JPS6379211A - Magnetic substance-insulator multi-layer composite magnetic core - Google Patents

Magnetic substance-insulator multi-layer composite magnetic core

Info

Publication number
JPS6379211A
JPS6379211A JP22231987A JP22231987A JPS6379211A JP S6379211 A JPS6379211 A JP S6379211A JP 22231987 A JP22231987 A JP 22231987A JP 22231987 A JP22231987 A JP 22231987A JP S6379211 A JPS6379211 A JP S6379211A
Authority
JP
Japan
Prior art keywords
film
magnetic
amorphous
magnetic core
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22231987A
Other languages
Japanese (ja)
Inventor
Koichi Kugimiya
公一 釘宮
Koji Nitta
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22231987A priority Critical patent/JPS6379211A/en
Publication of JPS6379211A publication Critical patent/JPS6379211A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a high performance magnetic core corresponding to a high frequency with excellent corrosion-proof and wear resistance by laminating several layers of amorphous magnetic thin films and insulators or semiconductors having a film thickness three times or over that of the amorphous thin film directly alternately. CONSTITUTION:Very minute particles made of magnetic material are supplied to a high temperature flame of a jet inlet 2 formed to a nozzle 1 via a feed inlet 3 and molten. Simultaneously, a high pressure gas is led to the direction of arrow A via an inlet 4, the molten very minute particles are flown away and collided with the base 5 moving at a high speed and solidified quickly to form a coating film 6. Then minute particles made of an insulating material are collided with the film 6 to form the insulator film having a film thickness three times or over that of the film 6. The operation above is repeated to form plural layers, then the bonding stage or the like is not required and the high performance magnetic core corresponding to a high frequency is obtained with excellent corrosion proof and wear resistance.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、VTRなどに代表される磁気記録装置の磁気
ヘッド等に広く利用される磁性体−絶縁体多層複合体磁
芯に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic-insulator multilayer composite magnetic core widely used in magnetic heads of magnetic recording devices such as VTRs.

従来の技術 上記のような多層複合体は、従来、接着材でもって薄膜
を積層するという形でなされているため、薄膜を作る手
間のかかる工程や接着工程があり、また接着材を用いる
ととから、耐久性や耐熱性にも種々の問題が生じている
。さらに現状では一層あたシの厚さも限られており、1
ooμmを下回ることは非常にむつかしく、10〜30
μm厚のものはコストが著しく高くなシ、実用的でない
Conventional technology Multilayer composites such as those described above have conventionally been made by laminating thin films using an adhesive, which requires a time-consuming process to create the thin film and an adhesion process. Therefore, various problems have arisen in terms of durability and heat resistance. Furthermore, at present, the thickness of the atashi is even more limited, and 1
It is very difficult to get less than ooμm, 10 to 30
A .mu.m thick material is extremely expensive and impractical.

そこで薄膜を直接結合させる方法として、結晶質磁性体
と絶縁体を多層にして、高温高圧下で接着する方法が考
えられる。しかし本発明者らが実験したところ、両者間
の元素の拡散が激しく、特性が変化するのみならず、金
属などでは、酸化の問題が生じるものであった。非晶質
材料は、結晶化温度が高くとも500℃程度であるため
、このような方法は適用できない。さらに薄いものでは
これらの問題のため殆んど試されていない。
Therefore, one possible method for directly bonding thin films is to form multiple layers of a crystalline magnetic material and an insulating material and bond them together under high temperature and pressure. However, according to experiments conducted by the present inventors, it was found that the diffusion of elements between the two is intense, which not only changes the properties but also causes problems of oxidation in the case of metals. Since the crystallization temperature of an amorphous material is about 500° C. at the highest, such a method cannot be applied. Even thinner materials have hardly been tried due to these problems.

また従来よシ、急冷によシ非晶質化する方法が種々提案
されている。たとえばガン法やピヌトン・アンビル法で
は不定形の小さな薄片しか得られない。ロール法はこれ
らに比べてはるかに量産性に富んでいるが、テープ状の
ものしか得られず、−瞬のうちに数十mのテープ状非晶
質物ができるため、制御が非常に困難であると共に多層
化したものや複合体を製造し得ない。
In addition, various methods have been proposed in the past to make the material amorphous by rapid cooling. For example, the Gunn method and the Pinneton-anvil method yield only small, irregularly shaped flakes. Although the roll method is much more suitable for mass production than these methods, it only yields tape-shaped products, and it is extremely difficult to control because tens of meters of tape-shaped amorphous material can be produced in an instant. Moreover, it is not possible to manufacture multi-layered products or composites.

金属磁性体と絶縁膜を積層したものは報告されているも
のの、耐摩耗性などの機械特性や耐蝕性が悪く、そのた
め信頼性に劣ることが知られている。
Although there have been reports of laminated metal magnetic materials and insulating films, it is known that they have poor mechanical properties such as wear resistance and corrosion resistance, and are therefore inferior in reliability.

発明が解決しようとする問題点 高い飽和磁束密度を有し、高抗磁力テープ等に対しても
優れた録再特性を有する金属系磁性材料の高い飽和磁束
を有しながら、上記のような耐蝕性、耐摩耗性、信頼性
に優れた磁性体−絶縁体多層複合体磁芯を提供する。
Problems to be Solved by the Invention A metallic magnetic material that has a high saturation magnetic flux density and has excellent recording and reproducing properties even for high coercive force tapes, etc. To provide a magnetic material-insulator multilayer composite magnetic core that has excellent properties, wear resistance, and reliability.

問題点を解決するだめの手段 基体上に非晶質磁性体皮膜と、絶縁体ないしは半導体皮
膜とを交互に直接結合せしめて、複数層積層して成り、
且つ、絶縁体ないしは半導体皮膜に対する非晶質磁性体
皮膜の膜厚比が、3以上であることを特徴とする非晶質
磁性体−絶縁体多層複合体磁芯を構成する。
A means to solve the problem is to stack a plurality of layers by directly bonding amorphous magnetic films and insulating or semiconductor films alternately on a substrate,
In addition, an amorphous magnetic-insulator multilayer composite magnetic core is constructed, characterized in that the thickness ratio of the amorphous magnetic film to the insulator or semiconductor film is 3 or more.

作  用 非晶質磁性体皮膜を絶縁体上に交互に形成することによ
って、高周波対応の高性能磁芯を得ることができる。ま
た、非晶質磁性体を用いることによって、耐蝕性、耐摩
耗性が向上し、よって信頼性の向上が引き出される。
Function: By alternately forming amorphous magnetic films on an insulator, a high-performance magnetic core capable of handling high frequencies can be obtained. Further, by using an amorphous magnetic material, corrosion resistance and abrasion resistance are improved, and therefore reliability is improved.

さらに結晶化しても、従来磁性材料(センダストやパー
マロイなど)と組成が全く異なるため、非晶質体と同様
に安定である。
Furthermore, even if it crystallizes, it is as stable as an amorphous material because its composition is completely different from conventional magnetic materials (such as sendust and permalloy).

積層化することによって、以下の説明でも明らかなよう
に、高周波対応が得られ、且つ、非晶質磁性体の占める
体積率が大きいことからも、その高い飽和磁束がそのま
ま活用されている。
As will be clear from the following explanation, by stacking, high frequency support can be obtained, and since the volume fraction occupied by the amorphous magnetic material is large, its high saturation magnetic flux can be utilized as is.

実施例 以下、本発明の一実施例を図に基づいて説明する。第1
図において、1は溶射口2を有する噴射ノズル、3は該
ノズ/L/1に形成された溶射口2に連通ずる微小粒子
の供給口、4はノズ/I/1の上記溶射口2の後部に形
成された高圧ガス導入口、5は上記溶射口2の前方に配
設された基体であって、ガスの吹き出し方向(6)とは
直交する方向に高速移動するものである。
EXAMPLE Hereinafter, an example of the present invention will be described based on the drawings. 1st
In the figure, 1 is a spray nozzle having a thermal spraying port 2, 3 is a supply port for fine particles communicating with the thermal spraying port 2 formed in the nozzle/L/1, and 4 is the spraying port 2 of the nozzle/I/1. A high-pressure gas inlet 5 formed at the rear is a base body disposed in front of the thermal spraying port 2, and moves at high speed in a direction perpendicular to the gas blowing direction (6).

かかる構成において、まず溶射口2の高温舛に供給口3
を介して磁性材料からなる微小粒子を供給して溶融させ
、これと同時に導入口4を介して高圧ガスを矢印(イ)
方向へ導入し、このガスによシ上記溶解された微小粒子
を飛翔させて、矢印(イ)方向とは直交する方向に高速
移動している基体6に衝突させ、かつ急冷凝固させて皮
膜6を形成し、次に上記と同様の操作によって絶縁材料
からなる微小粒子を上記皮膜6上′に衝突させ、かつ急
冷凝固させて皮膜6を形成し、この操作を交互にくシ返
して磁性体皮膜と絶縁体皮膜とからなる複数層の複合体
を形成するものである。
In this configuration, first, the supply port 3 is connected to the high temperature mouth of the thermal spray port 2.
Microparticles made of magnetic material are supplied and melted through the inlet 4, and at the same time, high pressure gas is supplied through the inlet 4 as shown by the arrow (a).
This gas causes the dissolved microparticles to fly and collide with the substrate 6 which is moving at high speed in a direction perpendicular to the direction of arrow (A), and is rapidly solidified to form a film 6. Then, by the same operation as above, fine particles made of an insulating material are collided with the top of the film 6' and rapidly solidified to form the film 6, and this operation is repeated alternately to form a magnetic material. A multi-layered composite body consisting of a film and an insulating film is formed.

なお上記実施例では、噴射ノズル1の溶射口2内に供給
口3を介して微小粒子を供給しだが、第2図実線で示す
ごとく棒状体7を溶射口2内に挿入するようにしてもよ
いし、第2図仮想線で示すととく溶射口2の前方に棒状
体7を供給するようにしてもよい。
In the above embodiment, the fine particles are supplied into the spray nozzle 2 of the injection nozzle 1 through the supply port 3, but it is also possible to insert the rod-shaped body 7 into the spray nozzle 2 as shown by the solid line in FIG. Alternatively, the rod-shaped body 7 may be supplied in front of the thermal spraying port 2, as shown by the imaginary line in FIG.

ここで、基体5を動かす速度は、微小粒子の量、エネル
ギー量によって異なるが、一般的には、3oax/w以
上の速度で移動していればよい。さらに基体5はこれと
直角方向にo、tstytt/sec位で移動しておれ
ばさらに望ましい冷却状態が得られる。
Here, the speed at which the base body 5 is moved varies depending on the amount of microparticles and the amount of energy, but generally, it is sufficient to move at a speed of 3 oax/w or more. Furthermore, if the base body 5 is moved in a direction perpendicular to this at a rate of about o, tstytt/sec, a more desirable cooling state can be obtained.

なお基体6を円柱状とし、回転させても同様の効果があ
ることはいうまでもない。自然放熱でも基体5を十分に
低い温度(例えば50〜200℃)に保ちうるが、長時
間ないしは、非常に厚い非晶質体を製造する際には、昇
温する場合がある。この時には、基体6の表面や裏面に
冷却ガスや冷却媒体を吹き付け、放熱を促進するのが望
ましい。
It goes without saying that the same effect can be obtained even if the base body 6 is made cylindrical and rotated. Although the substrate 5 can be kept at a sufficiently low temperature (for example, 50 to 200° C.) by natural heat dissipation, the temperature may rise for a long time or when producing a very thick amorphous body. At this time, it is desirable to spray cooling gas or a cooling medium onto the front and back surfaces of the base 6 to promote heat dissipation.

さらに冷却ガスや冷却媒体を溶融した微小粒子が基体5
に接し、急冷固化する箇所に向けて吹きつけ冷却を促進
することが望ましく、またこれによってガスの流れから
外れた微小粒子を吹さ飛ばすことができるものである。
Furthermore, microparticles made by melting the cooling gas or cooling medium are formed on the base 5.
It is desirable to accelerate cooling by blowing toward the area that is in contact with the gas and rapidly solidifies, and this also allows microparticles that have strayed from the gas flow to be blown away.

1回の操作でつける膜厚は、冷却などを考えて6〜50
μm位が適当であシ、また、あつかい易い範囲でもある
。溶射口2と基体5との間の距離は、通常50〜300
flが適当である。もっと近くとも、また逆に遠くとも
可能であるが、飛行速度や、時間、装置の条件などを考
えると、非常に操作の難しい範囲となる。
The thickness of the film applied in one operation is 6 to 50 mm, considering cooling etc.
The appropriate range is about μm, and it is also an easy range to handle. The distance between the thermal spraying port 2 and the base 5 is usually 50 to 300 mm.
fl is appropriate. It is possible to move closer or even further away, but considering flight speed, time, equipment conditions, etc., this would be a very difficult range to operate.

したがって皮膜6の生成面の位置が少し変化してもよい
が、高度に皮膜品位を保つためや5〜10j11厚のも
のを得るには、条件が不変となるように、膜厚が増加す
るに従って溶射口2と基体5とを相対的に離間させ、こ
れによって溶射口2に対する皮膜6表面の位置が不変と
なるようにするのが望ましい。高温光をつくる方法とし
ては、例えば酸素−ブパン炎、アセチレン炎、アーク炎
、プラズマ炎などがあシ、これに高圧のガヌを送シ、溶
融した微小粒子を高速で吹き飛ばすのが簡便であシ、量
産性も高い。プラズマ溶射は特に本発明の製造方法とし
て優れたものである。このような方法によって、冷却速
度は、通常103〜b 得られている。さらに本発明者らの検討によれば溶融し
た飛行粒子は第3図のaやbに示されるように球形や淡
彩をしていると想姦されるが、基体6に衝突した瞬間に
は、同図Cに示すように扁平にのばされ、基体5に密着
し、このだめ非常に冷却し易すく、急冷に好ましい影響
を与えている。
Therefore, the position of the surface where the film 6 is formed may change slightly, but in order to maintain a high level of film quality or obtain a film with a thickness of 5 to 10j11, it is necessary to change the position as the film thickness increases so that the conditions remain unchanged. It is desirable that the thermal spraying port 2 and the base body 5 be relatively spaced apart so that the position of the surface of the coating 6 with respect to the thermal spraying port 2 remains unchanged. Examples of methods for producing high-temperature light include oxygen-butane flame, acetylene flame, arc flame, and plasma flame.It is easy to send a high-pressure gun to this flame to blow away molten microparticles at high speed. Also, it is highly mass-producible. Plasma spraying is particularly excellent as a manufacturing method for the present invention. By such a method, a cooling rate of 103-b is usually obtained. Furthermore, according to the studies conducted by the present inventors, it is assumed that the molten flying particles are spherical or have a light color as shown in a and b of FIG. As shown in Figure C, it is stretched flat and tightly adheres to the base 5, which makes it extremely easy to cool and has a favorable effect on rapid cooling.

また基体6の温度を結晶化温度よシ高い温度、例えばe
oot:以上に保持したシ、基体6の移動速度を落した
り、1回に生成する皮膜らの厚さを極端に厚くするなど
すれば、非晶質材料でも結晶化した皮膜6が得られる。
Further, the temperature of the substrate 6 is set to a temperature higher than the crystallization temperature, for example, e.
oot: If the substrate 6 is held at the above-mentioned level, the moving speed of the substrate 6 is reduced, or the thickness of the films formed at one time is made extremely thick, a crystallized film 6 can be obtained even with an amorphous material.

こうして得られた皮膜6の上に絶縁材として、例、(ば
Al2O3,Sio2.Tio2.MgO,ZrO2な
どを同様の操作で皮膜化する。皮膜厚は応用によって異
なるが薄いものがよく、約3μm位は達成できる。厚み
としては6μmが形成し易すい薄膜である。絶縁層とし
ては上述のようにGΩ・備オーダーの扁い抵抗をもちう
る酸化物でなくとも、NiZnフェライトやMnZnフ
ェライトのようにMΩ・1からΩ・1オーダーの比較的
低い半導体材料でも、金属磁性体のmΩ・備からμΩ・
備の抵抗に比べれば、はるかに高抵抗であシ、絶縁体と
して十分に機能する。このようにして磁芯とする多層複
合体を形成した。
A film of an insulating material such as Al2O3, Sio2. It is easy to form a thin film with a thickness of 6 μm.The insulating layer does not have to be an oxide that can have a low resistance on the order of GΩ, as mentioned above, but it can be Even if the semiconductor material has a relatively low value on the order of MΩ・1 to Ω・1, it will have a low value of μΩ・
It has a much higher resistance than the conventional resistance, and functions well as an insulator. In this way, a multilayer composite was formed to serve as a magnetic core.

次に磁気ヘッド磁芯としての効果を述べる。Next, the effect as a magnetic head core will be described.

先ず、0.15〜2ff厚のMnZnないしはNiZn
7エライトの基板6上に厚み約30μmの金属磁性体薄
膜を形成し、さらにその上にフェライト膜を厚さ約10
0A!Inつけた。この両端のフェライトを研摩し、総
厚約170μmに仕上げた後、第4図に示すようなヘッ
ド形状となるように、切断して巻き線溝を設け、ギャッ
プ形成面を鏡面研摩した後、作業温度約230℃の半田
で接合した。第4図で10および11はフェライト、1
2は磁性合金で、その接合点にギャップ13が位置する
First, MnZn or NiZn with a thickness of 0.15 to 2 ff
A metal magnetic thin film with a thickness of about 30 μm is formed on a substrate 6 of 7-elite, and a ferrite film is further formed on it with a thickness of about 10 μm.
0A! I added In. After polishing the ferrite at both ends to a total thickness of approximately 170 μm, cutting it to create a head shape as shown in Figure 4, forming a winding groove, and mirror-polishing the gap forming surface, the work is carried out. They were joined using solder at a temperature of about 230°C. In Fig. 4, 10 and 11 are ferrite, 1
2 is a magnetic alloy, and a gap 13 is located at the junction point thereof.

ギャップ部に飽和磁束密度が8000G 以上の高い金
属磁性体があシ、バックコアーはフェライト10ないし
は11で補助するため、コアー能率が高いといった長所
を備えているのみならず、上述のように接合が容易であ
るといった点がある。本ヘッドは、特にフェライトのよ
うに飽和磁束密度がたかだか5000G  と低いため
に適用の難しい抗磁力が10000.  以上高い抗磁
力を有した磁気テープに、また磁気記録再生装置(VT
R)用の5MHzに至る高い周波数をもつ信号の入呂力
に有効であった。なお上述の金属磁性体を一層30μm
とせずに、さらに薄い膜約16μmをつけ、AI Oや
5lo2ないしはフェライトの絶縁層を薄くつけ(例え
ば3μm)、さらに薄い金属磁性体層を約15μmつけ
るような二分割した方式の方がよシ高周波での磁気特性
がよいことはいうまでもない。
There is a metal magnetic material with a high saturation magnetic flux density of 8000G or more in the gap part, and the back core is assisted with ferrite 10 or 11, so it not only has the advantage of high core efficiency but also has the advantage of high bonding as mentioned above. There is a point that it is easy. This head has a coercive force of 10,000 G, which is difficult to apply because the saturation magnetic flux density is as low as 5,000 G, especially like ferrite. Magnetic tapes with coercive force as high as
It was effective for inputting signals with high frequencies up to 5 MHz for R). In addition, the metal magnetic material mentioned above is layered with a thickness of 30 μm.
Instead, it is better to use a two-part method in which a thinner film of approximately 16 μm is applied, an insulating layer of AIO, 5LO2, or ferrite is applied thinner (for example, 3 μm), and an even thinner magnetic metal layer is applied with a thickness of approximately 15 μm. Needless to say, it has good magnetic properties at high frequencies.

なお磁芯としては、第5図に示すように金属磁性体層1
5と絶縁層16を前述したような方法で交互に直接接合
して積層をつく9、中空芯17を加工して作ることによ
っても得ら4る。この時、絶縁層16としてフェライト
を使用することは、絶縁体の分だけ磁芯の飽和磁束密度
が増加することから望ましい。積層したフェライト層は
そのままでは特性が劣る場合があるので、不活性ガス(
例えばN2ガス)中で約1oo6t:に加熱するなどし
て再結晶化することが望ましい。さらに例えば第6図に
示すような磁芯を製造する場合には、その雌型をつくシ
、その雌型の底へ皮膜6を積層してゆくと同時に、その
底部を徐々に後退させて常に皮膜6の形成される位置を
ほぼ一定に保てば、第5図に示すような磁芯が直接に製
造される。なお型との接触面の精度が幾分悪いために1
o○〜300 Am位の研削加工を施して製品とするこ
とが望ましい。精度の悪いものへの応用には、研削は不
必要であることはいうまでもない。
The magnetic core includes a metal magnetic layer 1 as shown in FIG.
It can also be obtained by directly bonding 5 and insulating layers 16 alternately to form a laminated layer 9 by the method described above, or by processing a hollow core 17. At this time, it is desirable to use ferrite as the insulating layer 16 because the saturation magnetic flux density of the magnetic core increases by the amount of the insulator. The laminated ferrite layers may have inferior properties if left as is, so inert gas (
For example, it is desirable to recrystallize by heating to about 106 tons in N2 gas). Furthermore, when manufacturing a magnetic core as shown in FIG. 6, for example, a female mold is made, and the coating 6 is laminated on the bottom of the female mold, and at the same time, the bottom part is gradually retreated so that it is constantly If the position where the film 6 is formed is kept substantially constant, a magnetic core as shown in FIG. 5 can be directly manufactured. In addition, because the precision of the contact surface with the mold is somewhat poor, 1
It is desirable that the product be subjected to a grinding process of approximately 0.0 to 300 Am. Needless to say, grinding is unnecessary for applications with poor precision.

なお本発明に適用する非晶質体は、高温炎で融解し、通
常いわれている1000℃/sec以上の速度で冷却さ
れて非晶質化されるものなら何でもよく、広゛範囲な材
料に適用できる。また、一般によく知られているような
ヌパッグー(高熱状態に相応するガス状運動をしている
イオン、元素などを基体上に急冷、薄膜形成する方法)
などによってもいい。
The amorphous material to be applied to the present invention may be anything that can be melted in a high-temperature flame and turned into amorphous by cooling at a rate of 1000° C./sec or more, which is commonly said to be the case, and can be applied to a wide range of materials. Applicable. In addition, the generally well-known Nupagu (a method of rapidly cooling ions, elements, etc. that are in gaseous motion corresponding to a high temperature state and forming a thin film on a substrate)
You can also do this by

次に具体的実施例について述べる。これは本発明の内容
を制限するものでない。
Next, specific examples will be described. This is not intended to limit the scope of the invention.

実施例1 第1図において、原料粉として(F eo 、 sN 
1 o 、 1CO0,1)O−77Bo、14Si0
.09の溶湯を7トマイズして得た平均粒径65μmの
合金粉末を使用した。プラズマ出力35V、700Aで
、プラズマガスとしてArを用い、上記原料を約5H7
bで溶射した。この時、溶融した粒子は音速以上の速度
で飛行していると推定された。基体6は、溶射口2から
110ff離した、3朋厚のAl板であ)、2本の冷却
ガヌ流で表面を冷却している。基体5は、上下にts 
o tx / sec、左右に11/式の速度に動かし
、溶射の面は250x150mとした。溶射後、得られ
た溶射皮膜6は厚み0.1 ffの250〜150c!
Rの角板であって、X−線回折の結果、明白な回折ピー
クが少ない非晶質体であった。シリンドリカルボンドテ
スト法で、約3504/cdの接着強度を示しておシ、
通常の切断加工でも剥離は認められなかった。
Example 1 In FIG. 1, (F eo , sN
1 o, 1CO0, 1) O-77Bo, 14Si0
.. An alloy powder having an average particle size of 65 μm obtained by totomizing the molten metal No. 09 was used. With a plasma output of 35V and 700A, using Ar as the plasma gas, the above raw material was heated at about 5H7
Thermal spraying was carried out in b. At this time, it was estimated that the molten particles were flying at speeds faster than the speed of sound. The base body 6 is an Al plate with a thickness of 3 mm and placed 110 ff from the thermal spray nozzle 2), and its surface is cooled by two cooling gas flows. The base body 5 is vertically ts
o tx/sec, moving at a speed of 11/sec from side to side, and the spraying surface was 250 x 150 m. After thermal spraying, the obtained thermal spray coating 6 has a thickness of 0.1 ff and a thickness of 250 to 150 cm!
It was a rectangular plate of R, and as a result of X-ray diffraction, it was found to be an amorphous body with few obvious diffraction peaks. In the cylindrical bond test method, it shows an adhesive strength of about 3504/cd.
No peeling was observed even during normal cutting.

実施例2 原料粉として(Fe□ 、 1N1 o 、 1Coo
 、s )0.75 Bo 、 1sS l o 、 
1の溶湯をアトマイズして、平均粒径40Amの合金粉
末を得だ。これを実施例1と同様の条件で、直径160
11IM、90r、p、m で回転する円筒状の基体上
に溶射した。溶射の方向が円筒の中心軸にほぼ一致する
ように設定した。厚み0.2絹まで溶射した円筒状の試
料をX−線回折をした所、非晶質であることが判明した
。接着強度は約310#/c肩であった。さらにこの上
に”0.36”0,64Fe204の平均粒径3oμm
の微粉を溶射し、厚さ約13μmの皮膜6をつけ、さら
にその上に約0.15m厚の非晶質皮膜6をくり返し溶
射した。
Example 2 As raw material powder (Fe□, 1N1 o, 1Coo
, s ) 0.75 Bo , 1sS lo ,
The molten metal of No. 1 was atomized to obtain an alloy powder with an average particle size of 40 Am. This was carried out under the same conditions as in Example 1, with a diameter of 160 mm.
Thermal spraying was performed on a rotating cylindrical substrate at 11 IM, 90 r, p, m. The direction of thermal spraying was set to approximately coincide with the central axis of the cylinder. X-ray diffraction of a cylindrical sample sprayed to a thickness of 0.2 silk revealed that it was amorphous. The adhesive strength was about 310#/c shoulder. Furthermore, on top of this, “0.36” 0.64Fe204 with an average particle size of 3oμm
A fine powder of 100 ml was thermally sprayed to form a coating 6 with a thickness of about 13 μm, and an amorphous coating 6 with a thickness of about 0.15 m was repeatedly sprayed thereon.

その接着強度は約29o#/crriであった。The adhesive strength was approximately 29o#/crri.

実施例3 実施例2と同様にして、厚さ約30μmの非晶質皮膜、
厚さ約9μmのフェライト皮膜を交互に総計10層溶射
した。その接着強度は約3 e oH/c4であった。
Example 3 In the same manner as in Example 2, an amorphous film with a thickness of about 30 μm,
A total of 10 layers of ferrite films having a thickness of about 9 μm were alternately sprayed. Its adhesive strength was approximately 3 e oH/c4.

研削によシ基板を取シ除き、超音波加工法によってトロ
イドを抜きとった後、350℃で2時間焼鈍し、磁束密
度、透磁率を測定した所、7−o00ガウヌ、I KH
z で13000.3MH2で400であった。同程度
の厚さのメタルだけでは従来よ!l) 3 MHz  
での透磁率は小さく測定しえなかった。
After removing the substrate by grinding and extracting the toroid by ultrasonic processing, it was annealed at 350°C for 2 hours, and the magnetic flux density and magnetic permeability were measured.
z was 13000.3MH2 and 400. It is conventional to use only metal of the same thickness! l) 3MHz
The magnetic permeability was too small to be measured.

実施例4 (Co0.95 ”0.05 )O−75BO,15S
iO,1の溶湯をアトマイズして平均粒径6oμmの合
金粉末を得た。この粉末を実施例1と同様の条件で庵。
Example 4 (Co0.95''0.05)O-75BO,15S
A molten metal of iO,1 was atomized to obtain an alloy powder with an average particle size of 6 μm. This powder was treated under the same conditions as in Example 1.

、6Zn0.3Fe2.1o4の基板(厚さo、9ff
)に溶射した(第2図参照)。皮膜厚さは約150μm
であった。この皮膜はX−線回折の結果、完全な非晶質
であることが確認された。さらにこの上に同じフェライ
トを粉砕して粒径を約45μmにしたものを100μm
溶射した。次に両面を研削し、厚さ約180μmに平坦
に仕上げ、巻き線溝を設け、純N2中950℃で30分
焼鈍した後、ギャップを450℃の低融ガラスで接合し
た。ギヤツブ巾は両面を研削して32μmに、ギャップ
深さ40μm1ギャップ長さ0.4μmに調整した。木
ヘッドと従来よシの同一形状のMnZnフェライトヘッ
ドを磁気記録再生装置(VTR)のテープを用いて調べ
てみた所、抗磁力4500.程度の従来よシのテープで
は、差は殆んどみられなかったが、メタルテープのよう
に抗磁力が10000゜に達するものでは5MHz で
の自己録再特性は、本発明実施量の方が従来品に比べ、
約4dBすぐれていた。又、本発明の磁気ヘッドはフェ
ライト並の耐摩耗性を示しだ。例えば、本発明例、及び
同種形状に作成されたパーマロイ、センダスト。
, 6Zn0.3Fe2.1o4 substrate (thickness o, 9ff
) (see Figure 2). Film thickness is approximately 150μm
Met. As a result of X-ray diffraction, this film was confirmed to be completely amorphous. Furthermore, on top of this, the same ferrite is crushed to a particle size of about 45 μm, and then 100 μm
Sprayed. Next, both sides were ground and finished flat to a thickness of about 180 μm, winding grooves were provided, and after annealing in pure N2 at 950°C for 30 minutes, the gap was joined with low melting glass at 450°C. The gear tooth width was adjusted to 32 μm by grinding both sides, and the gap depth was adjusted to 40 μm and the gap length was 0.4 μm. When we tested a wooden head and a conventional MnZn ferrite head with the same shape using a tape from a magnetic recording/reproducing device (VTR), we found that the coercive force was 4500. There was almost no difference in conventional tapes, but for metal tapes with a coercive force of 10,000°, the self-recording and reproducing characteristics at 5MHz were better in the case of the present invention. Compared to conventional products,
It was about 4dB better. Furthermore, the magnetic head of the present invention exhibits wear resistance comparable to that of ferrite. For example, examples of the present invention, permalloy made in the same shape, and Sendust.

フェライト磁気ヘッドを、同時に耐摩耗テストを行った
結果、各々100時間あたシ、各々16μm175Ar
n、35μm、10Jmであった。1%NaC4液に対
する耐蝕性では、パーマロイやセンダストはかな9の発
錆が認められたのに対して、本発明実施量では殆んど認
められなかった。
As a result of a wear resistance test of ferrite magnetic heads at the same time, each was 16μm 175Ar after 100 hours.
n, 35 μm, and 10 Jm. Regarding the corrosion resistance against 1% NaC4 solution, rusting was observed in Kana 9 for Permalloy and Sendust, whereas almost no rusting was observed in the amounts used in the present invention.

以上の実施例に述べられている−ように非晶質磁性体皮
膜とその間にはさまれる絶縁体ないしは半導体皮膜の膜
厚比は、約15 tt rn/3 tt m 、 0.
1 BH/13μm 。
As described in the above embodiments, the film thickness ratio of the amorphous magnetic film and the insulating or semiconductor film sandwiched therebetween is approximately 15 ttrn/3ttm, 0.
1BH/13μm.

30Am/9μm と各々約5,115.3倍となって
おシ、少なくとも3倍の比があれば量産性なども含め上
述の特性を維持しているといえる。
30 Am/9 .mu.m, which is about 5,115.3 times higher, and it can be said that the above-mentioned characteristics including mass productivity are maintained if the ratio is at least 3 times.

発明の効果 本発明の磁性体−絶縁体多層複合体磁芯によれば、薄膜
をつくる工程や接着工程が不必要であり、また耐久性や
耐熱性に優れるなどの種々の特性を持っておシ、磁気ヘ
ッドや磁芯として最適なものである。また本発明によれ
ば複合体としての磁束密度が高く、高周波域での表皮効
果による透磁率の低下がなく、磁気ヘッドとしたときの
有効トラック巾が増大するという効果も得られる。さら
に本発明によれば、耐蝕性や耐摩耗性、並びにその結果
による信頼性の大巾な向上が認められた。又、高抗磁力
のテープに対して録再特性がよいなど将来の高密度記録
用の磁芯として非常に有用である。
Effects of the Invention The magnetic material-insulator multilayer composite magnetic core of the present invention does not require a process of forming a thin film or an adhesion process, and has various characteristics such as excellent durability and heat resistance. It is ideal for magnetic heads and magnetic cores. Further, according to the present invention, the magnetic flux density as a composite is high, there is no decrease in magnetic permeability due to the skin effect in a high frequency range, and the effective track width when used as a magnetic head is increased. Furthermore, according to the present invention, significant improvements in corrosion resistance, abrasion resistance, and reliability as a result have been observed. In addition, it has good recording and reproducing characteristics for tapes with high coercive force, making it very useful as a magnetic core for future high-density recording.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略縦断面図、第2図
は本発明の他の実施例を示す要部の概略縦断面図、第3
図a、b、cは微小粒子の飛行状態および衝突状態を説
明する説明図、第4図a 、 b。 Cは磁気ヘッドの正面図、側面図および平面図、第5図
は磁芯の斜視図である。 1・・・・・・噴射ノズル、2・・・・・・溶射口、3
・・・・・・微小粒子の供給口、4・・・・・・高圧ガ
ス導入口、6・・・・・・基体、e・・・・・・皮膜、
7・・・・・・棒状体、to、11・・・・・・フェラ
イト、12・・・・・・磁性合金、15・・・・・・金
属磁性体、16・・・・・・絶縁層、17・・・・・・
中空芯。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第4図 第5 (Cン
FIG. 1 is a schematic vertical cross-sectional view showing one embodiment of the present invention, FIG. 2 is a schematic vertical cross-sectional view of main parts showing another embodiment of the present invention, and FIG.
Figures a, b, and c are explanatory diagrams explaining the flight state and collision state of microparticles, and Figure 4 a, b. C is a front view, side view, and plan view of the magnetic head, and FIG. 5 is a perspective view of the magnetic core. 1...Injection nozzle, 2...Thermal spray port, 3
..... Supply port for microparticles, 4 .... High pressure gas introduction port, 6 ..... Substrate, e ..... Film,
7...rod-shaped body, to, 11...ferrite, 12...magnetic alloy, 15...metal magnetic material, 16...insulation Layer, 17...
Hollow core. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 4 Figure 5 (C-n

Claims (2)

【特許請求の範囲】[Claims] (1)基体上に非晶質磁性体皮膜と絶縁体ないしは半導
体皮膜とを交互に直接結合して複数層積層して成り、且
つ、前記絶縁体ないしは半導体皮膜に対する前記非晶磁
性皮膜の膜厚の比が3以上であることを特徴とする磁性
体−絶縁体多層 複合体磁芯。
(1) A plurality of layers are formed by directly bonding an amorphous magnetic film and an insulator or semiconductor film on a substrate, and the film thickness of the amorphous magnetic film relative to the insulator or semiconductor film is A magnetic material-insulator multilayer composite magnetic core characterized in that the ratio of the magnetic material and the insulating material is 3 or more.
(2)基体上に非晶質磁性体皮膜と絶縁体ないしは半導
体皮膜とを複数層積層した後、非晶質磁性体皮膜の結晶
化温度以上に加熱して結晶化したことを特徴とする特許
請求の範囲第1項記載の 磁性体−絶縁体多層複合体磁芯。
(2) A patent characterized in that multiple layers of an amorphous magnetic film and an insulating or semiconductor film are laminated on a substrate, and then crystallized by heating to a temperature higher than the crystallization temperature of the amorphous magnetic film. A magnetic material-insulator multilayer composite magnetic core according to claim 1.
JP22231987A 1987-09-04 1987-09-04 Magnetic substance-insulator multi-layer composite magnetic core Pending JPS6379211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22231987A JPS6379211A (en) 1987-09-04 1987-09-04 Magnetic substance-insulator multi-layer composite magnetic core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22231987A JPS6379211A (en) 1987-09-04 1987-09-04 Magnetic substance-insulator multi-layer composite magnetic core

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP16434778A Division JPS5591106A (en) 1978-12-27 1978-12-27 Magnetic substance-insulator multi-layer compound and production of the same

Publications (1)

Publication Number Publication Date
JPS6379211A true JPS6379211A (en) 1988-04-09

Family

ID=16780496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22231987A Pending JPS6379211A (en) 1987-09-04 1987-09-04 Magnetic substance-insulator multi-layer composite magnetic core

Country Status (1)

Country Link
JP (1) JPS6379211A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138899A (en) * 1975-05-26 1976-11-30 Hitachi Ltd Layered high permiability magnetic material
JPS53124130A (en) * 1977-02-05 1978-10-30 Sony Corp Manufacture of amorphous alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51138899A (en) * 1975-05-26 1976-11-30 Hitachi Ltd Layered high permiability magnetic material
JPS53124130A (en) * 1977-02-05 1978-10-30 Sony Corp Manufacture of amorphous alloy

Similar Documents

Publication Publication Date Title
JPS6074104A (en) Digital magnetic head
JPS6134707A (en) Magnetic head
JPS6379211A (en) Magnetic substance-insulator multi-layer composite magnetic core
US5104739A (en) Laminated magnetic material and method of producing the same
JPS6320570B2 (en)
JPH01276705A (en) Rare earth resin permanent magnet and manufacture thereof
JPH0423206A (en) Manufacture of magnetic head core
JPS61104412A (en) Magnetic head
JP2542946B2 (en) Magnetic head and manufacturing method thereof
JPS59231730A (en) Production of magnetic head
JPH0345443B2 (en)
JPS6191058A (en) Ceramic composition
JPH0526244B2 (en)
JPS58167744A (en) Amorphous magnetic alloy thin plate for magnetic head
JP2004326879A (en) Magnetic head and its manufacturing method
JPH01191308A (en) Magnetic head
JPS62141609A (en) Manufacture of magnetic head
JPH09147315A (en) Manufacture of magnetic head
JPS60261006A (en) Production of magnetic head
JPH01235011A (en) Production of magnetic head
JPS5850620A (en) Magnetic head
JPS6150201A (en) Production of alloy magnetic head
JPS6334708A (en) Magnetic head and its production
JPH04222910A (en) Production of magnetic head
JPH02130706A (en) Magnetic head