JPS6383275A - Cvd device - Google Patents

Cvd device

Info

Publication number
JPS6383275A
JPS6383275A JP22905986A JP22905986A JPS6383275A JP S6383275 A JPS6383275 A JP S6383275A JP 22905986 A JP22905986 A JP 22905986A JP 22905986 A JP22905986 A JP 22905986A JP S6383275 A JPS6383275 A JP S6383275A
Authority
JP
Japan
Prior art keywords
gas
substrate
processed
wafer
semiconductor wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22905986A
Other languages
Japanese (ja)
Other versions
JPH062948B2 (en
Inventor
Kimiharu Matsumura
松村 公治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP61229059A priority Critical patent/JPH062948B2/en
Publication of JPS6383275A publication Critical patent/JPS6383275A/en
Publication of JPH062948B2 publication Critical patent/JPH062948B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To effectively form DVD film on the whole surface of a substrate by sending a gas contg. an oxygen atom radical onto a heated substrate to be treated through a diffusion plate while cooling the gas. CONSTITUTION:A semiconductor wafer 12 is placed on the holder 13 in a treating chamber 11 and lifted by a lift 16 to adjust the distance from the diffusion plate 17b of an outflow part 17, and the wafer 12 is heated by a heater 15. Gaseous oxygen and specified gaseous reactants are supplied into the gas outflow part 17 from gas supply sources 20a, 20b, and 20c via flow controllers 19a, 19b, and 19c, and cooled by a cooler 18. The cooled gaseous mixture is injected onto the surface of the heated wafer 12 through the diffusion plate 17b, hence an oxygen atom radical is formed and reacts with the other gaseous reactants, and film is formed on the wafer 12. As a result, a DVD film is uniformly formed on the whole surface of the wafer 12 at a high film forming rate.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、半導体ウェハ等の被処理基板にCVD[を形
成するCVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a CVD apparatus for forming CVD [on a substrate to be processed, such as a semiconductor wafer.

(従来の技術) 一般に、半導体ウェハ等の被処理基板の表面にS i0
2 、PSG、BSG等のCVD膜を形成するCVD装
置には、減圧CVD装置、常圧CVD装置、プラズマC
VD装置等の種々のCVD装置がある。
(Prior art) Generally, Si0 is applied to the surface of a substrate to be processed such as a semiconductor wafer
2. CVD equipment for forming CVD films such as PSG and BSG includes low pressure CVD equipment, normal pressure CVD equipment, and plasma CCVD equipment.
There are various CVD devices such as VD devices.

これらの従来のCVD装置では、常圧あるいは減圧され
た処理室内に半導体ウェハ等の被処理基板を多数配置し
、これらの被処理基板を加熱するとともに、処理室内に
例えばSiH4とPH3と02あるいはSiH4と02
等の所定の反応ガスを流通させ、バッチ方式あるいはイ
ンライン方式等により半導体ウェハ表面にCVD膜を形
成する。
In these conventional CVD apparatuses, a large number of substrates to be processed, such as semiconductor wafers, are placed in a processing chamber under normal pressure or reduced pressure, and these substrates to be processed are heated. and02
A CVD film is formed on the surface of a semiconductor wafer by a batch method, an in-line method, or the like by passing a predetermined reaction gas such as the following.

またプラズマCVD装置では、これらの反応ガスをプラ
ズマ化して処理室内に流通させる。
Further, in a plasma CVD apparatus, these reaction gases are turned into plasma and distributed within a processing chamber.

(発明が解決しようとする問題点) しかしながら上記説明の従来のCVD装置では、処理室
内に流通される反応ガスを処理室内に配置された半導体
ウェハ等の被処理基板の表面に均一に供給することが困
雛であり、このため各半導体ウェハ間あるいは半導体ウ
ェハの表面の部位によって、形成されたCVD膜の膜厚
か不均一になるという問題があった。
(Problems to be Solved by the Invention) However, in the conventional CVD apparatus described above, it is difficult to uniformly supply the reaction gas flowing into the processing chamber to the surface of the substrate to be processed, such as a semiconductor wafer, placed in the processing chamber. Therefore, there is a problem that the thickness of the CVD film formed becomes non-uniform between each semiconductor wafer or depending on the surface area of the semiconductor wafer.

本発明はかかる従来の事情に対処してなされたもので、
各半導体ウェハおよび半導体ウェハの表面全面に、均一
な膜厚でCVD膜を形成することのできるCVD装置を
提供しようとするものである。
The present invention has been made in response to such conventional circumstances,
The present invention aims to provide a CVD apparatus capable of forming a CVD film with a uniform thickness on each semiconductor wafer and the entire surface of the semiconductor wafer.

[発明の構成] (問題点を解決するための手段) すなわち本発明のCVD装置は、被処理基板に酸素原子
ラジカルを含有するガスを噴射して成膜することを特徴
とする。
[Structure of the Invention] (Means for Solving the Problems) That is, the CVD apparatus of the present invention is characterized in that a film is formed by injecting a gas containing oxygen atomic radicals onto a substrate to be processed.

(作 用〉 本発明のCVD装置では、酸素原子ラジカルを含有する
ガスを被処理基板に噴射することにより成膜する。この
手段として反応ガスとして03ガスを用いた場合には、
被処理基板に例えば0.5乃至201Ill′N程度の
近接間隔で近接対向して配置され被処理基板へ向けて所
定の反応ガスを流出させるガス流出部と、このガス流出
部を冷却する手段と、被処理基板を加熱する手段とを備
えている。
(Function) In the CVD apparatus of the present invention, a film is formed by injecting a gas containing oxygen atom radicals onto a substrate to be processed. When 03 gas is used as a reaction gas as this means,
A gas outflow section that is disposed close to and opposite to the substrate to be processed at a close interval of, for example, about 0.5 to 201 Ill'N, and that flows out a predetermined reaction gas toward the substrate to be processed; and a means for cooling the gas outflow section. , and means for heating the substrate to be processed.

したがって、ガス流出部と半導体ウェハ等の被処理基板
との間に形成されたギャップが、均一なガス濃度の反応
空間となり、各被処理基板全面に均一なCVD膜を形成
することができる。
Therefore, the gap formed between the gas outlet and the substrate to be processed, such as a semiconductor wafer, becomes a reaction space with a uniform gas concentration, and a uniform CVD film can be formed over the entire surface of each substrate to be processed.

また、所定の反応ガスは、冷却されたガス流出部から加
熱された被処理基板へ向けて流出されるので、高温にお
いて分解されやすい反応ガスでも被処理基板に供給され
る直前まで分解されることがなく反応ガスを有効に使用
することかでき、高速な成膜速度で処理を行なうことが
できる。
In addition, since the predetermined reaction gas is discharged from the cooled gas outlet toward the heated substrate to be processed, even the reaction gas that is easily decomposed at high temperatures can be decomposed until just before it is supplied to the substrate to be processed. The reaction gas can be used effectively, and the process can be performed at a high film formation rate.

(実施例) 以下、本発明のCVD装置を図面を参照して実施例につ
いて説明する。
(Example) Hereinafter, an example of the CVD apparatus of the present invention will be described with reference to the drawings.

第1図および第4図は本発明の一実施例のCVD装置を
示すもので、この実施例のCVD装置では、処理室11
内には、例えば真空チャック等により半導体ウェハ12
を吸着保持する載置台13が配置されており、この載置
台13は、温度制御装置14によって制御されるし−タ
15を内蔵し、昇降装W16により上下に移動自在とさ
れている。
1 and 4 show a CVD apparatus according to an embodiment of the present invention. In the CVD apparatus of this embodiment, a processing chamber 11
Inside, a semiconductor wafer 12 is held, for example, by a vacuum chuck or the like.
A mounting table 13 is disposed for suctioning and holding the temperature.

載置台13」一方には、円錐形状に形成されたコーン部
17aと、このコーン部17aの開口部に配置され、第
3図にも示すように、例えば金属あるいはセラミック等
の焼結体からなる拡散板17bとから構成されるガス流
出部17が配置されており、ガス流出部17は、冷却装
置18からコーン部17aの外側に配置された配管18
a内を循環される冷却水等により冷却されている。
The mounting table 13 has a cone portion 17a formed in a conical shape on one side, and is disposed in the opening of the cone portion 17a, and is made of a sintered body of metal or ceramic, for example, as shown in FIG. A gas outflow section 17 is arranged, which includes a diffusion plate 17b, and the gas outflow section 17 is connected from a cooling device 18 to a pipe 18 arranged outside the cone section 17a.
It is cooled by cooling water, etc., which is circulated within a.

そしてガス流出部17は、それぞれガス流量調節器1.
9 a、19 b、19cを備えたガス供給源20a、
201)、20cに接続されている。
The gas outlet portions 17 each have a gas flow rate regulator 1.
a gas supply source 20a comprising 9a, 19b, 19c;
201) and 20c.

また、載置台13の周囲には、この載置台13の周囲を
囲むように例えばスリット状あるいは複数の開口からな
る排気口21が配置されており、この排気口21は、排
気装置22に接続されている。
Further, an exhaust port 21 having a slit shape or a plurality of openings, for example, is arranged around the mounting table 13 so as to surround the mounting table 13, and the exhaust port 21 is connected to an exhaust device 22. ing.

そして」1記構成のこの実施例のCVD装置では、次の
ようにしてCVDを行なう。
In the CVD apparatus of this embodiment having the configuration described in item 1, CVD is performed as follows.

すなわち、まず昇降装置16によって載置台13を下降
させ、ガス流出部17との間に図示しないウェハ搬送装
置のアーム等が導入される間隔が設けられ、半導体ウェ
ハ12がこのウェハ搬送装置等により載置台13上に載
置され、吸着保持される。
That is, first, the mounting table 13 is lowered by the lifting device 16, and a gap is provided between it and the gas outlet portion 17 in which an arm or the like of a wafer transfer device (not shown) is introduced, and the semiconductor wafer 12 is placed on the wafer transfer device or the like. It is placed on the mounting table 13 and held by suction.

この後、昇降装置16によって載置台13を上昇させ、
ガス流出部17の拡散板17bと、半導体ウェハ12表
面との間隔が例えば0.5〜20闘程度の所定の間隔に
設定される。なおこの場合、ガス流出部17を昇降装置
によって上下動させてもよい。
After that, the mounting table 13 is raised by the lifting device 16,
The distance between the diffusion plate 17b of the gas outlet portion 17 and the surface of the semiconductor wafer 12 is set to a predetermined distance of, for example, about 0.5 to 20 mm. In this case, the gas outlet portion 17 may be moved up and down by a lifting device.

半導体ウェハ12が載置台13」二に配置されるとガス
供給源20a、20b、20cから供給される酸素ガス
およびS iH4、PH3、B2 H6等の所定の反応
ガスが、少なくとも2種のガス流量調節器1.9 a、
19b、19cにより流量を調節されて、ガス流出部1
7の拡散板1.7bから半導体ウェハ12表面へ向けて
流出される。なおこの時、m置台13は、温度制御装置
14およびヒータ15により例えば250°C乃至50
0℃程度に加熱され、半導体ウェハ12を加熱する。こ
の加熱された半導体ウェハ12の表面に流出噴射された
反応ガスは、酸素原子ラジカルを生成し、この生成した
酸素原子ラジカルと他の反応ガスとの反応により成膜す
る。ガス流出部17は、冷却装置18から配管18a内
を循環される冷却水により冷却されている。この冷却は
、反応ガスが高温に晒されて反応により変化するのを防
止するためである。そして、排気装置22により排気口
21から排気を行ない、処理室11内の気体圧力を70
0〜200Torr程度に設定する。
When the semiconductor wafer 12 is placed on the mounting table 13, oxygen gas and predetermined reaction gases such as SiH4, PH3, B2H6, etc. supplied from the gas supply sources 20a, 20b, and 20c are supplied at least two kinds of gas flow rates. Regulator 1.9 a,
The flow rate is adjusted by 19b and 19c, and the gas outlet part 1
It flows out from the diffusion plate 1.7b of No. 7 toward the surface of the semiconductor wafer 12. At this time, the temperature control device 14 and the heater 15 control the m-mounting table 13 to a temperature of, for example, 250°C to 50°C.
The semiconductor wafer 12 is heated to about 0°C. The reactive gas discharged onto the surface of the heated semiconductor wafer 12 generates oxygen atomic radicals, and a film is formed by the reaction between the generated oxygen atomic radicals and other reactive gases. The gas outlet portion 17 is cooled by cooling water that is circulated through the pipe 18a from the cooling device 18. This cooling is to prevent the reaction gas from being exposed to high temperatures and changing due to reaction. Then, the exhaust device 22 exhausts air from the exhaust port 21 to reduce the gas pressure in the processing chamber 11 to 70%.
Set to about 0 to 200 Torr.

この時、第2図に矢印で示すように、ガス流出部17の
拡散板]、7bから流出したガスは、拡散板17bと半
導体ウェハ12との間に形成された反応空間内で、半導
体ウェハ12の中央部から周辺部へ向かうガスの流れを
形成する。ここで所定の反応ガスは、加熱された半導体
ウェハ12およびその周囲の雰囲気により加熱され、化
学的な反応を起こし、半導体ウェハ12の表面にCVD
Wi&が形成される。
At this time, as shown by the arrow in FIG. A gas flow is formed from the central part of 12 toward the peripheral part. Here, the predetermined reaction gas is heated by the heated semiconductor wafer 12 and the surrounding atmosphere, causing a chemical reaction, and causing CVD to occur on the surface of the semiconductor wafer 12.
Wi& is formed.

上記説明のこの実施例のCVD装置では、ガス流出部1
7と半導体ウェハ12との間に形成されたギャップが、
均一なガス濃度の反応空間となり、各半導体ウェハ12
全面に均一なCVDMを形成することができる。また、
所定の反応ガスは、冷却されたガス流出部17から力i
熱された半導体ウェハ12へ向けて流出されるので、高
温において分解されやすい反応ガスでも半導体ウェハ1
2に供給される直前まで分解されることがなく反応ガス
を有効に使用することかでき、高速な成膜速度で処理を
行なうことができる。
In the CVD apparatus of this embodiment described above, the gas outlet part 1
The gap formed between 7 and the semiconductor wafer 12 is
The reaction space has a uniform gas concentration, and each semiconductor wafer 12
A uniform CVDM can be formed over the entire surface. Also,
The predetermined reaction gas is supplied by a force i from the cooled gas outlet 17.
Since it flows out toward the heated semiconductor wafer 12, even reactive gases that are easily decomposed at high temperatures can be
Since the reaction gas is not decomposed until immediately before being supplied to the reactor gas 2, the reaction gas can be used effectively, and the process can be performed at a high film formation rate.

なお、この実施例では、所定の反応ガスの1つとして酸
素ガスを用いる場合について説明したが、例えば第4図
に示すように、酸素供給源25がら供給される酸素ガス
内にオゾン発生器26によってオゾンを発生させ、オゾ
ンを含む酸素ガスによってCVDUを形成するよう構成
してもよい。このようなオゾンは、高温とされると分解
が促進されるので、ガス流出部17の温度は25℃程度
とすることが好ましい。なお同図において前述の第1図
に示ずCVD装置と同一部分には、同一符号を付しであ
る。
In this embodiment, the case where oxygen gas is used as one of the predetermined reaction gases has been described, but for example, as shown in FIG. The configuration may be such that ozone is generated by the above method, and the CVDU is formed using the oxygen gas containing ozone. Since the decomposition of such ozone is accelerated when the temperature is high, the temperature of the gas outlet portion 17 is preferably about 25°C. In this figure, the same parts as those of the CVD apparatus that are not shown in FIG. 1 are given the same reference numerals.

縦軸を成膜速度、横軸を半導体ウェハ12の温度とした
第5図のグラフの実線A、Bは、それぞれ第1図に示し
なCVD装置および第4図に示したオゾンを含む酸素ガ
スによってCVD膜を形成するCVD装置の成膜速度を
示している。このグラフかられかるように、オゾンを含
む酸素ガスを用いると、より低温で高速な成膜速度を得
ることができる。
Solid lines A and B in the graph of FIG. 5, in which the vertical axis is the deposition rate and the horizontal axis is the temperature of the semiconductor wafer 12, represent the CVD apparatus shown in FIG. 1 and the ozone-containing oxygen gas shown in FIG. 4, respectively. shows the film forming speed of a CVD apparatus that forms a CVD film. As can be seen from this graph, when oxygen gas containing ozone is used, a faster film formation rate can be obtained at a lower temperature.

なお、これら実施例ではガス流出部17を、円錐形状の
コーン部17aの開口部に金属あるいはセラミック等の
焼結体からなる拡散板17bを配置して構成したが、本
発明は係る実施例に限定されるものではなく、例えば拡
散板17bは、第6図に示すように多数の小孔30cを
備えた拡散板30bとしてもよく、第7図に示すように
複数の同心円状のスリット31 cを備えた拡散板31
. b、第8図に示すように直線状のスリブI・32 
cを備えた拡散板32b、第9図に示すように大きさの
異なる小孔33cを配置された拡散板33b、第10図
に示すように渦巻状のスリット34. cを備えた拡散
板34b等としてもよい。
In addition, in these embodiments, the gas outlet portion 17 was constructed by arranging the diffusion plate 17b made of a sintered body of metal or ceramic at the opening of the conical cone portion 17a, but the present invention does not apply to such embodiments. For example, the diffusion plate 17b may include a plurality of small holes 30c as shown in FIG. 6, or a plurality of concentric slits 31c as shown in FIG. Diffusion plate 31 equipped with
.. b, straight sleeve I・32 as shown in Fig. 8;
c, a diffusion plate 33b having small holes 33c of different sizes as shown in FIG. 9, a spiral slit 34 as shown in FIG. It is also possible to use a diffuser plate 34b or the like provided with c.

[発明の効果] 上述のように本発明のCVD装置では、ガス流出部と半
導体ウェハ等の被処理基板との間に形成されたギャップ
が、均一なガス濃度の反応空間となり、各被処理基板全
面に均一なCVDPAを形成することができる。また、
所定の反応ガスは、冷却されたガス流出部から加熱され
た被処理基板へ向けて流出されるので、例えばオゾン等
の高温において分解されやすい反応ガスでも被処理基板
に供給される直前まで分解されることがなく反応ガスを
有効に使用することができ、高速な成膜速度で処理を行
なうことができる。
[Effects of the Invention] As described above, in the CVD apparatus of the present invention, the gap formed between the gas outlet and the substrate to be processed, such as a semiconductor wafer, becomes a reaction space with a uniform gas concentration, and each substrate to be processed is A uniform CVDPA can be formed over the entire surface. Also,
The predetermined reactive gas is discharged from the cooled gas outlet toward the heated substrate to be processed, so even reactive gases that are easily decomposed at high temperatures, such as ozone, are decomposed until just before they are supplied to the substrate to be processed. The reaction gas can be used effectively without any problems, and the process can be performed at a high film formation rate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のCVD装置を示す構成図、
第2図は第1図の要部を示ず縦断面図、第3図は第1図
の要部を示す下面図、第4図は第1図のCVD装置の変
形例を示ず構成図、第5図は成膜速度と温度の関係を示
すグラフ、第6図〜第10図は第3図の変形例を示す下
面図である。 12・・・・・・半導体ウェハ、17・・・・・・ガス
流出部、14・・・・・・温度制御装置、15・・・・
・・ヒータ、18・・・・・・冷却装置。 出願人    東京エレクトロン株式会社代理人 弁理
士  須 由 佐 − 第6図
FIG. 1 is a configuration diagram showing a CVD apparatus according to an embodiment of the present invention;
Fig. 2 is a vertical sectional view showing the main parts of Fig. 1, Fig. 3 is a bottom view showing the main parts of Fig. 1, and Fig. 4 is a configuration diagram without showing a modification of the CVD apparatus of Fig. 1. , FIG. 5 is a graph showing the relationship between film formation rate and temperature, and FIGS. 6 to 10 are bottom views showing modifications of FIG. 3. 12...Semiconductor wafer, 17...Gas outlet, 14...Temperature control device, 15...
...Heater, 18...Cooling device. Applicant Tokyo Electron Co., Ltd. Agent Patent Attorney Yusa Su - Figure 6

Claims (4)

【特許請求の範囲】[Claims] (1)被処理基板に酸素原子ラジカルを含有するガスを
噴射して成膜することを特徴とするCVD装置。
(1) A CVD apparatus that forms a film by injecting a gas containing oxygen atomic radicals onto a substrate to be processed.
(2)酸素原子ラジカルを含有するガスを被処理基板に
噴射する手段は、被処理基板に近接対向して配置され前
記被処理基板へ向けて所定の反応ガスを流出させるガス
流出部と、このガス流出部を冷却する手段と、前記被処
理基板を加熱する手段とを備えたものであることを特徴
とする特許請求の範囲第1項記載のCVD装置。
(2) The means for injecting the gas containing oxygen atom radicals onto the substrate to be processed includes a gas outlet portion disposed close to and opposite to the substrate to be processed and which flows out a predetermined reaction gas toward the substrate to be processed; 2. The CVD apparatus according to claim 1, further comprising means for cooling the gas outlet and means for heating the substrate to be processed.
(3)被処理基板とガス流出部との近接対向間隔は、0
.5mm乃至20mmである特許請求の範囲第2項記載
のCVD装置。
(3) The distance between the substrate to be processed and the gas outlet is 0.
.. The CVD apparatus according to claim 2, which has a diameter of 5 mm to 20 mm.
(4)酸素原子ラジカルを含有するガスは、前記酸素元
子ラジカルがオゾンを原料として生成することを特徴と
する特許請求の範囲第1項乃至第2項記載のCVD装置
(4) The CVD apparatus according to any one of claims 1 to 2, wherein the gas containing oxygen atomic radicals is generated using ozone as a raw material.
JP61229059A 1986-09-27 1986-09-27 How to treat the object Expired - Lifetime JPH062948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61229059A JPH062948B2 (en) 1986-09-27 1986-09-27 How to treat the object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61229059A JPH062948B2 (en) 1986-09-27 1986-09-27 How to treat the object

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP6310129A Division JP2751015B2 (en) 1994-12-14 1994-12-14 Processing method of the object

Publications (2)

Publication Number Publication Date
JPS6383275A true JPS6383275A (en) 1988-04-13
JPH062948B2 JPH062948B2 (en) 1994-01-12

Family

ID=16886093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61229059A Expired - Lifetime JPH062948B2 (en) 1986-09-27 1986-09-27 How to treat the object

Country Status (1)

Country Link
JP (1) JPH062948B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194177A (en) * 1989-01-23 1990-07-31 Anelva Corp Apparatus and method for producing thin film
JP2001152344A (en) * 1999-11-29 2001-06-05 Fujitsu Ltd Chemical vapor deposition apparatus
KR100717583B1 (en) * 2000-08-26 2007-05-15 주성엔지니어링(주) Plasma enhanced chemical vapor deposition apparatus
US7740703B2 (en) * 2003-03-18 2010-06-22 Hitachi Cable, Ltd. Semiconductor film formation device
US7775141B2 (en) 2008-08-01 2010-08-17 Snap-On Incorporated Extended low-torque ratchet wrench
JP4542641B2 (en) * 1999-05-24 2010-09-15 株式会社アルバック Semiconductor manufacturing apparatus and barrier metal film forming method using this apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976870A (en) * 1982-10-25 1984-05-02 Seiko Epson Corp Formation of oxide film by chemical vapor deposition
JPS6085531A (en) * 1983-10-17 1985-05-15 Sony Corp Formation of thin-film
JPS60131969A (en) * 1983-12-20 1985-07-13 Applied Material Japan Kk Chemical vapor growth deposition device
JPS61110767A (en) * 1984-10-31 1986-05-29 Fujitsu Ltd Cvd device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5976870A (en) * 1982-10-25 1984-05-02 Seiko Epson Corp Formation of oxide film by chemical vapor deposition
JPS6085531A (en) * 1983-10-17 1985-05-15 Sony Corp Formation of thin-film
JPS60131969A (en) * 1983-12-20 1985-07-13 Applied Material Japan Kk Chemical vapor growth deposition device
JPS61110767A (en) * 1984-10-31 1986-05-29 Fujitsu Ltd Cvd device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194177A (en) * 1989-01-23 1990-07-31 Anelva Corp Apparatus and method for producing thin film
JP4542641B2 (en) * 1999-05-24 2010-09-15 株式会社アルバック Semiconductor manufacturing apparatus and barrier metal film forming method using this apparatus
JP2001152344A (en) * 1999-11-29 2001-06-05 Fujitsu Ltd Chemical vapor deposition apparatus
KR100717583B1 (en) * 2000-08-26 2007-05-15 주성엔지니어링(주) Plasma enhanced chemical vapor deposition apparatus
US7740703B2 (en) * 2003-03-18 2010-06-22 Hitachi Cable, Ltd. Semiconductor film formation device
US7775141B2 (en) 2008-08-01 2010-08-17 Snap-On Incorporated Extended low-torque ratchet wrench

Also Published As

Publication number Publication date
JPH062948B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
US5164012A (en) Heat treatment apparatus and method of forming a thin film using the apparatus
US4033286A (en) Chemical vapor deposition reactor
JP3184000B2 (en) Method and apparatus for forming thin film
WO2001004376A1 (en) A method of forming a silicon nitride layer on a semiconductor wafer
JPH03287770A (en) Single wafer processing atmospheric cvd device
KR20010014782A (en) Single-substrate-treating apparatus for semiconductor processing system
JPS6383275A (en) Cvd device
US4651673A (en) CVD apparatus
JPH09148259A (en) Lateral reactor
JP4031601B2 (en) Vertical heat treatment equipment
JPH01305524A (en) Plasma cvd device
JP2751015B2 (en) Processing method of the object
JPS6341028A (en) Forming device for oxide film
JP2762576B2 (en) Vapor phase growth equipment
JP3388555B2 (en) Heat treatment apparatus and heat treatment method
JP2002373861A (en) Bath type heat-treating apparatus
JPH09162126A (en) Chemical vapor deposition system
JP2002141290A (en) System for producing semiconductor
JPS622524A (en) Vapor-phase growth device
JPS63181315A (en) Equipment for heat treatment
JPH06302566A (en) Method and apparatus for manufacturing semiconductor device
JPH04329626A (en) Processor of semiconductor device
JPH05222537A (en) Surface treatment device
JPS63161608A (en) Cvd evaporation system
JPH07106270A (en) Heat treatment equipment