. This included the removal of In order to satisfy these objectives, the present invention further adds high-temperature annealing in a simple cycle at a temperature of 1100°C or higher, such as box annealing, after the continuous annealing process, which is extremely stable and extremely stable compared to conventional methods. This makes it possible to manufacture unidirectional silicon steel sheets with high magnetic flux density. When this high-temperature annealing is performed for the purpose of dulling and forming an insulating film, it is not necessary to pay particular attention to the temperature increase rate, the N2 partial pressure of the atmospheric gas, and the dew point as in the past, making the work easier. Therefore, the annealing time can be reduced to less than 1/3. The present inventor has obtained the following new knowledge as a result of various studies on secondary recrystallization behavior due to continuous annealing. That is, when we investigated the distribution of crystal grains in the thickness direction of the plate immediately before the start of secondary recrystallization during the continuous annealing process, we found that the crystal grains in the surface layer that had grown as shown in Figure 1a were As shown in Figure a', the orientation of the secondary recrystallized grains is improved and the magnetic flux density B8 is high. On the other hand, as shown in Fig. 1b, the crystal grains in the surface layer do not grow and undergo secondary recrystallization, as shown in Fig. 1b'.
It was found that the secondary recrystallization orientation was poor and B8 was also low. Based on this new knowledge, the present invention has completed a method of controlling the temperature and atmosphere of continuous annealing to promote grain growth in the surface layer and then performing secondary recrystallization. The present invention will be explained in detail below. In the present invention, the cold-rolled steel sheet obtained in a normal process can be obtained, for example, as follows. That is, first, molten steel refined by a conventional method is formed into an ingot by a continuous casting method or a steel ingot method, and a slab obtained by these methods is made into a hot rolled sheet by a conventional method. The components of the hot rolled sheet are C≦0.08% and Si≦4 in weight%.
%, Al sp1 0.01 to 0.065%, and Mn and S as impurities. It may also contain trace components such as Sb, Se, V, Cr, Ni, and Cu as inhibitor components. The hot-rolled sheet is annealed if necessary, and then cold-rolled by a one-step method or a two-step method (including intermediate annealing) to obtain the final thickness. In the present invention, a cold-rolled sheet is obtained by such a conventional process, and a suitable amount of AlN is precipitated in the steel.
As described above, the present invention is characterized in that, after decarburization annealing, continuous annealing is performed at a relatively high temperature, and the desired structure is generated by this continuous annealing. The Al-containing unidirectional silicon steel of the present invention uses AlN precipitates and auxiliary MnS precipitates as inhibitors, and also uses conventionally used inhibitors such as grain boundary segregation type elements such as Sb. However, if the strength of the inhibitor is too strong, secondary recrystallization will not occur, and if it is too weak, so-called normal grain growth will occur and secondary recrystallization will not occur. According to the present invention, secondary recrystallization is generated by continuous annealing, but the amount and size of AlN precipitated in the secondary recrystallization annealing are determined by the temperature of the secondary recrystallization annealing and the PN 2 /PH 2 , PH 2 O / in the atmosphere gas.
Varies significantly with PH 2 . First, it is necessary to coarsen the crystal grains in the surface layer of the steel sheet without causing secondary recrystallization in the first half of the continuous annealing process.To do this, the partial pressure of N2 in the atmosphere must be set to 10% or more, and the temperature must be set to 1150℃. Must be as follows. When the N 2 partial pressure is set to 10% or less, secondary recrystallization occurs near the outermost surface layer before the crystal grains in the steel sheet surface layer grow coarsely, resulting in a (110) [001] secondary recrystallized structure with a low degree of integration. becomes. If the N 2 partial pressure is too high, high-temperature and long-time processing must be performed, but in order to perform short-term continuous annealing at 1150°C to be industrially advantageous, the N 2 partial pressure should be less than 50%. There is a need. The reason why the temperature was set at 1150°C or less is that at temperatures higher than this, the amount of precipitated AlN, MnS, etc. in the steel sheet decreases rapidly. This is because crystals are formed. The reason for setting the temperature above 950°C is that at temperatures below this, even if the N2 partial pressure is appropriately controlled, it will take a long time to coarsen the crystal grains in the surface layer, which is industrially disadvantageous. be. Further, it is more effective to adjust the humidity in an atmosphere containing 10% or more of N 2 so that the dew point of the atmosphere is within the range of 0°C to 60°C. in the atmosphere
By injecting H 2 O, Si and Al on the surface of the steel sheet are selectively oxidized, and this oxide film forms a surface layer that makes it difficult for N to diffuse, reducing absorption of N from atmospheric gas. This is because the amount of AlN precipitated in the surface layer decreases as the concentration of Al decreases, and the inhibitor effect of the surface layer begins, promoting coarsening of crystal grains in the surface layer. By maintaining the temperature and atmospheric conditions described above, it is possible to coarsen only the crystal grains in the surface layer without causing secondary recrystallization by annealing for a short time, preferably within 10 minutes. In other words, the concentration of AlN is reduced only in the surface layer, causing the crystal grains in the surface layer to grow coarsely, but in areas other than the surface layer, the inhibitor effect is strong and it is possible to create a situation in which secondary recrystallized grain growth does not occur. I can do it. The optimum range of annealing temperature, atmospheric N2 partial pressure, and dew point is determined by the precipitation contained in the steel sheet after primary crystal annealing.
Needless to say, it must be changed depending on the amount of AlN, free Al, and free N. That is, AlN or
If the amount of Al or N is small, secondary recrystallization becomes easier, so it is necessary to relatively increase the N2 partial pressure to cause grain growth without secondary recrystallization.AlN or Al, If the amount of N is large, it is necessary to actively reduce the AlN in the surface layer by increasing the temperature, reducing the relative N 2 partial pressure, blowing H 2 O, etc. It is. Next, in the material in which the crystal grains in the surface layer have become coarse, secondary recrystallized grains grow in a short period of time in the latter half of continuous annealing. As mentioned above, in order for secondary recrystallized grain growth to occur, the strength of the inhibitor must be within a certain range. The reason why secondary recrystallized grains do not grow during the short-time annealing in the first half is because the strength of the inhibitor is too strong, and the strength of this inhibitor can be weakened in the second half. Based on this knowledge, we conducted various experiments and found that the annealing atmosphere for secondary recrystallization in the second half should be made with a lower atmospheric N2 partial pressure than in the first half.
It was found that by lowering the N 2 partial pressure, secondary recrystallized grain growth occurred because the concentration of AlN gradually decreased from the surface layer toward the center layer. In this case, it has been found that it is more effective to uniformly lower the relative strength of the inhibitor and to slightly increase the temperature in the latter half than in the first half in order to more easily cause secondary recrystallization. When a material in which the crystal grains in the surface layer have become coarse (at least three times the crystal grain size in the center layer) is subjected to secondary recrystallization, most of the difference between the crystal grain size in the surface layer and the crystal grain size in the center layer is The reason why the crystal orientation is better compared to the case of secondary recrystallization of a material without any material has not been essentially investigated yet. There is a limit to the thickness effect of this coarse grain layer, approximately 100μ
When it is more than m, there are almost no crystal grains with the (110) [001] orientation, which serve as nuclei for secondary recrystallization, so they become so-called "fine grains" and the magnetic flux density decreases significantly. Further, according to the present invention, for example, box annealing type annealing (hereinafter referred to as final annealing) of a secondary recrystallized steel sheet, which is performed as necessary, will be described. The magnetic flux density of the steel sheet secondary recrystallized by the method of the present invention is about 1.90 to 1.94 T, which is significantly higher than that of the material secondary recrystallized by the conventional continuous annealing method. However, in this state, grains first grow on the surface layer of the steel sheet (110).
In some cases, orientations other than the [001] orientation remain uneaten by the (110) [001] orientation in which secondary recrystallized grains have grown, and the magnetic flux density is about 300 Gauss low. If a method such as increasing the continuous annealing time or increasing the temperature is adopted, these crystal grains will be eaten by (110) [001] crystal grains during the continuous annealing process, and
Although it is possible to completely eliminate the crystal grains, it is more effective to perform the final annealing using box-shaped annealing, which can eliminate crystal grains on the surface and purify them, than continuous annealing. The final annealing performed in the present invention is to remove N and S that are harmful to the magnetic properties of the steel sheet, and to improve the surface of the steel sheet.
Since SiO 2 and MgO are reacted to create an insulating glass film, the heating rate has no effect on magnetism, and N and S can be diffused and removed from the steel sheet. There are no particular restrictions, except that the soaking temperature should be 1100°C or higher and the partial pressure of H2 in the atmosphere during soaking should be 100%. Batch
Generally, annealing is performed in a type of annealing furnace, but in the present invention, temperature increase rate, dew point control, and atmosphere control are unnecessary, so by using a tunnel furnace, etc.
Continuous annealing is possible while maintaining the coil form, and its economical effects are tremendous. Next, the present invention will be explained based on examples. Example 1 C: 0.050%, Si: 2.91%, acid soluble Al: 0.029
%, S: 0.023%, Mn 0.08% by hot rolling a 200 mm thick slab manufactured by the continuous casting method.
A hot-rolled sheet with a diameter of 1 mm was prepared and annealed at 1100°C for 5 minutes. Then, after cold rolling to 0.30mm, 850
Decarburization annealing was performed in a wet hydrogen atmosphere for 4 minutes at ℃, followed by continuous annealing under 4 conditions of A, B, C, and D. MgO was applied and the temperature was rapidly raised at 200℃/hr.
A final blunting annealing was performed at 1200°C for 20 hours.

【表】 条件Aの場合連続焼鈍の前半で結晶粒の板厚方
向の分布を調査したところ、第1図bに示す如
く、表面層の結晶粒の成長はみられなかつた。連
続焼鈍の後半で100%H2に切替えると、直ちに2
次再結晶したが、表面層に喰い残りの結晶粒は観
察されなかつた。最終の純化焼鈍前のB8
1.875Tであり純化焼鈍後もB8は1.885Tと比較的
悪かつた。 条件Bの連続焼鈍前半の結晶粒の板厚方向の分
布を調査したところ、第1図aに示す如く表面層
の結晶粒成長がみられたが、まだ2次再結晶はし
ていなかつた。これを100%H2に切替えると直ち
に2次再結晶粒成長が始まつたが、前半で表面層
で一部粗大化した結晶粒はそのまま喰われずに残
留するものがあつた。その時のB8は1.945Tと著
しく高かつた。それを更に純化焼鈍した所、表面
層の結晶粒もすべて(110)〔001〕粒に喰われた
ため、B8は1.975Tと向上した。 条件Cの連続焼鈍前半の結晶粒の板厚方向の分
布を調べたところ表面層の結晶粒の成長がみられ
たが、条件Bと比べるとその深さは浅かつた。連
続焼鈍の後半終了後の板断面結晶粒分布を調べた
所、表面層及び中心層で若干喰い残された結晶粒
が観察されたが、ほぼ2次再結晶粒成長は終了し
ていた。この時の磁束密度を測定したところ、
1.920Tであつた。最終純化焼鈍後は、喰い残し
の結晶粒はなくなり、B8は1.950Tとなつた。 条件Dの連続焼鈍後の板断面の結晶粒分布を調
べた所、板厚全体が(110)〔001〕方位の結晶粒
からなつており、表面層に喰い残された結晶粒は
なかつた。表面層以外の部分には喰い残されて、
ほぼ円形に近い(110)〔001〕以外の結晶粒が若
干観察された。磁束密度を測定した所B8
1.752Tであつた。純化焼鈍後は1.767Tと若干向
上した。 以上2次再結晶開始前に表面層の結晶粒を成長
させてから2次再結晶させることで方位がよくな
り磁束密度(B8)が高くなることがわかる。 実施例 2 C:0.045%、Si2.95%、酸可溶性Al:0.020
%、S0.027%を含有する鋼塊を分塊圧延後、熱延
して2.3mmの熱延板を作り、これを1120℃5分間
焼鈍し、100℃の湯の中に入れて焼入れた。引続
き、0.3mmまで冷延し、850℃、4分間湿水素雰囲
気中で脱炭焼鈍後、A、B、C、D4枚の鋼板を
作り次のような処理を行つた。 A、BはMgOを塗布後、Aは20℃/hrの昇温
速度で、又Bは200℃/hrで昇温し、1200℃20hr
の焼鈍を行つた。 Cは1100℃10分間の焼鈍を100%H2D.P.<−10
℃の水素雰囲気中で行つた。Dは1100℃5分間75
%H2−25%N2D.P.<−10℃の雰囲気中で焼鈍を
行い、引続き1100℃5分間100%H2D.P.<−10℃
の水素雰囲気中で行つた。次に、C、DにMgO
を塗布し、200℃/hrで昇温し、1200℃20時間の
焼鈍を行つた。各々の試料の磁気特性を次に示
す。
[Table] When the distribution of crystal grains in the sheet thickness direction was investigated in the first half of continuous annealing under condition A, no growth of crystal grains in the surface layer was observed as shown in FIG. 1b. When switching to 100% H 2 in the latter half of continuous annealing, 2
After recrystallization, no remaining crystal grains were observed in the surface layer. B8 before final purification annealing is
B8 was 1.885T, which was relatively poor even after purification annealing. When the distribution of crystal grains in the thickness direction during the first half of continuous annealing under condition B was investigated, crystal grain growth in the surface layer was observed as shown in Figure 1a, but secondary recrystallization had not yet occurred. When this was switched to 100% H 2 , secondary recrystallized grain growth started immediately, but some of the crystal grains that had become coarse in the surface layer in the first half remained uneaten. B8 at that time was extremely high at 1.945T. When it was further purified and annealed, all of the crystal grains in the surface layer were eaten by (110) [001] grains, so B8 improved to 1.975T. When the distribution of crystal grains in the sheet thickness direction during the first half of continuous annealing under condition C was examined, growth of crystal grains in the surface layer was observed, but compared to condition B, the depth was shallower. When the cross-sectional crystal grain distribution of the plate was examined after the second half of continuous annealing, some remaining grains were observed in the surface layer and center layer, but secondary recrystallized grain growth had almost been completed. When we measured the magnetic flux density at this time, we found that
It was 1.920T. After the final purification annealing, there were no uneaten grains and B8 was 1.950T. Examination of the crystal grain distribution in the cross section of the plate after continuous annealing under condition D revealed that the entire thickness of the plate was made up of crystal grains with (110) [001] orientation, and there were no crystal grains left behind in the surface layer. The parts other than the surface layer are left uneaten,
Some nearly circular crystal grains other than (110) [001] were observed. The magnetic flux density was measured at B 8 .
It was 1.752T. After purification annealing, it improved slightly to 1.767T. It can be seen from the above that by growing the crystal grains in the surface layer before starting the secondary recrystallization and then performing the secondary recrystallization, the orientation becomes better and the magnetic flux density (B 8 ) becomes higher. Example 2 C: 0.045%, Si2.95%, acid soluble Al: 0.020
After blooming and hot rolling a steel ingot containing S0.027% and S0.027%, a 2.3 mm hot-rolled plate was made, which was annealed at 1120°C for 5 minutes and then quenched in hot water at 100°C. . Subsequently, the steel sheets were cold rolled to 0.3 mm and decarburized annealed at 850°C for 4 minutes in a wet hydrogen atmosphere. Four steel plates A, B, C, and D were prepared and treated as follows. After applying MgO, A and B were heated at a heating rate of 20°C/hr, and B was heated at a rate of 200°C/hr to 1200°C for 20 hr.
Annealing was performed. C is 100% H 2 DP<-10 annealed at 1100℃ for 10 minutes
The test was carried out in a hydrogen atmosphere at ℃. D is 1100℃ for 5 minutes75
Annealing is performed in an atmosphere of % H2-25 % N2DP <-10℃, followed by annealing at 1100℃ for 5 minutes at 100% H2DP <-10℃.
The experiment was carried out in a hydrogen atmosphere. Next, MgO in C and D
was coated, heated at 200°C/hr, and annealed at 1200°C for 20 hours. The magnetic properties of each sample are shown below.

【表】【table】

【表】 このようにDは箱焼鈍の昇温速度が200℃/hr
と速いにもかかわらず、通常の工程Aと比べると
著しく磁束密度が高くなつている。CはBと比べ
ても更にB8が低くなつている。これはBの場合
は箱焼鈍の過程で2次再結晶粒成長があるため、
若干表面層が粒成長してから2次再結晶するのに
対し、連続焼鈍をH2100%雰囲気下で行つた。条
件Cは、連続焼鈍で、表面層の粒成長する余裕が
なく直ちに2次再結晶するので、連続焼鈍で2次
再結晶させているにもかかわらず、方位が悪くな
つたものである。
[Table] In this way, D has a heating rate of 200℃/hr for box annealing.
Despite this speed, the magnetic flux density is significantly higher than that in normal process A. B8 is even lower in C than in B. This is because in the case of B, there is secondary recrystallized grain growth during the box annealing process.
While the surface layer undergoes secondary recrystallization after grain growth, continuous annealing was performed in a 100% H 2 atmosphere. Condition C is continuous annealing, and since there is no room for grain growth in the surface layer and secondary recrystallization occurs immediately, the orientation deteriorates despite continuous annealing and secondary recrystallization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、連続焼鈍過程における2次再結晶開
始前の板の断面方向の結晶粒分布Aと、2次再結
晶後の結晶方位の関係を示したもので、aおよび
a′は表面層が粒成長後a2次再結晶a′して磁束密度
が著しく良いもの、bおよびb′は表面層の粒成長
がなくb2次再結晶しb′磁束密度の悪いものの例を
示した金属組織の顕微鏡写真図である。
Figure 1 shows the relationship between the crystal grain distribution A in the cross-sectional direction of the plate before the start of secondary recrystallization in the continuous annealing process and the crystal orientation after secondary recrystallization.
a′ is an example in which the surface layer undergoes secondary recrystallization a′ after grain growth, and the magnetic flux density is extremely good; b and b′ are examples in which there is no grain growth in the surface layer, b secondary recrystallization occurs, and b′ has a poor magnetic flux density. It is a micrograph diagram of the metal structure shown.

Claims (1)

【特許請求の範囲】[Claims] 1 含Al一方向性珪素鋼板の製造に於て通常の
工程で得られた冷延鋼板を、脱炭焼鈍後、引続き
950℃〜1150℃の温度範囲で連続焼鈍を行なうに
あたり、まずN2の分圧10%以上のN2+H2混合雰
囲気で焼鈍し、板断面の表面層の結晶粒径を中心
層の結晶粒径より粒成長させた後、引続き、それ
より低いN2分圧を有するH2とN2の混合雰囲気又
はH2雰囲気で焼鈍して、2次再結晶させ、次い
で純化焼鈍を施すことを特徴とする磁束密度の極
めて高い含Al一方向性珪素鋼板の製造方法。
1 A cold-rolled steel sheet obtained through a normal process in the production of Al-containing unidirectional silicon steel sheet is decarburized and annealed, and then
When performing continuous annealing in the temperature range of 950℃ to 1150℃, first, annealing is performed in a mixed atmosphere of N 2 + H 2 with a partial pressure of N 2 of 10% or more, and the crystal grain size of the surface layer of the plate cross section is adjusted to the crystal grain size of the center layer. After grain growth from the diameter, it is subsequently annealed in a mixed atmosphere of H 2 and N 2 or H 2 atmosphere with a lower N 2 partial pressure to cause secondary recrystallization, and then subjected to purification annealing. A method for producing an Al-containing unidirectional silicon steel sheet with extremely high magnetic flux density.
JP9834178A 1978-08-12 1978-08-12 Very high magnetic flux density, aluminum containing one directional silicon steel plate Granted JPS5524972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9834178A JPS5524972A (en) 1978-08-12 1978-08-12 Very high magnetic flux density, aluminum containing one directional silicon steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9834178A JPS5524972A (en) 1978-08-12 1978-08-12 Very high magnetic flux density, aluminum containing one directional silicon steel plate

Publications (2)

Publication Number Publication Date
JPS5524972A JPS5524972A (en) 1980-02-22
JPS6231050B2 true JPS6231050B2 (en) 1987-07-06

Family

ID=14217192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9834178A Granted JPS5524972A (en) 1978-08-12 1978-08-12 Very high magnetic flux density, aluminum containing one directional silicon steel plate

Country Status (1)

Country Link
JP (1) JPS5524972A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0826397B2 (en) * 1987-01-28 1996-03-13 新日本製鐵株式会社 Finishing annealing method for grain-oriented silicon steel sheet
JP4569007B2 (en) * 2001-01-23 2010-10-27 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JPS5524972A (en) 1980-02-22

Similar Documents

Publication Publication Date Title
JPH032324A (en) Manufacture of grain-oriented silicon steel sheet having excellent magnetic characteristics and film characteristics
KR950005793B1 (en) Process for producing grain-oriented electrical steel strip having high magnetic flux density
JPS63105926A (en) Manufacture of grain-oriented silicon steel sheet
JPH0277525A (en) Production of grain-oriented electrical steel sheet having excellent magnetic characteristic and film characteristic
JPH04173923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property as well as in film characteristic
JP2000282142A (en) Manufacture of grain oriented silicon steel sheet
JP2603130B2 (en) Manufacturing method of high magnetic flux density grain-oriented electrical steel sheet
JP4205816B2 (en) Method for producing unidirectional electrical steel sheet with high magnetic flux density
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JPS6231050B2 (en)
JP3390109B2 (en) Low iron loss high magnetic flux density
JPH05295447A (en) Annealing method for finishing grain oriented electrical steel sheet in short time
JPS5945730B2 (en) Hot rolling method for high magnetic flux density unidirectional silicon steel sheet
JP3389402B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPH09104923A (en) Production of grain-oriented silicon steel sheet
JPS6242968B2 (en)
US20230212720A1 (en) Method for the production of high permeability grain oriented electrical steel containing chromium
JPH10102145A (en) Manufacture of extra thin silicon steel sheet and extra thin silicon steel sheet
JPH086138B2 (en) Method for manufacturing thin unidirectional silicon steel sheet with low iron loss
JPH02259017A (en) Production of grain-oriented silicon steel sheet excellent in film characteristic as well as in magnetic property
JP2562254B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet
JPS61149432A (en) Manufacture of grain oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH06179917A (en) Production of grain oriented silicon steel sheet with high magnetic flux density
JP2653948B2 (en) Preparation of Standard Grain Oriented Silicon Steel without Hot Strip Annealing
JPH0995739A (en) Production of extremely thin silicon steel sheet excellent in magnetic characteristic and its production