JP4031601B2 - Vertical heat treatment equipment - Google Patents

Vertical heat treatment equipment Download PDF

Info

Publication number
JP4031601B2
JP4031601B2 JP28705499A JP28705499A JP4031601B2 JP 4031601 B2 JP4031601 B2 JP 4031601B2 JP 28705499 A JP28705499 A JP 28705499A JP 28705499 A JP28705499 A JP 28705499A JP 4031601 B2 JP4031601 B2 JP 4031601B2
Authority
JP
Japan
Prior art keywords
gas
introduction pipe
gas introduction
processing
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28705499A
Other languages
Japanese (ja)
Other versions
JP2001110730A (en
Inventor
和晃 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP28705499A priority Critical patent/JP4031601B2/en
Publication of JP2001110730A publication Critical patent/JP2001110730A/en
Application granted granted Critical
Publication of JP4031601B2 publication Critical patent/JP4031601B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、縦型熱処理装置に関する。
【0002】
【従来の技術】
例えば半導体装置の製造においては、被処理体例えば半導体ウエハに酸化、拡散、アニール、CVD等の処理を施す半導体製造装置として、例えば一度に多数枚の半導体ウエハの処理が可能なバッチ式の縦型熱処理装置が用いられている。この縦型熱処理装置は、多数枚の半導体ウエハを高さ方向に所定間隔で配列支持した支持具であるボートを処理容器内に収容し、この処理容器内に処理ガスを導入して所定の温度で半導体ウエハに所定の処理例えばCVDによる成膜処理を施すように構成されている。
【0003】
前記処理容器には、処理ガスを導入するガス導入管が設けられており、このガス導入管としては、例えば処理容器内を下方から上方へ立ち上がり先端が閉塞された直管からなり、その管壁に半導体ウエハに対して処理ガスを噴射するガス噴出孔を所定の間隔で形成してなるもの(分散インジェクタともいう)が用いられている。
【0004】
【発明が解決しようとする課題】
しかしながら、前記ガス導入管を備えた縦型熱処理装置においては、ガス導入管内に圧力勾配が生じ、ガス噴出孔からの処理ガスの噴出流量がガス導入管のガス導入口側から先端に行くほど少なくなるため、ボートに支持された多数枚の半導体ウエハの面間ないし面間方向(高さ方向)で処理ガスの供給量にばらつき(不均一)が発生し、面間方向で処理(例えば成膜処理での膜厚、拡散処理でのドーピング濃度)の不均一が発生する問題があった。
【0005】
この問題を解決するために、例えばガス導入管のガス噴出孔の孔径をガス導入口側から先端に行くほど大きくしたもの(前者)や、あるいは、長さの異なる複数のガス導入管を設けてそれぞれガス流量を制御するようにしたもの(後者)等が提案されているが、前者はガス噴出量の最適化に多大な時間と調整が必要で、条件変更等への融通がきかず、後者はガス供給系の設備が複雑になり、コストアップになる等の問題がある。
【0006】
そこで、本発明は、前記事情を考慮してなされたもので、簡単な構成で被処理体の面間方向でのガス供給量の均一化が図れ、面間方向での処理の均一化が図れる縦型熱処理装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明のうち、請求項1に係る発明は、多数の被処理体を高さ方向に所定間隔で支持して処理容器内に収容し、該処理容器内に処理ガスを導入して所定の温度で被処理体を処理する縦型熱処理装置において、前記処理容器内に、下方から上方へ立ち上がり先端が閉塞された直管からなり、その管壁に被処理体に対して処理ガスを噴射するガス噴出孔を所定の間隔で形成した第1のガス導入管と、下方から上方へ立ち上がり且つ上方から下方へ折り返されて先端が閉塞されたU字管からなり、その下方へ折り返された部分の管壁に前記被処理体に対して処理ガスを噴射するガス噴出孔を所定の間隔で形成した第2のガス導入管とを設けたことを特徴とする。
【0008】
請求項2に係る発明は、請求項1記載の縦型熱処理装置において、前記第1のガス導入管および第2のガス導入管の各ガス供給系には、流量制御機構が設けられていることを特徴とする。
【0009】
【発明の実施の形態】
以下に、本発明の実施の形態を添付図面に基いて詳述する。図1は本発明の実施の形態を示す縦型熱処理装置の縦断面図、図2は同縦型熱処理装置におけるガス導入管の構成を示す図、図3は図1のヒータを除くA−A矢視概略的断面図である。
【0010】
半導体製造装置である縦型熱処理装置は、図1に示すように、多数例えば150枚程度の被処理体例えば半導体ウエハwを支持具であるボーと1に高さ方向に所定間隔で配列支持して処理容器である反応管2内に収容し、この反応管2内に処理ガスを導入して所定の温度で半導体ウエハwに所定の熱処理例えばCVD処理を施すように構成されている。
【0011】
前記反応管2の周囲には、炉内を所望の温度例えば600〜1200℃程度に加熱する加熱手段であるヒータ3が設けられている。このヒータ3は、反応管2の周囲を取り囲む円筒状の断熱材4の内周に発熱抵抗線(発熱抵抗体)5を周方向に蛇行状もしくは長手方向に螺旋状に配設して構成されている。前記ヒータ3は、高さ方向に複数のゾーンに分割され、各ゾーン毎に独立して温度制御可能に構成されていてもよい。断熱材4の外側は、図示しない水冷ジャケットで覆われている。
【0012】
前記ヒータ3は、ベースプレート6上に設置されている。なお、ヒータ3は、反応管2とヒータ3との間の空間に冷却空気を送風し、且つ、断熱材4の天井部に設けられた図示しない強制排気機構により強制排気することにより、炉を急速に冷却し得るようにした強制空冷ヒータであってもよい。強制空冷ヒータを採用することにより、縦型熱処理装置を急速昇降温炉として構成することができる。
【0013】
前記反応管2は、耐熱性および耐食性を有する材料例えば石英からなり、上端が閉塞され、下端が炉口として開放された縦長円筒状に形成されている。本実施の形態では、炉内を減圧した熱処理例えば減圧CVD処理が可能なように炉口を高気密構造とするために、反応管2の下端部に短円筒状のマニホールド7が取付けられている。このマニホールド7は、耐熱性および耐食性を有する材料例えばステンレスからなっている。
【0014】
マニホールド7の側壁には、炉内に処理ガスや不活性ガスを導入する後述のガス導入管8や図示しない温度計を挿通して気密に固定する導入部(導入ポート)9と、炉内を排気する排気部(排気ポート)9とが設けらている。排気部13には、圧力制御機構を備えた排気系が接続され、この排気系は工場排気系に接続されている(図示省略)。
【0015】
前記マニホールド7の上端部はベースプレート6に取付固定され、マニホールド7の下端部は炉口として開放されている。反応管2の下方には、マニホールド7の下部開口端に図示しない気密材例えばOリングを介して当接されて炉口を気密に閉塞する蓋体11が昇降機構12により昇降可能に設けられている。この蓋体11上には前記ボート1が保温筒13を介して載置されている。昇降機構12により、反応管2内へのボート1の搬入搬出と前記蓋体11の開閉が行われるようになっている。また、蓋体11には、半導体ウエハwを面内均一に処理するためにボート1を保温筒13と共に回転させる回転機構14が設けられている。
【0016】
本実施の形態の反応管2は、内管2aと外管2bからなる二重管構造とされている。前記外管2bは、上端が閉塞され、下端が開口され、その開口端にフランジ部2fを有している。この外管2bは、その開口端を前記マニホールド7の上端面(上部開口端)に図示しない気密部材例えばOリングを介して当接させ、フランジ部2fをフランジ押え15で固定することにより、マニホールド7上に気密に設置されている。
【0017】
前記内管2aは、上端および下端が開口されている。この内管2aは、その下端をマニホールド7の下端開口部(炉口)側の内周に着脱自在に取付けられ、外管2bの内側に同心状に配置されている。
【0018】
一方、前記ガス導入管8は、ガス導入口8a側の基端側がL字状に屈曲され、前記導入部9に気密に挿通されて固定され、先端側が反応管2内にその内管2aの内壁に沿って上方へ垂直に立ち上がった状態で設置されている。前記ガス導入管8は、図2に示すように、分散インジェクタである第1のガス導入管8Aと、逆分散インジェクタである第2のガス導入管8Bとから構成されている。
【0019】
第1のガス導入管8Aは、下方から上方へ向って立ち上がり先端8eが閉塞された石英製の直管(ストレート管)からなり、その管壁には半導体ウエハwに対して処理ガスを噴射するガス噴出孔16が所定の間隔例えば半導体ウエハwの配列ピッチと同じ間隔で形成されている。この第1のガス導入管8Aに形成された多数のガス噴出孔16の孔径は全て同一とされている。また、前記ガス噴出孔16は、ボート1に支持された各半導体ウエハwの被処理面(上面)に沿って処理ガスを水平に供給するように、各半導体ウエハwの上側位置に対応して形成されている。
【0020】
第2のガス導入管8Bは、下方から上方へ立ち上がり且つ上方から下方へ折り返されて先端8eが閉塞された石英製のU字管からなり、その下方へ折り返されて延出した部分の管壁には半導体ウエハwに対して処理ガスを噴射するガス噴出孔17が所定の間隔例えば半導体ウエハwの配列ピッチと同じ間隔で形成されている。すなわち、第2のガス導入管8Bは、垂直の立上り部8hと、この立上り部8hの上端から逆U字状の屈曲部8uを介して下方へ延出した垂直の下がり部8gとを有しており、この下がり部8gに形成されたガス噴出孔17が第1のガス導入管8Aのガス噴出孔16と上下逆の関係で対応している。
【0021】
この第2のガス導入管8Bのガス噴出孔17も第1のガス導入管8Aのガス噴出孔16と同様に、孔径が全て同一とされており、また、ボート1に支持された各半導体ウエハwの位置に対応して形成されている。なお、第1のガス導入管8Aのガス導入孔16と第2のガス導入管8Bのガス噴出孔17とは、孔径が同じでもよく、異なっていてもよい。
【0022】
前記第1のガス導入管8Aおよび第2のガス導入管8Bの各ガス導入口8aには、ガス供給源に通じるガス供給系18a,18bが接続され、各ガス供給系18a,18bには流量制御機構19a,19bが設けられている。この場合、ガス供給源は、共通のものであってもよく、あるいは、同種の処理ガスを供給する別々のものであってもよい。
【0023】
前記第1のガス導入管8Aにおいては、ガス噴出孔16から噴出される処理ガスの噴出量がガス導入管8Aの上方へ行くほど減少するのに対し、前記第2のガス導入管8Bにおいては、逆に処理ガスの噴出量がガス導入管8Bの下方へ行くほど減少するため、これら二つのガス導入管8A,8Bを組み合わせることにより、簡単な構成で半導体ウエハwの面間方向でのガス供給量の均一化が図れるようになっている。
【0024】
なお、図2では、ガス供給量が面間方向で均一になる様子を図示するために、第1のガス導入管8Aと第2のガス導入管8Bを対向配置した構成が示されているが、具体的には、前記第1のガス導入管8Aおよび第2のガス導入管8Bは、図3に示すように、反応管2内に平行に並んで配置されている。
【0025】
次に、以上の構成からなる縦型熱処理装置の作用を説明する。多数枚の半導体ウエハwを高さ方向に所定ピッチで配列収納したボート1を保温筒13上に載置し、昇降機構12により蓋体11を上昇させることで、ボート1を反応管2内の炉心に収容配置すると共に、マニホールド7の下端開口部(炉口)を蓋体11で密閉する。
【0026】
次に、反応管2内を不活性ガス例えば窒素ガスで置換した後、ヒータ3により反応管2内を所定の温度まで昇温させ、半導体ウエハwに第1および第2のガス導入管8A,8Bより処理ガスを供給して所定の処理例えばCVD処理または拡散処理を実施する。この場合、処理ガスは、処理ガス供給源から処理ガス供給系18a,18bを介して第1のガス導入管8Aと第2のガス導入管8Bとにそれぞれ流量制御機構19a,19bにより流量が制御されて供給される。
【0027】
第1のガス導入管8Aは、ガス噴出孔16から噴出される処理ガスの噴出量がガス導入管8Aの上方へ行くほど減少するのに対し、前記第2のガス導入管8Bは、逆に処理ガスの噴出量がガス導入管8Bの下方へ行くほど減少するため、これら二つのガス導入管8A,8Bを組み合わせることにより、半導体ウエハwの面間方向でのガス供給量の均一化が図れ、面間方向での均一な処理例えばCVD処理では膜厚の均一化、拡散処理ではドーピング濃度の均一化が図れる。
【0028】
このように縦型熱処理装置によれば、多数の半導体ウエハwを高さ方向に所定間隔で支持して反応管2内に収容し、この反応管2内に処理ガスを導入して所定の温度で半導体ウエハwを処理する縦型熱処理装置において、前記反応管2内に、下方から上方へ立ち上がり先端8eが閉塞された直管からなり、その管壁に半導体ウエハwに対して処理ガスを噴射するガス噴出孔16を所定の間隔で形成した第1のガス導入管8Aと、下方から上方へ立ち上がり且つ上方から下方へ折り返されて先端が閉塞されたU字管からなり、その下方へ折り返された部分の管壁に前記半導体ウエハwに対して処理ガスを噴射するガス噴出孔17を所定の間隔で形成した第2のガス導入管8Bとを設けているため、簡単な構成で半導体ウエハwの面間方向でのガス供給量の均一化が図れ、面間方向での処理の均一化が図れ、歩留まりの向上が図れる。
【0029】
前記縦型熱処理装置は、従来の分散インジェクタ8Aに逆分散インジェクタ8Bを追加するだけの簡単な構成で、前述した効果を奏することができ、ガス供給系も二系統で足りるため、設備コストも抑えることができる。また、前記第1のガス導入管8Aおよび第2のガス導入管8Bの各ガス供給系18a、18bには、流量制御機構19a,19bが設けられているため、半導体ウエハwの面間方向での処理ガス供給量のバランスを容易に調整することができる。
【0030】
本発明は、D−Poly(処理ガスとして例えばホスフィンを用い、シリコン膜にリンをドーピングする処理、P−Doped−Polysiliconともいう。)や、F−Poly(炉内の温度を温度勾配をつけずに一定にし、処理ガスとして例えばモノシランを用いてシリコン膜を成膜する処理、Flat−Polysiliconともいう。)等の各プロセスにも適用可能である。
【0031】
以上、本発明の実施の形態を図面により詳述してきたが、本発明は前記実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲での種々の設計変更等が可能である。例えば、反応管内において処理ガスの水平流を確保するために、第1および第2のガス導入管と対向する内管の管壁に排気口を形成してもよい。処理容器である反応管としては、実施の形態では二重管構造を採用しているが、単一管構造であってもよい。本発明に係る縦型熱処理装置は、CVD処理や拡散処理だけでなく、酸化処理等その他の処理にも適用可能である。被処理体としては、半導体ウエハ以外に、例えばガラス基板やLCD基板等が適用可能である。
【0032】
【発明の効果】
以上要するに本発明によれば、次のような効果を奏することができる。
【0033】
(1)請求項1に係る発明によれば、多数の被処理体を高さ方向に所定間隔で支持して処理容器内に収容し、該処理容器内に処理ガスを導入して所定の温度で被処理体を処理する縦型熱処理装置において、前記処理容器内に、下方から上方へ立ち上がり先端が閉塞された直管からなり、その管壁に被処理体に対して処理ガスを噴射するガス噴出孔を所定の間隔で形成した第1のガス導入管と、下方から上方へ立ち上がり且つ上方から下方へ折り返されて先端が閉塞されたU字管からなり、その下方へ折り返された部分の管壁に前記被処理体に対して処理ガスを噴射するガス噴出孔を所定の間隔で形成した第2のガス導入管とを設けているため、簡単な構成で被処理体の面間方向でのガス供給量の均一化が図れ、面間方向での処理の均一化が図れる。
【0034】
(2)請求項2に係る発明によれば、前記第1のガス導入管および第2のガス導入管の各ガス供給系には、流量制御機構が設けられているため、被処理体の面間方向での処理ガス供給量のバランスを容易に調整することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す縦型熱処理装置の縦断面図である。
【図2】同縦型熱処理装置におけるガス導入管の構成を示す図である。
【図3】図1のヒータを除くA−A矢視概略的断面図である。
【符号の説明】
w 半導体ウエハ(被処理体)
2 反応管(処理容器)
8A 第1のガス導入管
8B 第2のガス導入管
16,17 ガス噴出孔
18a,18b ガス供給系
19a,19b 流量制御機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vertical heat treatment apparatus.
[0002]
[Prior art]
For example, in the manufacture of semiconductor devices, as a semiconductor manufacturing apparatus that performs processing such as oxidation, diffusion, annealing, CVD, etc. on an object to be processed such as a semiconductor wafer, for example, a batch type vertical type capable of processing a large number of semiconductor wafers at a time A heat treatment apparatus is used. This vertical heat treatment apparatus accommodates a boat, which is a support member in which a large number of semiconductor wafers are arranged and supported at a predetermined interval in the height direction, in a processing container, and introduces a processing gas into the processing container to generate a predetermined temperature. The semiconductor wafer is configured to be subjected to a predetermined process such as a film forming process by CVD.
[0003]
The processing container is provided with a gas introduction pipe for introducing a processing gas. The gas introduction pipe is, for example, a straight pipe that rises from the bottom to the top in the processing container and has its tip closed, and its wall In addition, a gas injection hole (also referred to as a dispersion injector) in which gas injection holes for injecting a processing gas to a semiconductor wafer are formed at a predetermined interval is used.
[0004]
[Problems to be solved by the invention]
However, in the vertical heat treatment apparatus provided with the gas introduction pipe, a pressure gradient is generated in the gas introduction pipe, and the flow rate of the processing gas from the gas injection hole decreases from the gas introduction port side to the tip of the gas introduction pipe. Therefore, a variation (non-uniformity) occurs in the supply amount of the processing gas between planes or between planes (height direction) of a large number of semiconductor wafers supported by the boat, and processing (for example, film formation) occurs in the plane direction. There has been a problem that non-uniformity of the film thickness in the treatment and the doping concentration in the diffusion treatment occurs.
[0005]
In order to solve this problem, for example, the diameter of the gas injection hole of the gas introduction pipe is increased from the gas introduction port side to the tip (the former), or a plurality of gas introduction pipes having different lengths are provided. A gas flow rate control (the latter) has been proposed for each, but the former requires a great deal of time and adjustment to optimize the gas ejection amount, and the latter is not flexible for changing conditions. There are problems such as complicated gas supply system facilities and increased costs.
[0006]
Therefore, the present invention has been made in consideration of the above-described circumstances, and it is possible to achieve a uniform gas supply amount in the direction between the surfaces of the object to be processed with a simple configuration, and to achieve a uniform process in the direction between the surfaces. An object is to provide a vertical heat treatment apparatus.
[0007]
[Means for Solving the Problems]
Among the present inventions, the invention according to claim 1 supports a number of objects to be processed at predetermined intervals in the height direction, accommodates them in a processing container, introduces a processing gas into the processing container, and supplies a predetermined temperature. In the vertical heat treatment apparatus for processing an object to be processed, a gas is formed in the processing container, which is a straight pipe that rises from the bottom to the top and whose tip is closed, and injects a processing gas to the object to be processed on the tube wall A first gas introduction pipe having ejection holes formed at predetermined intervals, and a U-shaped pipe that rises from the bottom to the top and is folded from the top to the bottom and closed at the tip, and is the part of the part folded back to the bottom. The wall is provided with a second gas introduction pipe in which gas ejection holes for injecting a processing gas to the object to be processed are formed at predetermined intervals.
[0008]
The invention according to claim 2 is the vertical heat treatment apparatus according to claim 1, wherein a flow rate control mechanism is provided in each gas supply system of the first gas introduction pipe and the second gas introduction pipe. It is characterized by.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. 1 is a longitudinal sectional view of a vertical heat treatment apparatus showing an embodiment of the present invention, FIG. 2 is a view showing a configuration of a gas introduction pipe in the vertical heat treatment apparatus, and FIG. 3 is an AA excluding the heater of FIG. It is arrow schematic sectional drawing.
[0010]
As shown in FIG. 1, a vertical heat treatment apparatus, which is a semiconductor manufacturing apparatus, supports a large number of, for example, about 150 objects to be processed, for example, semiconductor wafers w, arranged at predetermined intervals in the height direction on a bow and 1, which are support tools. The semiconductor wafer w is housed in a reaction tube 2 that is a processing vessel, and a processing gas is introduced into the reaction tube 2 so that a predetermined heat treatment, for example, a CVD process is performed on the semiconductor wafer w at a predetermined temperature.
[0011]
Around the reaction tube 2, there is provided a heater 3 as a heating means for heating the inside of the furnace to a desired temperature, for example, about 600 to 1200 ° C. The heater 3 is configured by arranging a heating resistance wire (heating resistor) 5 in a meandering manner in the circumferential direction or in a spiral shape in the longitudinal direction on the inner circumference of a cylindrical heat insulating material 4 surrounding the reaction tube 2. ing. The heater 3 may be divided into a plurality of zones in the height direction and configured to be capable of temperature control independently for each zone. The outside of the heat insulating material 4 is covered with a water cooling jacket (not shown).
[0012]
The heater 3 is installed on a base plate 6. The heater 3 blows cooling air into the space between the reaction tube 2 and the heater 3, and forcibly exhausts the furnace by a forced exhaust mechanism (not shown) provided on the ceiling of the heat insulating material 4. It may be a forced air cooling heater that can be rapidly cooled. By employing the forced air cooling heater, the vertical heat treatment apparatus can be configured as a rapid heating / cooling furnace.
[0013]
The reaction tube 2 is made of a heat-resistant and corrosion-resistant material such as quartz, and is formed in a vertically long cylindrical shape with the upper end closed and the lower end opened as a furnace port. In the present embodiment, a short cylindrical manifold 7 is attached to the lower end portion of the reaction tube 2 in order to make the furnace port a highly airtight structure so that heat treatment in which the pressure inside the furnace is reduced, for example, low pressure CVD treatment, is possible. . The manifold 7 is made of a material having heat resistance and corrosion resistance, such as stainless steel.
[0014]
On the side wall of the manifold 7, a gas introduction pipe 8 (described later) for introducing processing gas and inert gas into the furnace and a thermometer (not shown) are inserted and fixed in an airtight manner. An exhaust section (exhaust port) 9 for exhausting is provided. An exhaust system having a pressure control mechanism is connected to the exhaust unit 13, and this exhaust system is connected to a factory exhaust system (not shown).
[0015]
The upper end portion of the manifold 7 is attached and fixed to the base plate 6, and the lower end portion of the manifold 7 is opened as a furnace port. Below the reaction tube 2, a lid body 11 that is brought into contact with the lower opening end of the manifold 7 through an airtight material (not shown) such as an O-ring and hermetically closes the furnace port is provided by an elevating mechanism 12. Yes. The boat 1 is placed on the lid 11 via a heat insulating cylinder 13. The elevating mechanism 12 carries the boat 1 into and out of the reaction tube 2 and opens and closes the lid 11. Further, the lid 11 is provided with a rotating mechanism 14 that rotates the boat 1 together with the heat insulating cylinder 13 in order to uniformly process the semiconductor wafer w in the surface.
[0016]
The reaction tube 2 of the present embodiment has a double tube structure composed of an inner tube 2a and an outer tube 2b. The outer tube 2b is closed at the upper end, opened at the lower end, and has a flange portion 2f at the open end. The outer pipe 2b is brought into contact with the upper end surface (upper opening end) of the manifold 7 through an airtight member (not shown) such as an O-ring, and the flange portion 2f is fixed with a flange presser 15 so that the manifold 2 7 is installed in an airtight manner.
[0017]
The inner pipe 2a has an upper end and a lower end opened. The lower end of the inner tube 2a is detachably attached to the inner periphery of the manifold 7 on the lower end opening (furnace port) side, and is concentrically disposed inside the outer tube 2b.
[0018]
On the other hand, the gas introduction pipe 8 is bent in an L shape at the base end side on the gas introduction port 8a side, and is hermetically inserted and fixed to the introduction portion 9, and the distal end side of the inner pipe 2a of the inner pipe 2a is inserted into the reaction tube 2. It is installed in a state of vertically rising along the inner wall. As shown in FIG. 2, the gas introduction pipe 8 includes a first gas introduction pipe 8A that is a dispersion injector and a second gas introduction pipe 8B that is a reverse dispersion injector.
[0019]
The first gas introduction pipe 8A is a straight pipe made of quartz (straight pipe) whose rising tip 8e is closed from the lower side to the upper side, and the processing gas is sprayed onto the semiconductor wafer w onto the pipe wall. The gas ejection holes 16 are formed at a predetermined interval, for example, the same interval as the arrangement pitch of the semiconductor wafers w. All the gas ejection holes 16 formed in the first gas introduction pipe 8A have the same hole diameter. The gas ejection holes 16 correspond to the upper positions of the semiconductor wafers w so as to supply the processing gas horizontally along the surface to be processed (upper surface) of the semiconductor wafers w supported by the boat 1. Is formed.
[0020]
The second gas introduction pipe 8B is made of a quartz U-shaped pipe that rises from the bottom to the top and is folded from the top to the bottom and closed at the tip 8e. The gas injection holes 17 for injecting the processing gas to the semiconductor wafer w are formed at a predetermined interval, for example, the same interval as the arrangement pitch of the semiconductor wafers w. That is, the second gas introduction pipe 8B has a vertical rising portion 8h and a vertical falling portion 8g extending downward from the upper end of the rising portion 8h via an inverted U-shaped bent portion 8u. The gas ejection holes 17 formed in the descending portion 8g correspond to the gas ejection holes 16 of the first gas introduction pipe 8A in an upside down relationship.
[0021]
The gas ejection holes 17 of the second gas introduction pipe 8B have the same diameter as the gas ejection holes 16 of the first gas introduction pipe 8A, and each semiconductor wafer supported by the boat 1 has the same diameter. It is formed corresponding to the position of w. The gas introduction hole 16 of the first gas introduction pipe 8A and the gas ejection hole 17 of the second gas introduction pipe 8B may have the same or different hole diameters.
[0022]
Gas supply systems 18a and 18b communicating with a gas supply source are connected to the gas introduction ports 8a of the first gas introduction pipe 8A and the second gas introduction pipe 8B, and flow rates are connected to the gas supply systems 18a and 18b. Control mechanisms 19a and 19b are provided. In this case, the gas supply source may be common, or may be separate sources that supply the same kind of processing gas.
[0023]
In the first gas introduction pipe 8A, the amount of the processing gas ejected from the gas ejection hole 16 decreases as it goes above the gas introduction pipe 8A, whereas in the second gas introduction pipe 8B, On the contrary, the amount of the processing gas ejected decreases as it goes below the gas introduction pipe 8B. Therefore, by combining these two gas introduction pipes 8A and 8B, the gas in the direction between the surfaces of the semiconductor wafer w can be obtained with a simple configuration. The supply amount can be made uniform.
[0024]
Note that FIG. 2 shows a configuration in which the first gas introduction pipe 8A and the second gas introduction pipe 8B are arranged to face each other in order to illustrate how the gas supply amount becomes uniform in the inter-plane direction. Specifically, the first gas introduction pipe 8A and the second gas introduction pipe 8B are arranged in parallel in the reaction tube 2 as shown in FIG.
[0025]
Next, the operation of the vertical heat treatment apparatus having the above configuration will be described. The boat 1 in which a large number of semiconductor wafers w are arranged and stored at a predetermined pitch in the height direction is placed on the heat insulating cylinder 13, and the lid 11 is raised by the elevating mechanism 12, whereby the boat 1 is placed in the reaction tube 2. While being accommodated in the reactor core, the lower end opening (furnace port) of the manifold 7 is sealed with the lid 11.
[0026]
Next, after the inside of the reaction tube 2 is replaced with an inert gas such as nitrogen gas, the temperature inside the reaction tube 2 is raised to a predetermined temperature by the heater 3, and the first and second gas introduction pipes 8 </ b> A, A processing gas is supplied from 8B to perform a predetermined process such as a CVD process or a diffusion process. In this case, the flow rate of the processing gas is controlled by the flow rate control mechanisms 19a and 19b from the processing gas supply source to the first gas introduction pipe 8A and the second gas introduction pipe 8B through the processing gas supply systems 18a and 18b, respectively. Supplied.
[0027]
In the first gas introduction pipe 8A, the amount of the processing gas ejected from the gas ejection hole 16 decreases as it goes above the gas introduction pipe 8A, whereas in the second gas introduction pipe 8B, Since the flow rate of the processing gas decreases toward the lower side of the gas introduction pipe 8B, by combining these two gas introduction pipes 8A and 8B, the gas supply amount in the direction between the surfaces of the semiconductor wafer w can be made uniform. Further, uniform processing in the inter-surface direction, for example, CVD processing can achieve uniform film thickness, and diffusion processing can achieve uniform doping concentration.
[0028]
As described above, according to the vertical heat treatment apparatus, a large number of semiconductor wafers w are supported at predetermined intervals in the height direction and are accommodated in the reaction tube 2, and a processing gas is introduced into the reaction tube 2 to obtain a predetermined temperature. In the vertical heat treatment apparatus for processing the semiconductor wafer w, the reaction tube 2 is a straight tube that rises from the bottom to the top and closes the tip 8e, and injects a processing gas to the semiconductor wafer w on the tube wall. The first gas introduction pipe 8A is formed with gas ejection holes 16 formed at predetermined intervals, and a U-shaped pipe that rises from the bottom to the top and is folded from the top to the bottom and closed at the tip, and is folded back to the bottom. Since the second gas introduction pipe 8B in which the gas ejection holes 17 for injecting the processing gas to the semiconductor wafer w are formed at a predetermined interval is provided on the tube wall of the part, the semiconductor wafer w can be configured with a simple configuration. In the face-to-face direction Hakare the uniformity of supply amount, Hakare the uniformity of the processing in the inter-plane direction, thereby improving the yield.
[0029]
The vertical heat treatment apparatus has the simple configuration of simply adding the inverse dispersion injector 8B to the conventional dispersion injector 8A, and can achieve the effects described above. Since two gas supply systems are sufficient, the equipment cost can be reduced. be able to. In addition, since the gas supply systems 18a and 18b of the first gas introduction pipe 8A and the second gas introduction pipe 8B are provided with flow control mechanisms 19a and 19b, respectively, in the direction between the surfaces of the semiconductor wafer w. The balance of the process gas supply amount can be easily adjusted.
[0030]
The present invention relates to D-Poly (treatment using, for example, phosphine as a processing gas and doping phosphorus into a silicon film, also referred to as P-Doped-Polysilicon), F-Poly (the temperature inside the furnace is not given a temperature gradient). The process gas is also applicable to various processes such as a process for forming a silicon film using monosilane as a processing gas, also referred to as “Flat-Polysilicon”.
[0031]
Although the embodiments of the present invention have been described in detail with reference to the drawings, the present invention is not limited to the above-described embodiments, and various design changes and the like can be made without departing from the scope of the present invention. is there. For example, in order to secure a horizontal flow of the processing gas in the reaction tube, an exhaust port may be formed in the tube wall of the inner tube facing the first and second gas introduction tubes. As a reaction tube which is a processing vessel, a double tube structure is adopted in the embodiment, but a single tube structure may be used. The vertical heat treatment apparatus according to the present invention can be applied not only to CVD processing and diffusion processing, but also to other processing such as oxidation processing. As an object to be processed, for example, a glass substrate or an LCD substrate can be applied in addition to the semiconductor wafer.
[0032]
【The invention's effect】
In short, according to the present invention, the following effects can be obtained.
[0033]
(1) According to the first aspect of the present invention, a large number of objects to be processed are supported at predetermined intervals in the height direction and are accommodated in a processing container, and a processing gas is introduced into the processing container and a predetermined temperature is set. In the vertical heat treatment apparatus for processing an object to be processed, a gas is formed in the processing container, which is a straight pipe that rises from the bottom to the top and whose tip is closed, and injects a processing gas to the object to be processed on the tube wall A first gas introduction pipe having ejection holes formed at predetermined intervals, and a U-shaped pipe that rises from the bottom to the top and is folded from the top to the bottom and closed at the tip, and is the part of the part folded back to the bottom. Since the wall is provided with a second gas introduction pipe in which gas ejection holes for injecting a processing gas to the object to be processed are formed at a predetermined interval, the surface of the object to be processed can be formed in a simple configuration. The gas supply amount can be made uniform, and the treatment in the plane direction can be made uniform. That.
[0034]
(2) According to the invention of claim 2, each gas supply system of the first gas introduction pipe and the second gas introduction pipe is provided with a flow rate control mechanism. It is possible to easily adjust the balance of the process gas supply amount in the inter-direction.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a vertical heat treatment apparatus showing an embodiment of the present invention.
FIG. 2 is a view showing a configuration of a gas introduction pipe in the vertical heat treatment apparatus.
FIG. 3 is a schematic cross-sectional view taken along the line AA excluding the heater of FIG. 1;
[Explanation of symbols]
w Semiconductor wafer (object to be processed)
2 reaction tube (processing vessel)
8A First gas introduction pipe 8B Second gas introduction pipe 16, 17 Gas ejection holes 18a, 18b Gas supply systems 19a, 19b Flow rate control mechanism

Claims (2)

多数の被処理体を高さ方向に所定間隔で支持して処理容器内に収容し、該処理容器内に処理ガスを導入して所定の温度で被処理体を処理する縦型熱処理装置において、前記処理容器内に、下方から上方へ立ち上がり先端が閉塞された直管からなり、その管壁に被処理体に対して処理ガスを噴射するガス噴出孔を所定の間隔で形成した第1のガス導入管と、下方から上方へ立ち上がり且つ上方から下方へ折り返されて先端が閉塞されたU字管からなり、その下方へ折り返された部分の管壁に前記被処理体に対して処理ガスを噴射するガス噴出孔を所定の間隔で形成した第2のガス導入管とを設けたことを特徴とする縦型熱処理装置。In a vertical heat treatment apparatus that supports a large number of objects to be processed at predetermined intervals in a height direction, accommodates them in a processing container, introduces a processing gas into the processing container, and processes the objects to be processed at a predetermined temperature. 1st gas which consists of the straight pipe which stood up from the lower part to the upper part in the said process container, and the front-end | tip was obstruct | occluded, and formed the gas injection hole which injects process gas with respect to a to-be-processed object at the predetermined | prescribed space | interval It consists of an introduction pipe and a U-shaped pipe that rises from the bottom to the top and is folded from the top to the bottom and closed at the tip, and the processing gas is sprayed onto the object to be treated onto the pipe wall of the part folded back to the bottom. A vertical heat treatment apparatus provided with a second gas introduction pipe having gas ejection holes formed at predetermined intervals. 前記第1のガス導入管および第2のガス導入管の各ガス供給系には、流量制御機構が設けられていることを特徴とする請求項1記載の縦型熱処理装置。The vertical heat treatment apparatus according to claim 1, wherein a flow rate control mechanism is provided in each gas supply system of the first gas introduction pipe and the second gas introduction pipe.
JP28705499A 1999-10-07 1999-10-07 Vertical heat treatment equipment Expired - Lifetime JP4031601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28705499A JP4031601B2 (en) 1999-10-07 1999-10-07 Vertical heat treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28705499A JP4031601B2 (en) 1999-10-07 1999-10-07 Vertical heat treatment equipment

Publications (2)

Publication Number Publication Date
JP2001110730A JP2001110730A (en) 2001-04-20
JP4031601B2 true JP4031601B2 (en) 2008-01-09

Family

ID=17712468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28705499A Expired - Lifetime JP4031601B2 (en) 1999-10-07 1999-10-07 Vertical heat treatment equipment

Country Status (1)

Country Link
JP (1) JP4031601B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899744B2 (en) * 2006-09-22 2012-03-21 東京エレクトロン株式会社 Oxidizer for workpiece
JP5198106B2 (en) 2008-03-25 2013-05-15 東京エレクトロン株式会社 Film forming apparatus and film forming method
JP5141607B2 (en) * 2009-03-13 2013-02-13 東京エレクトロン株式会社 Deposition equipment
JP6320824B2 (en) * 2014-03-31 2018-05-09 株式会社東芝 Gas supply pipe and gas processing apparatus
JP6435967B2 (en) * 2015-03-31 2018-12-12 東京エレクトロン株式会社 Vertical heat treatment equipment
KR20230113657A (en) 2018-03-23 2023-07-31 가부시키가이샤 코쿠사이 엘렉트릭 Substrate processing apparatus, method of manufacturing semiconductor device and computer program
JP2022118629A (en) 2021-02-02 2022-08-15 東京エレクトロン株式会社 Processing apparatus and processing method

Also Published As

Publication number Publication date
JP2001110730A (en) 2001-04-20

Similar Documents

Publication Publication Date Title
KR100260120B1 (en) Heat treatment apparatus
JP3151118B2 (en) Heat treatment equipment
TWI450333B (en) Heat processing apparatus for semiconductor process
US4421786A (en) Chemical vapor deposition reactor for silicon epitaxial processes
JP3184000B2 (en) Method and apparatus for forming thin film
JPH03287770A (en) Single wafer processing atmospheric cvd device
KR20080081823A (en) Microbatch deposition chamber with radiant heating
JP2913040B2 (en) Trap device
JPH10183353A (en) Gas injection system and gas injection method for cvd reactor
JP4031601B2 (en) Vertical heat treatment equipment
JPH09232297A (en) Heat treatment apparatus
JP4468555B2 (en) Heat treatment apparatus and heat treatment method
JPH10242067A (en) Substrate supporting tool for heat treatment
JPH065533A (en) Heat treatment furnace
JP3904497B2 (en) Manufacturing method of semiconductor device
JPH04184923A (en) Heat-treating equipment
JPS6383275A (en) Cvd device
JP3023977B2 (en) Vertical heat treatment equipment
JPS63181315A (en) Equipment for heat treatment
JP2003045808A (en) Apparatus and method of vertical heat treatment
JP2001345314A (en) Device and method for heat treatment
JP2001077042A (en) Vertical type heat-treating device
JPH03164688A (en) Vertical heat treatment device
JPH0291931A (en) Vertical heat treatment device
JPH11283928A (en) Heat-treating device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060112

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071019

R150 Certificate of patent or registration of utility model

Ref document number: 4031601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term