JPS6384123A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6384123A
JPS6384123A JP61228327A JP22832786A JPS6384123A JP S6384123 A JPS6384123 A JP S6384123A JP 61228327 A JP61228327 A JP 61228327A JP 22832786 A JP22832786 A JP 22832786A JP S6384123 A JPS6384123 A JP S6384123A
Authority
JP
Japan
Prior art keywords
substrate
wafer
semiconductor device
heat treatment
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61228327A
Other languages
Japanese (ja)
Inventor
Masanobu Ogino
荻野 正信
Hiroyuki Kamijo
浩幸 上條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61228327A priority Critical patent/JPS6384123A/en
Publication of JPS6384123A publication Critical patent/JPS6384123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To provide equivalent effect without using a special intrinsic gettering (IG) wafer only applying a low temperature heat treatment of 600-90 deg.C newly after providing a deep impurity diffused layer. CONSTITUTION:A hole 24 is opened in an SiO2 film 23 on a p-type Si substrate 21, and P ions are implanted. P is thermally diffused in O2/N2 = 1/5 to form an N-type well 27. At this time O2 near the surface of the substrate is externally diffused to obtain a no-defect layer 22. Then, a low temperature heat treatment of 700 deg.C is executed at O2/N2 = 1/5, O2 in the substrate is precipitated to form a fine nucleus in high concentration. Thereafter, a CMOSFET is formed as usual. The substrate 21 is heat treated several times at 900-1000 deg.C during this period, and nucleus 28 is generated at each time to generate O precipitate having gettering capacity. As a result, metal impurities are gettered to the last of the steps of manufacturing an element. Thus, a normal wafer may be employed without using an expensive IG wafer. Therefore, a cost is reduced, and a semiconductor device having high reliability is obtained.

Description

【発明の詳細な説明】 [発明の目的1 (発明の技術分野) 本発明は、深い不純物拡散領域を有する半導体装置の製
造方法に関するもので、特に金属不純物等のイントリン
シックゲッタリング(I ntrin−sic G e
ttering、以下IGと呼ぶ)効果を高める為の製
造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Objective of the Invention 1 (Technical Field of the Invention) The present invention relates to a method for manufacturing a semiconductor device having a deep impurity diffusion region, and in particular, to a method for manufacturing a semiconductor device having a deep impurity diffusion region, and in particular to a method for manufacturing a semiconductor device having a deep impurity diffusion region. sic G e
This relates to a manufacturing method for enhancing the effect of tttering (hereinafter referred to as IG).

(従来技術) 半導体装置用基板として使用されるSi  (シリコン
)ウェーハは、微量ながら不純物を含み、又製造工程中
汚染したり結晶欠陥が導入される場合がある。 これら
欠陥はデバイス工程及びデバイス特性に種々の影響を与
える。
(Prior Art) Si (silicon) wafers used as substrates for semiconductor devices contain impurities, albeit in small amounts, and may become contaminated or have crystal defects introduced during the manufacturing process. These defects have various effects on device processes and device characteristics.

従来半導体装置の製造工程中の金属汚染等は、燐ガラス
(P2O3)を用いたいわゆる燐ゲッター等によって除
去していた。
Conventionally, metal contamination and the like during the manufacturing process of semiconductor devices have been removed using a so-called phosphorus getter using phosphor glass (P2O3).

又最近では燐ゲッター等の他にIGが用いられるように
なっている。 第5図はIGウェーハを使用した半導体
装置(NMO8)の−例である。
Recently, IG has been used in addition to phosphorus getter and the like. FIG. 5 is an example of a semiconductor device (NMO8) using an IG wafer.

半導体基板(ウェーハ)1には、表面付近に幅Aの無欠
陥層2及び基板内部に幅Bの酸素析出物から成る欠陥層
が形成されている。 表面層の金属不純物6は、製造プ
ロセス中にこの酸素析出物5に取り込まれ固定され、素
子形成領域から排除される。 なお3はSio2膜、4
は多結晶シリコン躾、7はアルミニウム電極である。
A semiconductor substrate (wafer) 1 has a defect-free layer 2 with a width A near the surface and a defect layer made of oxygen precipitates with a width B inside the substrate. The metal impurities 6 in the surface layer are taken in and fixed by the oxygen precipitates 5 during the manufacturing process, and are removed from the element formation region. Note that 3 is the Sio2 film, 4
7 is a polycrystalline silicon electrode, and 7 is an aluminum electrode.

通常IGウェーハは、第6図に示すように鏡面ウェ−ハ
1を1100°C以上で熱処理し、半導体基板表面層の
酸素を外方拡散により低減化し、表面付近に無欠陥層2
を形成しく第6図(a ) ) 、その複600℃〜9
00℃の熱処理温度で熱処理を行い、酸素析出物の核8
を形成したものである(第6図(b))。 又第6図<
a >、(b)の処理終了後更に表面層を鏡面研磨9し
たIGウェーハもある(第6図(C))。 あるいは又
第6図(b ’)らしくは第6図(C)のウェーハに9
00℃〜1000℃の熱処理を加え、前記の核を成長さ
せ、酸素析出物5を形成したIGウェーハ(第6図(d
))もある。
Normally, IG wafers are made by heat-treating a mirror-finished wafer 1 at 1100°C or higher to reduce oxygen in the surface layer of the semiconductor substrate by outward diffusion, as shown in FIG.
Figure 6(a)) and its complex at 600℃~9
Heat treatment is performed at a heat treatment temperature of 00°C to remove oxygen precipitate nuclei 8.
(Fig. 6(b)). Also, Figure 6 <
There is also an IG wafer whose surface layer is mirror-polished 9 after the completion of the process in (b) (FIG. 6(C)). Or, as shown in Fig. 6(b'), the wafer shown in Fig. 6(C) has 9
IG wafer (Fig. 6 (d)
)) is also available.

(発明が解決しようとする問題点) 上述のIGウェーハは通常のウェーハに比べ値段が1.
5〜2.5倍と高い。 DRAM (Dynamicr
andom access memory)などのメモ
リ製品にこのIGウェーハを使う場合、製品価格に占め
るつ工−ハの割合が非常に大きく、IGの効果はあって
も、なかなか現実にこれを使用するには至らなかった。
(Problems to be Solved by the Invention) The above-mentioned IG wafer is 1.5 times more expensive than a normal wafer.
5 to 2.5 times higher. DRAM
When using this IG wafer in memory products such as (andom access memory), the manufacturing process accounts for a very large proportion of the product price, and even though IG has an effect, it is difficult to actually use it. Ta.

本発明の目的は、この従来技術の問題点を解消し、高価
な従来のIGウェーハを使用しないで、安価で且つこれ
と同等のIG効果が得られる半導体装置の製造方法を提
供することである。
It is an object of the present invention to solve the problems of the prior art and to provide a method for manufacturing a semiconductor device that is inexpensive and can provide the same IG effect as the conventional IG wafer without using an expensive conventional IG wafer. .

[発明の構成] (問題点を解決するための手段と作用)本発明は、深い
不純物拡散領域を有する半導体装置の製造方法に関する
もので、この深い不純物拡散領域を形成する不純物拡散
工程の次に、新しり600℃〜900℃の低温熱処理を
加えるのみで、従来の特別なIGウェー八へ使用するこ
となく、これと同等のIG効果を持たせたものである。
[Structure of the Invention] (Means and Effects for Solving the Problems) The present invention relates to a method for manufacturing a semiconductor device having a deep impurity diffusion region, in which a method for manufacturing a semiconductor device having a deep impurity diffusion region is performed. By simply applying low-temperature heat treatment at 600°C to 900°C to the new material, it is possible to obtain the same IG effect as the conventional special IG wafer without using it.

例えば0MO8(相補型MO8)の製造工程では、その
初期において半導体基板にP型またはN型の深い拡散領
域(一般にウェルと称す)を作り、その中に半導体素子
を作り込んで行く。 この拡散工程は通常1100℃以
上の高温で行われる為、基板表面付近の素子形成領域で
は過飽和M素の外方拡散により、酸素濃度の極めて少な
い無欠陥層が自動的に形成される。 この深い拡散領域
形成後、本発明では600°C〜900°Cの低温熱処
理を行う。
For example, in the manufacturing process of 0MO8 (complementary MO8), a P-type or N-type deep diffusion region (generally referred to as a well) is formed in a semiconductor substrate at the initial stage, and a semiconductor element is built into the region. Since this diffusion step is usually performed at a high temperature of 1100° C. or higher, a defect-free layer with an extremely low oxygen concentration is automatically formed in the element formation region near the substrate surface by outward diffusion of supersaturated M elements. After forming this deep diffusion region, in the present invention, low-temperature heat treatment at 600°C to 900°C is performed.

これにより基板内部の過飽和酸素は析出し、基板内部に
多数の極めて微小な酸素析出物の核を形成する。 この
基板はその後の製造プロセスにJ3いて、例えばゲート
酸化膜形成等の900℃〜1000℃の数次の熱処理工
程を受ける。 この熱処理工程で前記の核はゲッタリン
グ能力を有する酸素析出物に成長し、これがブックリン
グ中心となり基板の金属不純物を取り込む。 前記の核
を形成した基板は、前記熱処理工程を受けるたびに新し
い酸素析出物を生成し、素子製造工程中、常にIG効果
が得られる。
As a result, the supersaturated oxygen inside the substrate is precipitated, forming a large number of extremely minute nuclei of oxygen precipitates inside the substrate. In the subsequent manufacturing process J3, this substrate undergoes several heat treatment steps at 900° C. to 1000° C., such as forming a gate oxide film. In this heat treatment process, the aforementioned nuclei grow into oxygen precipitates having gettering ability, which become bookring centers and take in metal impurities from the substrate. The substrate on which the nuclei have been formed generates new oxygen precipitates each time it is subjected to the heat treatment process, so that the IG effect is always obtained during the device manufacturing process.

酸素析出物の生成はその核の分布、半導体基板中の酸素
濃度等に依存するが、半導体基板の酸素1度は試行の結
果、少なくとも1,3x 101018ato/ cm
’であることが望ましい。 基板中の酸素濃度が少なす
ぎると十分な数の酸素析出物が作り難い。 なお酸素′
a度は格子間(l nters口tial )原子の濃
度で、波数1106cm”の赤外吸収係数α(all−
’)より、Q L= (X X 4.81 X 101
7atolIls /cm’から求めた値である(以下
この定義による酸素濃度をOLで表す)。
The formation of oxygen precipitates depends on the distribution of their nuclei, the oxygen concentration in the semiconductor substrate, etc., but as a result of trials, the oxygen concentration in the semiconductor substrate is at least 1.3 x 101018ato/cm
' is desirable. If the oxygen concentration in the substrate is too low, it will be difficult to form a sufficient number of oxygen precipitates. Note that oxygen′
The a degree is the concentration of interstitial atoms, and the infrared absorption coefficient α (all-
'), Q L= (X X 4.81 X 101
This is the value obtained from 7atolIls/cm' (hereinafter, the oxygen concentration according to this definition will be expressed as OL).

(実施例) 次に本発明の実施例を図面を参照して詳細に述べる。 
第1図は、相補型MO3ランダムアクセスメモリ(CM
O8’ RAM)の製造に本発明を適用した場合の製造
工程を示す断面図である。
(Example) Next, an example of the present invention will be described in detail with reference to the drawings.
Figure 1 shows complementary MO3 random access memory (CM
FIG. 3 is a cross-sectional view showing a manufacturing process when the present invention is applied to manufacturing an O8' RAM.

用いたシリコン基板(ウェーハ)21は、直径125m
m 、比抵抗4〜6Ω・CRI、格子間酸素濃度(Ot
 )が(1,4〜1.8) X1X1018ato /
c+n3のP型基板である。 第1図(a )に示すよ
うにこの基板21上に酸化膜(SiO2膜)23を形成
し、次に同図(b)のように、公知のリソグラフィー技
術を用いて、酸化膜23にNウェル形成用の拡散窓24
を開口し、所定最のドナー不純物P(燐)をイオン注入
する。 次に同図(C)のように1200℃、180分
、雰囲気02 /N2=  115の熱処理を行い、燐
を拡散し、深さA=約約10諭よって、基板表面付近の
酸素は外方拡散により放出され、その濃度は極めて小さ
くなり、無欠陥層22が基板表面に形成される。 次に
同図(d )に示すように 700℃、36時間、雰囲
気02/N2=115の熱処理を加える。 この低温処
理によって基板中の酸素は析出し、数スないし数十スと
推定される非常に小さい核28が高密度に形成される。
The silicon substrate (wafer) 21 used had a diameter of 125 m.
m, specific resistance 4-6Ω・CRI, interstitial oxygen concentration (Ot
) is (1,4~1.8) X1X1018ato /
It is a c+n3 P type substrate. As shown in FIG. 1(a), an oxide film (SiO2 film) 23 is formed on this substrate 21, and then, as shown in FIG. Diffusion window 24 for well formation
is opened and a predetermined donor impurity P (phosphorus) is ion-implanted. Next, as shown in Figure (C), heat treatment is performed at 1200°C for 180 minutes in an atmosphere of 02/N2 = 115 to diffuse phosphorus, and the oxygen near the substrate surface is diffused to a depth of about 10 cm. It is released by diffusion, its concentration becomes extremely small, and a defect-free layer 22 is formed on the substrate surface. Next, as shown in FIG. 4(d), heat treatment is applied at 700° C. for 36 hours in an atmosphere of 02/N2=115. This low-temperature treatment causes oxygen in the substrate to precipitate, and very small nuclei 28, estimated to be several to tens of seconds in size, are formed at a high density.

 この低温熱処理後は、通常の方法によりNウェルには
Pチャネル型、P型基板にはNチャネル型のMOS  
FETが形成されるが、この間の製造プロセスで基板2
1は900℃〜1000℃の数次の熱処理を受ける。 
この熱処理を受けるたびに核28は成長し、ゲッタリン
グ能力を持つ酸素析出物が生成される。 この為素子製
造プロセスの最後まで全屈不純物等のゲッタリングが行
われる。
After this low-temperature heat treatment, a P-channel type MOS is installed in the N-well and an N-channel type MOS is installed in the P-type substrate using the usual method.
The FET is formed, but during the manufacturing process, the substrate 2
No. 1 undergoes several heat treatments at 900°C to 1000°C.
Each time this heat treatment is performed, the nuclei 28 grow and oxygen precipitates with gettering ability are generated. For this reason, gettering of impurities and the like is performed until the end of the device manufacturing process.

上述の方法により0MO8  DRAMを製造後、この
つI−八を別間(M板主面が( ’100)面のときg
g開面は(  110)面)し、男開面における酸素析
出物の形成状況をライトエツチング液(HF(49%)
 :60n+l, 1−INO3 : 60m1, C
u NO3:2g,  Cr 03  (  5モル)
:30a+1,OH3 Coo)−1(100%)  
: 60m1, H 2 0 : 60m1)で90秒
エツチング後、観察した。 第2図は酸素析出物の量を
男開面の単位面積当りのエッチビット数であられしたも
のであり、基板中の酸素濃度(OL >が大きい程析出
物の数は多く、105〜107個/Cl112の酸素析
出物が形成されている。 又第3図は基板表面付近の無
欠陥層(第1図(c)22の幅Aを示したもので、30
〜60μIの無欠陥層が形成されている。 基板中の酸
素濃度(0し)が大きい程無欠陥層幅は小さくなる。 
第2図及び第3図より本発明によるIG効果を得る為に
は基板中の酸素濃度(OL)は1.3x 10” at
ols /cn+’ 以上rあることが望ましく又その
上限は素子形成領域として必要な無欠陥層の幅によって
決められることがわかる。
After manufacturing 0MO8 DRAM by the method described above, separate this I-8 (when the main surface of the M plate is the ('100) plane,
The g-opening plane is (110) plane), and the formation of oxygen precipitates on the male-opening plane is examined using a light etching solution (HF (49%)).
:60n+l, 1-INO3 : 60m1, C
u NO3: 2g, Cr 03 (5 mol)
:30a+1,OH3Coo)-1(100%)
: 60 ml, H 2 0 : 60 ml) for 90 seconds and then observed. Figure 2 shows the amount of oxygen precipitates expressed as the number of etch bits per unit area of the open surface. Figure 3 shows the defect-free layer near the substrate surface (the width A of Figure 1(c) 22 is 30 mm).
A defect-free layer of ~60 μI is formed. The larger the oxygen concentration (0) in the substrate, the smaller the defect-free layer width becomes.
From FIG. 2 and FIG. 3, in order to obtain the IG effect according to the present invention, the oxygen concentration (OL) in the substrate must be 1.3 x 10" at
It can be seen that it is desirable that r be at least ols /cn+', and that the upper limit thereof is determined by the width of the defect-free layer required as the element forming region.

第4図は、製品を高温(200℃)放置した時、メモリ
ー保持時間の劣化傾向を観察した結果を示すものである
。 横軸は放置時間(時間)、縦軸は、放置時間0の初
期にJ3ける0MO8  DRAMのメモリー保持時間
に対する放置後のメモリー保持時間の割合を示す。 こ
の実験では、比較の為、通常のウェーハを用い従来の製
造方法によるものく第4図のΔ印)、本発明の製造方法
によるもの(・印)、従来のIGウェーハを使用したち
の(O印)について行った。 通常ウェーハによる素子
に比べ、本発明による方法及び従来IGつ工ーハによる
素子は劣化傾向が小さく、又本発明によるものと従来I
Gウェー八へよるものとは差のないことが判る。
FIG. 4 shows the results of observing the tendency of memory retention time to deteriorate when the product was left at high temperature (200° C.). The horizontal axis shows the unused time (hours), and the vertical axis shows the ratio of the memory retention time after the unused time to the memory retention time of the 0MO8 DRAM in J3 at the beginning of the unused time 0. In this experiment, for comparison, a conventional wafer was used (Δ mark in Fig. 4), a conventional IG wafer was used ( I followed O mark). Compared to devices made using normal wafers, devices made using the method according to the present invention and devices made using conventional IG fabrication have a smaller tendency to deteriorate;
It can be seen that there is no difference from that due to G-way 8.

以上の実施例では半導体装置として0MO8を、又深い
不純物拡散領域をPウェル又はNウェルとして説明した
が、これに限られるものではない。
In the above embodiments, the semiconductor device is 0MO8, and the deep impurity diffusion region is a P-well or an N-well, but the present invention is not limited to this.

例えば接合方式の素子分離層を有する半導体装置のよう
に、製造工程の比較的初期において、1100℃以上の
熱処理工程を行う半導体装置の製造工程にも本発明は勿
論適用できる。
For example, the present invention can of course be applied to a manufacturing process of a semiconductor device in which a heat treatment step of 1100° C. or higher is performed at a relatively early stage of the manufacturing process, such as a semiconductor device having a bonding type element isolation layer.

[発明の効果] 本発明の半導体装置の製造方法によれば、素子製造工程
前に特殊な熱処理を加えたり、あるいは鏡面研磨を加え
たウェーハを使う必要はなく、ウェーハ価格は通常ウェ
ーハと同じで、従来のIGラウェ−の2/3〜1/2と
なる。
[Effects of the Invention] According to the semiconductor device manufacturing method of the present invention, there is no need to apply special heat treatment or use mirror-polished wafers before the device manufacturing process, and the wafer price is the same as that of regular wafers. , it becomes 2/3 to 1/2 of the conventional IG raw speed.

又本発明の方法により製造した装置は、前述の実施例の
結果からも明らかなように、IG効果についても従来の
IGウェー八へ比べて劣ることなく、メモリー保持時間
、信頼性向上に対する効果は大である。
Furthermore, as is clear from the results of the above-mentioned examples, the device manufactured by the method of the present invention is not inferior to the conventional IG wafer in terms of IG effect, and has no effect on improving memory retention time or reliability. It's large.

上記の通り本発明の製造方法によれば、高価な従来のI
Gウェーハを使用しないで、安価で且つこれと同等のI
G効果が得られ、製品歩留り及び信頼性の向上した半導
体装置を製造できる。
As described above, according to the manufacturing method of the present invention, the expensive conventional I
I do not use a G wafer, but I
The G effect can be obtained, and a semiconductor device with improved product yield and reliability can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の半導体装置の製造工程の実施例を示す
断面図、第2図は本発明によりシリコンウェーハ中に形
成される酸素析出物量とウェーハ中の酸素濃度との関係
を示ずグラフ、第3図は本発明によりシリコンウェーハ
中に形成される無欠陥層幅とウェーハ中の酸素濃度との
関係を示すグラフ、第4図は高温放置によるメモリー保
持時間の劣化傾向を、それぞれの方法について示すグラ
フ、第5図は従来のIGウェーハを使用した素子の断面
図、第6図は従来のIGウェーハの製作工程を示す断面
図である。 1.21・・・半導体基板、 2.22・・・無欠陥層
、3.23・・・5i02膜、 5・・・酸素析出物、
 6・・・金属不純物、 8.28・・・酸素析出物の
核、27・・・Nウェル。 第2図       箪3図 高54L (200’C) 1!Ki n間(時開)第
4図 #朱 第6図
FIG. 1 is a cross-sectional view showing an example of the manufacturing process of a semiconductor device according to the present invention, and FIG. 2 is a graph showing the relationship between the amount of oxygen precipitates formed in a silicon wafer according to the present invention and the oxygen concentration in the wafer. , Fig. 3 is a graph showing the relationship between the defect-free layer width formed in a silicon wafer according to the present invention and the oxygen concentration in the wafer, and Fig. 4 shows the tendency of deterioration of memory retention time due to high temperature storage for each method. FIG. 5 is a cross-sectional view of an element using a conventional IG wafer, and FIG. 6 is a cross-sectional view showing the manufacturing process of a conventional IG wafer. 1.21... Semiconductor substrate, 2.22... Defect-free layer, 3.23... 5i02 film, 5... Oxygen precipitate,
6... Metal impurity, 8.28... Oxygen precipitate nucleus, 27... N well. Figure 2 Chest 3 Height 54L (200'C) 1! Kin (hourly) Figure 4 # Vermilion Figure 6

Claims (1)

【特許請求の範囲】 1 一導電型半導体基板に深い反対導電型不純物拡散領
域を選択的に有する半導体装置の製造方法において、1
100℃以上の温度で前記深い反対導電型不純物拡散領
域を拡散形成した後、600℃ないし900℃の熱処理
を行う工程を含むことを特徴とする半導体装置の製造方
法。 2 前記一導電型半導体基板の酸素濃度が少なくとも1
.3×10^1^8atoms/cm^3である特許請
求の範囲第1項記載の半導体装置の製造方法。 3 前記半導体装置がCMOSであり、前記深い反対導
電型不純物拡散領域がPウェル又はNウェルである特許
請求の範囲第1項又は第2項記載の半導体装置の製造方
法。
[Claims] 1. A method for manufacturing a semiconductor device selectively having a deep opposite conductivity type impurity diffusion region in a semiconductor substrate of one conductivity type, comprising: 1
A method for manufacturing a semiconductor device, comprising the step of performing heat treatment at 600°C to 900°C after forming the deep opposite conductivity type impurity diffusion region at a temperature of 100°C or higher. 2 The oxygen concentration of the one conductivity type semiconductor substrate is at least 1
.. The method for manufacturing a semiconductor device according to claim 1, wherein the rate is 3×10^1^8 atoms/cm^3. 3. The method of manufacturing a semiconductor device according to claim 1 or 2, wherein the semiconductor device is a CMOS, and the deep opposite conductivity type impurity diffusion region is a P-well or an N-well.
JP61228327A 1986-09-29 1986-09-29 Manufacture of semiconductor device Pending JPS6384123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61228327A JPS6384123A (en) 1986-09-29 1986-09-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61228327A JPS6384123A (en) 1986-09-29 1986-09-29 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6384123A true JPS6384123A (en) 1988-04-14

Family

ID=16874713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61228327A Pending JPS6384123A (en) 1986-09-29 1986-09-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6384123A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277765A (en) * 1989-04-19 1990-11-14 Nippon Sheet Glass Co Ltd Production of alkali metal diffusion preventing layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02277765A (en) * 1989-04-19 1990-11-14 Nippon Sheet Glass Co Ltd Production of alkali metal diffusion preventing layer

Similar Documents

Publication Publication Date Title
JP2666945B2 (en) Method for manufacturing semiconductor device
JP2752799B2 (en) Method for manufacturing SOI substrate
JPS618931A (en) Manufacture of semiconductor device
JP2000294549A (en) Semiconductor device and manufacture of the same
KR19980033199A (en) Semiconductor integrated circuit device and manufacturing method thereof and semiconductor wafer and manufacturing method thereof
US5306939A (en) Epitaxial silicon wafers for CMOS integrated circuits
JPS6384123A (en) Manufacture of semiconductor device
JPH11260750A (en) Manufacture of semiconductor device
JPS58103124A (en) Manufacture of semiconductor device
JPS62285470A (en) Manufacture of semiconductor device
JPS63198334A (en) Manufacture of semiconductor silicon wafer
JPH01298726A (en) Manufacture of semiconductor wafer and semiconductor device using the semiconductor wafer
JP3091800B2 (en) Method for manufacturing SOI substrate
JPS5887833A (en) Manufacture of semiconductor device
JPH05267333A (en) Manufacture of mos type field effect transistor
JPH10209170A (en) Semiconductor wafer, its manufacture, semiconductor integrated circuit device, and its manufacture
JPS60176241A (en) Manufacture of semiconductor substrate
JPH0458524A (en) Manufacture of semiconductor device
JPH05206145A (en) Manufacture of semiconductor device
JPS5974638A (en) Manufacture of semiconductor wafer
JPH04737A (en) Manufacture of semiconductor device
JPH01173727A (en) Manufacture of semiconductor device
JPH04721A (en) Manufacture of semiconductor device
JPH0494120A (en) Manufacture of semiconductor device
JPS59191375A (en) Manufacture of semiconductor memory device