JPS6074104A - Digital magnetic head - Google Patents

Digital magnetic head

Info

Publication number
JPS6074104A
JPS6074104A JP58179401A JP17940183A JPS6074104A JP S6074104 A JPS6074104 A JP S6074104A JP 58179401 A JP58179401 A JP 58179401A JP 17940183 A JP17940183 A JP 17940183A JP S6074104 A JPS6074104 A JP S6074104A
Authority
JP
Japan
Prior art keywords
phase particles
magnetic head
alloy
ultra
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58179401A
Other languages
Japanese (ja)
Inventor
Eiichi Hirose
広瀬 瑛一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP58179401A priority Critical patent/JPS6074104A/en
Priority to US06/655,924 priority patent/US4650712A/en
Publication of JPS6074104A publication Critical patent/JPS6074104A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/147Structure or manufacture of heads, e.g. inductive with cores being composed of metal sheets, i.e. laminated cores with cores composed of isolated magnetic layers, e.g. sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1171Magnetic recording head with defined laminate structural detail
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To raise a magnetic permeability in a high frequency area, and to improve a symmetricalness of a peak shift by forming a part of a magnetic circuit by a composite material obtained by a dispersing uniformly and three-dimensionally the second phase particles in a super-quenching alloy matrix consisting of amorphous and crystalline materials, etc. CONSTITUTION:An alloy base material 11 of a molten state is formed and injected into a mold 3 by melting mutually constituting metals Co, Fe, Si and B in a prescribed ratio in a vacuum high frequency melting furnace 2. Subsequently, a WC fine powder 4 is jetted by a necessary quantity toward a mold injecting flow of an alloy base material 1 by a high pressure argon gas from a bomb 6. In this way, an ingot 8 consisting of a Co-Fe-Si-B compound alloy in which the WC fine powder has been dispersed uniformly is obtained. Next, this ingot is put into a heat resisting pipe 7 made of a quartz glass, the inside of the pipe is replaced enough with gaseous argon 9, and thereafter, it is melted in a high frequency melting furnace 10. Subsequently, a piston 11 is operated and the lower end nozzle of the heat resisting pipe 7 is made to approach as near as possible the joining part of two rollers 12, 12 rotating at a high speed, an argon gas pressure in the heat resisting pipe is raised suddenly, the ingot 8 is supplied to the joining part of the rolls 12, 12 as a uniform continuous jet, and a ribbon-shaped core material 13 having specified width and thickness is obtained.

Description

【発明の詳細な説明】 本発明は、デジタル用磁気ヘッドに係り、特にそれの磁
気回路を構成するコア材に間するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a digital magnetic head, and particularly to a core material constituting a magnetic circuit thereof.

デジタル用リード・アフタ・ライト磁気ヘッドは通常コ
ンピュータ周辺機器などに装着されており、多チヤンネ
ル用に複数対の書込み一読出し用ギャップが設けられて
いる。この磁気ヘット上を磁気テープが走行する際、書
込み用ギャップでテープ上にデジタル信号が記録さh、
その直後にテープは読出し用ギャップの上を通過して前
記信号の読出しがなされて、書込み信号の正確さがチェ
ックされる。
A digital read-after-write magnetic head is usually installed in computer peripheral equipment, etc., and has multiple pairs of write and read gaps for multi-channel use. When the magnetic tape runs over this magnetic head, digital signals are recorded on the tape in the writing gap.
Immediately thereafter, the tape is passed over the read gap to read out the signal and check the accuracy of the write signal.

このデジタル用磁気ヘッドの書込み、読出しは高記録密
度のため1〜3 M Hz程度の高周波領域でなされる
から、磁気ヘッドに使用されるコア材としては特に高透
磁率でしかも亮飽和磁束密度のものが要求される。とこ
ろで従来のコア材としては、25〜50μm程度に薄く
加工したパーマロイが使用され、このは薄板状パーマロ
イを所定枚数積層し、エポキシ樹脂などのモールドで1
妾着固定し。
Writing and reading of this digital magnetic head is done in a high frequency range of about 1 to 3 MHz due to the high recording density, so the core material used in the magnetic head is made of materials with particularly high magnetic permeability and low saturation magnetic flux density. things are required. By the way, as a conventional core material, permalloy processed to a thin thickness of about 25 to 50 μm is used.
Fix the concubine.

ていた。しかしこの薄板状パーマロイは、樹脂モール1
−や機械的な締付けにより内部応力が生しると、透磁率
が11vl )l zで600−ROO程度までに下が
る。このように周波数特性の悪いコア材を使用すると、
高周波領域で信号波形の位相ずJlを生じ、対称である
・\き信号波形か非対称になり、コンピュータ周辺機器
の信頼性を低下する原因になる。
was. However, this thin plate-like permalloy is
- When internal stress is generated by mechanical tightening, the magnetic permeability decreases to about 600-ROO at 11vl)lz. If you use a core material with poor frequency characteristics like this,
A phase shift Jl occurs in the signal waveform in the high frequency region, causing the signal waveform to become symmetrical or asymmetrical, resulting in a decrease in the reliability of computer peripheral equipment.

本発明者らは、従来より超急冷合金のffu造法どし知
られている液体急冷法を用いτ第2相1::1.了分散
型の超急冷磁性合金を作成することに成4Jし、この新
しい複合材料がそれらの構成物質Uj急冷磁性合金と第
2相粒子)の両者の優れた性質1機能を選択的に兼備え
、デジタル用磁気ヘッドの」ア月として非常に好適であ
ることを見出した。
The present inventors used a liquid quenching method, which is conventionally known as the ffu production method for ultra-quenched alloys, to obtain a τ second phase of 1::1. This new composite material selectively combines the excellent properties and functions of both their constituent materials (quenched magnetic alloys and second phase particles). It has been found that this material is very suitable as a material for digital magnetic heads.

すなわち、本発明は、非晶質、結晶質またはそれらの混
合相からなる超急冷合金マトリックス中に、第2相粒子
を少なくとも1種3次元的に均一分散させてなる複合材
料により磁気回路の少なくとも一部を構成したことを特
徴とするものである。
That is, the present invention provides a composite material in which at least one second phase particle is uniformly dispersed three-dimensionally in an ultra-quenched alloy matrix consisting of an amorphous, crystalline, or mixed phase thereof. It is characterized in that it constitutes a part of the

本発明において超急冷合金71−リツクスを構成する合
金母相としては、例えばコバル1−を主成分とするコバ
ルト−鉄合金などのコバルト系合金、鉄を主成分とする
鉄−ケイ素−ホウ素合金や鉄−モリブデン合金などの鉄
系合金、ニッケルを主成分とするニッケルーケイ素−ホ
ウ素合金などのニッケル系合金、あるいは銅−ジルコニ
ウム合金。
In the present invention, the alloy matrix constituting the ultra-quenched alloy 71-ricks includes, for example, a cobalt-based alloy such as a cobalt-iron alloy containing cobal 1- as a main component, an iron-silicon-boron alloy containing iron as a main component, and an iron-silicon-boron alloy containing iron as a main component. Iron-based alloys such as iron-molybdenum alloys, nickel-based alloys such as nickel-silicon-boron alloys whose main component is nickel, or copper-zirconium alloys.

ジルコニウム−ニオブ合金などの各種の系の合金が用い
られる。
Various types of alloys such as zirconium-niobium alloys are used.

本発明において第2相粒子としては1.例えばC1WC
,T i C,N l) Cなどの炭素または炭化物。
In the present invention, the second phase particles include 1. For example, C1WC
, T i C, N l) Carbon or carbide such as C.

NbNやTaNなどの窒化物、Cr: 03 、CeO
2。
Nitride such as NbN and TaN, Cr: 03, CeO
2.

MgO,Zr01z 、Y:○q 、 WO3,Th’
O: 。
MgO, Zr01z, Y:○q, WO3, Th'
O: .

AQ = OB 、 Fe:=○−+ 、ZnO,5i
C)zなどの醇化物、BNなどのホウ化物、SiCなど
のシリケイト、Ti、Fe、Mo、Wなどの金屑等が用
いられる。
AQ=OB, Fe:=○−+, ZnO, 5i
C) Infusions such as z, borides such as BN, silicates such as SiC, gold scraps such as Ti, Fe, Mo, W, etc. are used.

次に本発明に係るコア材の製造例について説明する。第
1図および第2図は第1の製造例を説明するための原理
説明図で、第1図はインボッ1−を作る工程を説明する
ための図、第2図はそのインゴットを用いてリボン状の
コア+4を作る工程を説明するための図である6 第1図において、超急冷合金マトリックスを構成する合
金母料lは、真空高周波溶解炉2によって加熱溶融され
、それがインコツトの&n型3に注入される。一方、第
2相粒子4はプラズマ溶射用給粉器5により、鋳型3に
注入される途中の溶融合金母材1に対して強制的に噴射
添加され、そのまま冷却凝固されて第2相粒子4を均一
に分数保持したーrンゴツ1−が得られる。第2相粒子
4の噴射分散には、ボンベ6中に充填されているアルコ
ンガスなどの不活性ガスからなる噴射IA!4体が用い
られる。
Next, an example of manufacturing the core material according to the present invention will be described. Figures 1 and 2 are principle explanatory diagrams for explaining the first manufacturing example, Figure 1 is a diagram for explaining the process of making an ingot, and Figure 2 is a diagram for explaining the process of making an ingot. 6. In FIG. 1, the alloy matrix l constituting the ultra-quenched alloy matrix is heated and melted in a vacuum high-frequency melting furnace 2, Injected into 3. On the other hand, the second phase particles 4 are forcibly sprayed and added to the molten alloy base material 1 which is being injected into the mold 3 by the plasma spraying powder feeder 5, and are cooled and solidified as they are to form the second phase particles 4. -Rgots 1- are obtained in which a uniform fraction of is retained. For spraying and dispersing the second phase particles 4, the spray IA! is made of an inert gas such as Alcon gas filled in the cylinder 6! Four bodies are used.

噴射分散時における合金母材1の変質を避けるためには
、噴射媒体としてアルゴンガスなとの不活性ガスが好ま
しい。第2相粒子4を供給する給粉器としては、常に均
一に第2相粉子4が供給できること、噴射圧などの噴射
条件が比較的簡単に調整できること、ならびにノズルの
耐熱性が優れていることなどからプラズマ溶射用給粉器
が好適である。
In order to avoid deterioration of the alloy base material 1 during injection dispersion, an inert gas such as argon gas is preferably used as the injection medium. As a powder feeder for supplying the second phase particles 4, the second phase powder 4 can be supplied uniformly at all times, injection conditions such as injection pressure can be adjusted relatively easily, and the nozzle has excellent heat resistance. For this reason, a powder feeder for plasma spraying is suitable.

超急冷法でリボン状のものを作成する方法とし−Cは、
単ロール法、双ロール法ならびに遠心法などがある。こ
れらの超急冷法は合金組成の選択あるいは急冷速度など
の急冷条件を制御することにより、非晶質相、非平衡結
晶質層などの平衡状態図にない準安定物質、あるいは乎
栴結rWr質相などが得られる。
-C is a method of creating a ribbon-like material using an ultra-quenching method.
There are single roll method, double roll method and centrifugal method. These ultra-quenching methods are capable of producing metastable materials that are not in the equilibrium phase diagram, such as amorphous phases and non-equilibrium crystalline layers, or crystallized rWr materials by controlling the selection of alloy composition or quenching conditions such as quenching rate. Phases etc. can be obtained.

第2図は、双ロール法によってリボン状のコア材を作成
する製造コニ程を示している。下端にノズルを有する石
英ガラス製の耐熱管7中に、前述の第2相粒子を均一に
分散させたインボッ1−8が入れられ、管内がアルゴン
ガスなとの不活性カス9τ−4−41−貿篇ホ第1スー
而I護7の々Iれ−は寡固油溶解炉10が設置されてお
り、インボッ1−8がこの溶解炉10によって第2相粒
子が溶解しない程度に再溶融される。その後ピストン1
1を動イ1−させて耐熱管7のノズル先端を高速回転し
ている2つのロール12.12の接合部に可能な限り接
近させ、耐熱管7内のガス圧を急激に増加さゼる。
FIG. 2 shows the manufacturing process for creating a ribbon-shaped core material by the twin roll method. In a heat-resistant tube 7 made of quartz glass with a nozzle at the lower end, the injector 1-8 in which the second phase particles are uniformly dispersed is placed, and the inert gas 9τ-4-41 is filled with argon gas inside the tube. A oligo-solid oil melting furnace 10 is installed in the first section of the trade section, and the ingots 1-8 are remelted by this melting furnace 10 to the extent that the second phase particles are not melted. be done. Then piston 1
1 to move the nozzle tip of the heat-resistant tube 7 as close as possible to the joint of the two rolls 12 and 12 rotating at high speed, and rapidly increase the gas pressure inside the heat-resistant tube 7. .

再溶融したインゴット8は圧力上性により、徐々にノズ
ルから一様な連続噴流としてロール]2゜12の接合部
に供給される。ロール12.12は高速で回転している
とともに邦に圧接されているから、溶融金属が噴出され
ると瞬時に冷Jip凝固されて、連続したリボン状のコ
ア材13が得られる6第3図はこのコア4;J13の拡
大断面図で、非晶質、結晶質、またはそれらの混合相か
らなる超急冷合金マトリックス14中に、極めて微+t
lll メj2第2相粒子4が3次元的に均一分散され
ている。コア+113の厚さおよび幅などは、ロール1
2の周速度ならびに圧接力、溶融物の温度ならびにj7
’j出;速度などを可変することによって調整ツーるこ
とか可能である。
The remelted ingot 8 is gradually fed from a nozzle as a uniform continuous jet to the joint of the rolls 2 and 12 due to pressure. Since the rolls 12.12 are rotating at high speed and are pressed against each other, when the molten metal is ejected, it is instantaneously solidified in a cold JIP to obtain a continuous ribbon-shaped core material 13. 6 Fig. 3 is an enlarged cross-sectional view of this core 4; J13, in which extremely fine +t
The second phase particles 4 are three-dimensionally uniformly dispersed. The thickness and width of core +113 are as per roll 1.
The circumferential speed and contact force of 2, the temperature of the melt and j7
It is possible to make adjustments by varying the speed, etc.

第2図を用いて説明した双ロール法は、得られるコア材
の厚さが均一で、両面とも表面粗さが小さく、しかも比
較的厚手のものも容易に製造できるなどの利点を有して
いる。
The twin roll method explained using Fig. 2 has the advantage that the thickness of the core material obtained is uniform, the surface roughness is small on both sides, and relatively thick core materials can be manufactured easily. There is.

この製造例では双ロール法を用いたが、その代りに単ロ
ール法を適用することもできる。
Although a twin roll method was used in this production example, a single roll method may be applied instead.

第4図は、本発明に係るコア材の第2の製造例を説明す
るための原理説明図である。
FIG. 4 is a principle explanatory diagram for explaining a second manufacturing example of the core material according to the present invention.

下端にノズルを有する石英ガラス製の耐熱管7中tこ、
超急冷合金マトリックスを構成する合金母材1のインゴ
ットを入れ、管内をアルゴンガスなとの不活性ガス9で
十分置換する。耐熱管7の外周に高周波溶解炉4が設置
され、合金母材1のインゴットがこの溶解炉4によって
後述の第2相粒子4が溶解しない程度に溶融される。そ
の後ピストン11を作動させて耐熱管7のノズル先端を
高速回転しているローラ6の上周面に可能な限り接近さ
せ、耐熱管7内の不活性ガス圧を急激に増加させる。溶
融した合金母材Jは圧力上昇により、ノズルから細い一
様な連続噴流としてロール6の周面に供給される。
A heat-resistant tube 7 made of quartz glass having a nozzle at the lower end,
An ingot of the alloy base material 1 constituting the super-quenched alloy matrix is placed, and the inside of the tube is sufficiently replaced with an inert gas 9 such as argon gas. A high-frequency melting furnace 4 is installed around the outer periphery of the heat-resistant tube 7, and the ingot of the alloy base material 1 is melted by the melting furnace 4 to such an extent that second phase particles 4, which will be described later, are not melted. Thereafter, the piston 11 is actuated to bring the nozzle tip of the heat-resistant tube 7 as close as possible to the upper peripheral surface of the roller 6 that is rotating at high speed, and the inert gas pressure inside the heat-resistant tube 7 is rapidly increased. The molten alloy base material J is supplied to the circumferential surface of the roll 6 from a nozzle as a thin, uniform, continuous jet due to the pressure increase.

耐熱管7からの合金母材Xの噴出流に対しで。With respect to the jet flow of the alloy base material X from the heat-resistant tube 7.

第2相粒子4がプラズマ溶射用給粉藷5によりアルゴン
ガスなどの1III射媒体とともに強制的に噴射添加さ
れる。第2相粒子4を添加された溶融状f占にある合金
母材1は、a−ル12上で延ばされ/、I2がら急冷凝
固され、連続した゛リボン状の:」ア4A+3が得られ
る。
The second phase particles 4 are forcibly added by injection together with a III injection medium such as argon gas by a plasma spray feeder 5. The alloy base material 1 in the molten state to which the second phase particles 4 have been added is stretched on the a-rule 12 and rapidly solidified in the I2 to obtain a continuous ribbon-like a4A+3. It will be done.

このようにして得られたコア材1. :3 #J第3図
にボしたものと同様に1M3急冷合金71.リツク−ノ
、I4中に(梃めて微細な第2相粒子・1が第3次元的
に均一分散されている。
Core material thus obtained 1. :3 #J 1M3 rapidly solidified alloy 71.Similar to the one shown in Figure 3. The extremely fine second phase particles 1 are uniformly dispersed in the third dimension in I4.

第11図を用いて説明した単ロール法は、比I!′2j
+す幅広で薄膜状のものが得られ易いという利点を有し
ている。なお、この製造例では、jii〔4−ル法を用
いたが、その代りに双ロニル法をΔ用することも可能で
ある。
The single roll method explained using FIG. 11 has a ratio of I! '2j
+It has the advantage that it is easy to obtain a wide and thin film. In this production example, the jii[4-l method was used, but it is also possible to use the twinronyl method instead.

第5図は、本発明に係るコア′財の第3の製造例を説明
するだめの原理説明図である。
FIG. 5 is a diagram illustrating the principle of a third manufacturing example of the core product according to the present invention.

下端にノズルを有する石英ガラス製の耐熱管7中に、超
急冷合金71−リツクス奈構成する合金母材Iのインゴ
ットを入れ、管内をアルゴンガスなどの不活性ガス9で
十分置換する。耐熱管7の外周に高周波溶解炉10が設
置され、合金母材1のインボッ1−がこの溶解炉10に
よって後述のfJ52相粒子4が溶解しない程度にWi
融される。その後ピストン11を作動させて耐熱管7内
の不活性ガス圧を急激に増加させ、mml、た合金母材
1をその下に配置している溶融金属溜め15に注加する
An ingot of the alloy base material I constituting the ultra-quenched alloy 71 is placed in a heat-resistant tube 7 made of quartz glass having a nozzle at the lower end, and the inside of the tube is sufficiently replaced with an inert gas 9 such as argon gas. A high-frequency melting furnace 10 is installed on the outer periphery of the heat-resistant tube 7, and the ingot 1- of the alloy base material 1 is melted by the melting furnace 10 to the extent that fJ52 phase particles 4, which will be described later, are not melted.
melted. Thereafter, the piston 11 is operated to rapidly increase the inert gas pressure in the heat-resistant tube 7, and mml of the alloy base material 1 is poured into the molten metal reservoir 15 disposed below.

耐熱管7からの合金母材1の噴流に対して、プラズマ溶
射用給粉器5より第2相粒子4が強制的に噴射添加され
る。この溶融金属溜め15の外周↓こも高周波溶解炉1
6が取すイ・Jけられ、合金母材1の溶融状態が維持さ
れる。
The second phase particles 4 are forcibly added to the jet stream of the alloy base material 1 from the heat-resistant tube 7 from the plasma spray powder feeder 5 . The outer circumference of this molten metal reservoir 15 ↓ Komo high frequency melting furnace 1
6 is removed, and the molten state of the alloy base material 1 is maintained.

このようにして第2相粒子4を含有した合金母料1は、
図示し2ていない不活性ガス(アルゴンガス)高圧装置
によって溶融金属溜め15の下部ノズルからロール12
.x2の接合部に細い一様な連続噴流として供給さJし
、前記製造例と同様に超免九冷さ才して1す!妓した+
1ボン4人二のコアネ第13がf得られる。
The alloy matrix 1 containing the second phase particles 4 in this way is
The roll 12 is supplied from the lower nozzle of the molten metal reservoir 15 by an inert gas (argon gas) high-pressure device (not shown).
.. It is supplied as a thin uniform continuous jet to the joint of x2, and as in the production example above, it is super cold. I had a prostitute+
1 Bon 4 people 2 Koane No. 13 is obtained f.

このコアを才13も第3図に示したものとPI僅に、超
急冷台金マトリックス14巾にイへめで微細な第2相粒
子4が3次元的に均一分子f&されている。なお、この
製造ず列では、?! r、■−ル法を用いたが、その代
りに単ロール法を適用する二ども可能である。
This core 13 is also shown in FIG. 3, and the PI is made up of three-dimensionally uniform molecules of fine second phase particles 4 spread across the ultra-quenched metal matrix 14. In addition, in this production line? ! Although the r, ■-r method was used, it is also possible to apply the single roll method instead.

超急冷合金71〜リツクスを構成する合金母(、(のイ
ンゴットを作る際、あるいはそのインボッ1−を超急冷
のために再溶融する際に、前iホのような噴射分散法を
用いないで第2相粒子を溶融状態の合金母42オ中に!
11に添加し、高周波によって攪拌して、しかるのち超
急冷して合金71−リッグス中に第2相粒子を3次元的
に分散させろこともできるどころかこの方法では、適用
できる第2柑拉f゛の種類や分散し得る凪に制限がある
。特に第2相泣子が例えばCr z○ヨやCeO,=な
どの全屈酸化物の場合は、鉄、コバル)−ならびにニッ
ケルメINどの金、3溶融体に対する濡れ性が悪く 極
めて生成シカ分散せず、しかも超急冷合金マトリックス
の表面層に偏在する傾向がある。
When making an ingot of the alloy motherboard (, () constituting the ultra-quenched alloy 71~ricks, or when remelting the ingot 1- for ultra-quenching, do not use the injection dispersion method as in the previous example). The second phase particles are placed in the molten alloy matrix 42!
11, stirred by high frequency, and then ultra-quenched to three-dimensionally disperse the second phase particles in Alloy 71-Riggs. There are restrictions on the types of lulls and the lulls that can be dispersed. In particular, when the second phase crystal is a totally bent oxide such as Cr, CeO, etc., it has poor wettability with melts of iron, cobal) and nickel, and is extremely difficult to disperse. Moreover, it tends to be unevenly distributed in the surface layer of the ultra-quenched alloy matrix.

溶融状態にある合金母材に対して第2相粒子を添加2分
散せしめる際に生じる界面現象は、次の2段階に分けて
考えることができる。すなわち、第1の段階として、第
2相粒子が溶融状態の合金母材と接触する段階で、この
ときには溶融合金母材の液相と第2相粒子の固相とアル
ゴンガス(不活性ガス)などの気相の3相系である。第
2の段階として、第2相粒子が溶融状態の合金母材中に
懸濁する段階で、このときは溶融合金母材の液相と第2
相粒子の同相の2相系である。
The interfacial phenomenon that occurs when second phase particles are added to and dispersed in the alloy base material in a molten state can be considered in the following two stages. That is, in the first step, the second phase particles come into contact with the molten alloy base material, and at this time, the liquid phase of the molten alloy base material, the solid phase of the second phase particles, and argon gas (inert gas) It is a three-phase gas-phase system. The second stage is a stage in which the second phase particles are suspended in the molten alloy matrix, in which case the liquid phase of the molten alloy matrix and the second
It is a two-phase system of in-phase particles.

さらに前述の3相系の界面現象は、付着濡れ、拡張濡れ
、浸漬濡れの3つに大別できる。付着濡れが生じる際の
仕事をW a +拡張濡れが生じる際の仕事量をWs+
浸漬濡れが生じる際の仕事量をWlとすれば、次によう
に定義される。
Furthermore, the three-phase interfacial phenomena described above can be roughly divided into three types: adhesion wetting, expansion wetting, and immersion wetting. The work when adhesion wetting occurs is W a + the work when extended wetting occurs Ws +
Letting the amount of work when immersion wetting occurs be Wl, it is defined as follows.

Wa−γ5v−ySL+γLν −(])W s =γ
sv−γ81−−γc、v −(2)Wj=γ5V−γ
SL −(3) 但し式中γSL:固相−液相界面張力 γsL:固相の界面張力 γLv:液相の界面張力 気相−固相および液相−固相界面においては、同相の表
面はほとんど変形しないと考えられるから、液相との接
触角をθとすれば次の(4)式が成立する。
Wa−γ5v−ySL+γLν −(])W s =γ
sv-γ81--γc, v-(2) Wj=γ5V-γ
SL - (3) In the formula, γSL: Solid phase-liquid interfacial tension γsL: Solid phase interfacial tension γLv: Liquid phase interfacial tension At the gas-solid and liquid-solid interfaces, the surface of the same phase is Since it is considered that there is almost no deformation, the following equation (4) holds true if the contact angle with the liquid phase is θ.

γsv−γSL−γL V 0cos O−(4)これ
をそれぞれ前記(1)、(2)、(3)式に代入すると
次のような式になる。
γsv−γSL−γL V 0 cos O−(4) Substituting this into the above equations (1), (2), and (3), respectively, yields the following equations.

Wa= γ L (cos θ + ] ン −(5)
Ws= 7 L (cosθ−1) =−(6)Wi=
 y L V−cosθ −(7)二九らの式でWが正
のときにそれぞJし濡れ性を生じる。前述の式(5)〜
(7)から明らかなように、第2相粒子が溶融状態の合
金母ネ」と接触する第1の段階では、合金母材に対する
第2相粒子の接触角0が濡れ性に大きくを関与している
。鉄、コバルトならびにニッケルなどの金属溶融体に対
して、一般に金属酸化物は接触角0が大きく、従って濡
れ性が悪い。
Wa= γ L (cos θ + ] -(5)
Ws= 7 L (cosθ-1) =-(6)Wi=
y L V - cos θ - (7) When W is positive in the equation of Fuku et al., J occurs and wettability occurs. The above formula (5) ~
As is clear from (7), in the first stage when the second phase particles come into contact with the molten alloy base material, the contact angle of the second phase particles with respect to the alloy base material, which is 0, has a large influence on the wettability. ing. Metal oxides generally have a large contact angle of 0 with respect to molten metals such as iron, cobalt, and nickel, and therefore have poor wettability.

そのため第2相粒子を溶融状態の合金fli材に!11
、に添加し高周波をかけて攪拌した程度では、所謂合金
母材と第2相粒子のなじみが悪く、合金母材の表面M側
に第2相粒子が偏在しやすい。このようなことから第2
相粒子として金属酸化物を用いた場合には、合金母材中
に分散し得る量としては高々fJ、1体積%程度で、分
散量が極めて少なく、第2相粒子の添加効果が十分に発
揮できない。
Therefore, the second phase particles are made into a molten alloy fli material! 11
, and stirred under high frequency, the so-called alloy base material and the second phase particles are not compatible with each other, and the second phase particles tend to be unevenly distributed on the surface M side of the alloy base material. Because of this, the second
When metal oxides are used as phase particles, the amount that can be dispersed in the alloy base material is at most fJ, about 1% by volume, and the amount of dispersion is extremely small, and the effect of adding the second phase particles is fully exerted. Can not.

この点前述のように、合金母材のインボッ1−を作る際
、あるいはそのインゴットを超急冷するために溶融する
際、噴射分散法を用いて第2相粒子を溶融状態の台金母
材中に添加する方法を採用すれば2強い噴射エネルギー
によって第2相粒子が合金母日中に機械的に即し込まれ
る状態になる。
In this regard, as mentioned above, when making an ingot of the alloy base material or when melting the ingot for ultra-rapid cooling, the injection dispersion method is used to transfer the second phase particles into the molten base metal base material. If a method of adding the second phase particles is adopted, the second phase particles will be mechanically injected into the alloy matrix by strong injection energy.

そのため、合金母材に対する濡れ性の悪い第2相粒子で
も強制的に均一分散させることができ、適用できる第2
相粒子の種類や分散し得る量にも裕度が出て、コア材の
性質2機能の向上に大さく寄与する。
Therefore, even second phase particles with poor wettability to the alloy base material can be forcibly and uniformly dispersed, making it possible to
There is a margin in the type of phase particles and the amount that can be dispersed, which greatly contributes to improving the properties and functions of the core material.

金属溶融体に対する固相の接触角の一例を次の表1に示
す。
An example of the contact angle of the solid phase with respect to the metal melt is shown in Table 1 below.

二の表から明らかなように、金属酸化物は他の同第11
に比べて一般に接触角が大きく、金屈溶触体に列して濡
れ性が悪い。
As is clear from Table 2, metal oxides are
In general, the contact angle is larger than that of gold-containing metals, and the wettability is poor compared to that of gold-containing metals.

次に本発明の実施例について説明する。Next, examples of the present invention will be described.

実施例1 (Co= o5Fea5slx qBx o)ri q
、q (IiC)a、!If(CO7o5Fe4.gS
i:i 5B1o)!+ 9 (’JC)1(Co= 
o qFea 5sii 5 Bx O):I n (
IdC)2(Co= o、5FeJ5si15B10)
−1−、(tic )F(Co= o、sF+3.+、
55i1S[]10)! c、(′jlC)11 、)
上記組成式の第2相粒子分散型超急冷合金からなるコア
(Iをそれぞれ作成する。上記組成式中左()中に超急
冷合金の組成を示し、それの名元素右Fの数字は原子%
を示し、組成式中布()中に第2相粒子構成物を示す。
Example 1 (Co= o5Fea5slx qBx o)ri q
,q(IiC)a,! If(CO7o5Fe4.gS
i:i 5B1o)! + 9 ('JC) 1 (Co=
o qFea 5sii 5 Bx O):I n (
IdC)2(Co=o,5FeJ5si15B10)
−1−, (tic)F(Co=o, sF+3.+,
55i1S[]10)! c, ('jlC)11,)
Create a core (I) consisting of a second-phase particle-dispersed super-quenched alloy with the above composition formula. %
The second phase particle composition is shown in the composition formula ().

両()の右下の数字はfれぞれの体積%を表わしている
。他の′3¥施例もこれと同様の表示方法を採用した。
The numbers at the bottom right of both parentheses represent the volume % of each f. A similar display method was adopted for the other '3 ¥ examples.

次に具体的な作成手順について説明する。まず所望の超
急冷合金の組成を得るべく構成金属Co。
Next, the specific creation procedure will be explained. First, in order to obtain the composition of a desired ultra-quenched alloy, constituent metal Co is added.

Fe、 Si、 +3をCo 420.9g 、 Fe
 22.5g 、 5i42.7g、 B flogと
なるようにそれぞれ秤量し、これらを真空高周波溶解炉
2(第2図参照)で互に溶融せしめて、溶融状態の合金
母材1を−)くる。
Fe, Si, +3 to Co 420.9g, Fe
22.5g, 5i42.7g, and Bflog are weighed, respectively, and melted together in a vacuum high-frequency melting furnace 2 (see Fig. 2) to obtain a molten alloy base material 1.

この合金母材1は、そのまま鋳型3に注入される。This alloy base material 1 is poured into a mold 3 as it is.

一方、WC@粉末(第2相粒子4)が予めプラズマ溶射
用給粉器5に充填されており、ボンベ6からの高圧アル
ゴンガスによって、前記合金母材Jの鋳型注入流に向け
て噴射さhる。なお、wc微粉末の噴射量は、合金母材
1に対して前述の組成式で示される体積%になるように
給粉器5で調整される。鋳型3に注入されるときの合金
母材Jの温度は、それの溶融状態を保ち、しがも第2相
粒子であるWC微粉末は溶融しない温度、すなわち約1
200℃になるように調整されている。
On the other hand, WC@ powder (second phase particles 4) is filled in advance in a powder feeder 5 for plasma spraying, and is injected toward the mold injection flow of the alloy base material J by high pressure argon gas from a cylinder 6. hru. Note that the injection amount of the WC fine powder is adjusted by the powder feeder 5 so that the volume % of the alloy base material 1 is expressed by the above-mentioned compositional formula. The temperature of the alloy base material J when it is injected into the mold 3 is kept at a temperature that maintains its molten state and does not melt the WC fine powder, which is the second phase particles, that is, about 1
The temperature is adjusted to 200°C.

溶融合金母材1の鋳型注入流に向けて強制的に噴射され
たWC微粉末は、合金母料】中で魂とならず個々に微細
化した状態で分散され、しがも相互の粒子間隔が短い。
The WC fine powder that is forcibly injected toward the mold injection flow of the molten alloy base material 1 does not form particles in the alloy base material, but is dispersed in a finely divided state, and the distance between the particles is small. is short.

このように粗大化することなく、微細化した状態で分散
されたwc微粉末は合金母材1中で浮上速度が遅く、従
って合金母材1が鋳型3中で凝固するときに偏析するよ
うなことがなく、分散状態が安定している。このような
ことから、WC微粉末が均一分散したCo−Fe−5i
−B 系合金からなるインゴット8が得らhる。
In this way, the WC fine powder dispersed in a fine state without becoming coarse has a slow floating speed in the alloy base material 1, so that it may segregate when the alloy base material 1 solidifies in the mold 3. The dispersion state is stable. For this reason, Co-Fe-5i with uniformly dispersed WC powder
An ingot 8 made of a -B alloy is obtained.

次にこのインゴット8は第2図に示すように石英ガラス
製の耐熱管7の中に入れられ、管内をアルゴンガス9で
十分置換し、その後高周波溶解炉10でインボッ1〜8
を溶解する。このときもWCI#粉末が溶解しない程度
、すなわち約1200℃に保持される。ついでピストン
11を作動させて耐熱管7の下端ノズルを高速回転して
いる2つのローラ12,12の接合部に可能な限り接近
させ、耐熱管7内のアルゴンガス圧を急激に高め、イン
ボッl−8をノズルから一様な連続噴流としてロール1
2.12の接合部に供給される。ロール12゜12は冷
却されながら高速回転しCいるとともに常に互に圧接さ
れているから、噴出された合金母材は瞬時に冷却凝固さ
れて幅40mII+、厚さ30μm。
Next, this ingot 8 is placed in a heat-resistant tube 7 made of quartz glass as shown in FIG.
dissolve. At this time as well, the temperature is maintained at a level at which the WCI# powder does not dissolve, that is, about 1200°C. Next, the piston 11 is actuated to bring the lower end nozzle of the heat-resistant tube 7 as close as possible to the joint between the two rollers 12 and 12 that are rotating at high speed, and the argon gas pressure inside the heat-resistant tube 7 is rapidly increased to Roll 1 with -8 as a uniform continuous jet from the nozzle.
2.12 joints are supplied. Since the rolls 12 and 12 rotate at high speed while being cooled and are constantly pressed against each other, the ejected alloy base material is instantaneously cooled and solidified to a width of 40 mII+ and a thickness of 30 μm.

長さ5mのリボン状のコア材13が得られる。A ribbon-shaped core material 13 having a length of 5 m is obtained.

このコア材13の表面ならびに厚さ方向の切断面を走査
型電子顕微鏡で観察したところ、WC微粉末が超急冷合
金マトリックス中に短い粉子間隔で、WC微粉末が互に
集合して粗大化することなく個々に微粉子のまま均一に
分散しており、孔が全く存在していない。このことがら
wc徹粉末は合金マトリックス中において3次元的に均
一に分散していることが確認できた。またこの超急冷合
金マトリックス合釜は、X線回折により非晶質であるこ
とを確認した。
When the surface and the cut surface in the thickness direction of this core material 13 were observed with a scanning electron microscope, it was found that the fine WC powder was aggregated with each other at short intervals in the ultra-quenched alloy matrix and became coarse. They are uniformly dispersed individually as fine particles without any pores. This confirmed that the wc powder was uniformly dispersed three-dimensionally in the alloy matrix. Furthermore, it was confirmed by X-ray diffraction that this ultra-quenched alloy matrix kettle was amorphous.

このコア月13を所定形状に連続的に打抜き、第6図お
よび第7図に示すようにそれらを所定枚数積層し、エポ
キシ樹脂でモールドして2つ割れのコア17a、Job
および18a、+8bをつくる。この17a、+7))
がリードm:17.+8a、18bがライト側コアとな
り、コJ’ ] 7 aおよび18aにそれぞれコイル
19が巻装される(第6図参照)、これら各コア17.
18はり一ト・セクション本体20ならびにライ1−・
セクション本体21の各々の溝部に直入され、各クロス
・フィード・シールド板22もそれぞれ所定位首に配置
されて、組合わされ全体がシールドケース23内に収容
され(第7図)、デジタル用磁気ヘットの組立てが終了
する。
This core piece 13 is continuously punched into a predetermined shape, a predetermined number of sheets are laminated as shown in FIG. 6 and FIG.
and 18a, +8b are created. This 17a, +7))
Lead m: 17. +8a and 18b are the right-side cores, and a coil 19 is wound around each of these cores 17.7a and 18a (see FIG. 6).
18 Beam section main body 20 and lie 1-・
The cross feed shield plates 22 are inserted directly into the respective grooves of the section main body 21, and each cross feed shield plate 22 is also placed at a predetermined neck position, and the assembled whole is housed in the shield case 23 (FIG. 7). The assembly is completed.

実施例2 (Ni= e Six o B 12 ) 9 +、 
(wc)−+(Nコ、 8 S1□ 。B□ 2 ) 
9 2 (WC)9(Nj7aSi1oB〕:りez(
WC)19上記組成式の第2相粒子分散型超急冷合金か
らなるコア材をそれぞれ作成する。
Example 2 (Ni= e Six o B 12 ) 9 +,
(wc) - + (N, 8 S1□.B□ 2)
9 2 (WC) 9 (Nj7aSi1oB]: riez(
WC) 19 A core material made of a second phase particle-dispersed ultra-quenched alloy having the above composition formula is prepared.

次に具体的な作成手順について説明する。まず所望の超
急冷合金の組成を得るべき構成金属Ni。
Next, the specific creation procedure will be explained. First, the constituent metal Ni to obtain the desired composition of the ultra-quenched alloy.

Si、BをNi459g、Sj、28g、B13gとな
るようにそれぞれ秤量し、これらを真空高周波溶解炉で
溶融して合金母材をつくり、これを鋳型に注入する。
Si and B are each weighed to give 459 g of Ni, 28 g of Sj, and 13 g of B, and these are melted in a vacuum high-frequency melting furnace to create an alloy base material, which is poured into a mold.

この合金母材1の注入流に対し、プラズマ溶射用給粉器
からWC微粉末(第2相粒子)が高圧アルゴンガスとと
もに噴射され、その後冷却してWC微粉末を均一分散し
たNi−8j−B系合金からなるインボッ1−をつくる
。WC微粉末を噴射分散せしめるときの合金母料の温度
が約1200℃になるように調整しておけば、添加され
たWC微粉末は合金母材中に溶解せず、微粒子のまま均
一分散される。
WC fine powder (second phase particles) is injected from a plasma spray powder feeder together with high-pressure argon gas into the injection flow of the alloy base material 1, and then cooled and Ni-8j- with the WC fine powder uniformly dispersed. An ink bottle 1- made of a B-based alloy is made. If the temperature of the alloy base material is adjusted to approximately 1200°C when spraying and dispersing the WC fine powder, the added WC fine powder will not dissolve in the alloy base material and will be uniformly dispersed as fine particles. Ru.

1つのロールの真上に配置された耐熱管に前記インゴッ
トを入れ、管内をアルゴンガスで十分置換する。ついで
耐熱管の外周に設けられた高周波溶解炉によって約12
00℃に加熱保持され、合金母材のみが再溶融される。
The ingot is placed in a heat-resistant tube placed directly above one roll, and the inside of the tube is sufficiently replaced with argon gas. Then, a high frequency melting furnace installed around the outer circumference of the heat-resistant tube melts the
The alloy is heated and maintained at 00°C, and only the alloy base material is remelted.

しかるのち耐熱管内のアルゴンガス圧が急激に高められ
、耐熱管の下部ノズルからWC微粉末を含んだ溶融合金
母44が、2000r、p、mで回転しているロール上
に噴出される。
Thereafter, the argon gas pressure inside the heat-resistant tube is rapidly increased, and the molten alloy mother 44 containing fine WC powder is ejected from the lower nozzle of the heat-resistant tube onto a roll rotating at 2000 r, p, m.

噴出されると瞬時に冷却凝固されて、幅40mm。When ejected, it instantly cools and solidifies to a width of 40mm.

厚さ30iim、長さ5mのリボン状コア材が得られる
A ribbon-shaped core material with a thickness of 30 iim and a length of 5 m is obtained.

このコア材の表面ならびに厚さ方向の切断面を走査型電
子顕微鏡で1@察したところ、前記実施例と同様にWC
微粉末が超急冷合金マトリックス中に微粒子のまま均一
に分散している。またこの超急冷合金マトリックスは、
X線回折により非晶質であることを確認した。
When the surface and the cut surface in the thickness direction of this core material were observed with a scanning electron microscope, it was found that WC
The fine powder is uniformly dispersed as fine particles in the ultra-quenched alloy matrix. In addition, this super-quenched alloy matrix
It was confirmed by X-ray diffraction that it was amorphous.

このコア材を用いて第7図に示すような磁気ヘットを製
作する手順は前記実施例と同様であるので、それらの説
明は省略する。
The procedure for manufacturing a magnetic head as shown in FIG. 7 using this core material is the same as that in the previous embodiment, and therefore a description thereof will be omitted.

実施例3 (CO7o、*Fea、zSix sBlo)g9.9
 (Crz(h )ol(Coy o5Fea、5si
15B]O)9 z7(Crz(L+ )o、i(Co
−、o、5Fe−、qSilsBlo)q +115(
Cr=Oa )o、+;(Co= o qFea 5 
sii 5B1 0)G 9 (Crz Ow )1(
Co=o、5Fe=+ 55ii 5Bio)−+= 
(CrzOi)3上記組成式の第2相粒子分散型超急冷
合金からなるコア材を用い、前記実施例と同様に磁気ヘ
ッドを組立てる。
Example 3 (CO7o, *Fea, zSix sBlo) g9.9
(Crz(h)ol(Coy o5Fea, 5si
15B]O)9 z7(Crz(L+)o,i(Co
−, o, 5Fe−, qSilsBlo)q +115(
Cr=Oa ) o, +; (Co= o qFea 5
sii 5B1 0)G 9 (Crz Ow)1(
Co=o, 5Fe=+ 55ii 5Bio) −+=
(CrzOi)3 A magnetic head is assembled in the same manner as in the previous example using a core material made of a second phase particle dispersed ultra-quenched alloy having the above compositional formula.

実施例4 (Co= o−、Fed、1Sjz sB> O)9 
D9(CaO2)。、(Co−、o 5Fea Ss]
1 sel o)りり 7 (CeC1z)o、:+(
Co= o、s FeJ、q Sjl +、R10)G
 9S(Ce0= )o、5(Co= o s Fe4
5 Sjl −、Bコ o )!] 9 (CaO2)
1(Co= o、iFe、+、5sj1 zBl 0)
9 = (Ce02)a上記組成式の第2相粒子分散型
超急冷合金からなるコア材を用い、前記実施例と同様に
磁気ヘッドを組立てる。
Example 4 (Co=o-, Fed, 1Sjz sB>O)9
D9 (CaO2). , (Co-, o5Fea Ss]
1 sel o) Riri 7 (CeC1z)o, :+(
Co= o, s FeJ, q Sjl +, R10)G
9S(Ce0= ) o, 5(Co= o s Fe4
5 Sjl-, Bkoo)! ] 9 (CaO2)
1 (Co= o, iFe, +, 5sj1 zBl 0)
9 = (Ce02)a A magnetic head is assembled in the same manner as in the previous example using a core material made of a second phase particle dispersed ultra-quenched alloy having the above compositional formula.

実施例5 (Co= o、5Fe45sji !;B) O)9 
9.0 (WO:+ )o 1(Co−、o 5Fea
、5six iBz O)り9.7 (WO:I)0.
:1(Co= o 5Fe−+5Sii iBi O)
! 9 r、 (WOi)o 5(CO7o、5Fea
 5si1 sBl 0)+19 (Vi’○ヨ)ユ(
Co= o 5Fe4 gsjl zBt O)9 =
 (WOコ)3」二足組成式の第2相粒子分散型超急冷
合金からなるコア材を用い、前記実施例と同様に磁気ヘ
ットを組立てる。
Example 5 (Co=o, 5Fe45sji!; B) O) 9
9.0 (WO:+)o 1(Co-, o 5Fea
, 5six iBz O)ri9.7 (WO:I)0.
:1 (Co= o 5Fe-+5Sii iBi O)
! 9 r, (WOi)o 5(CO7o, 5Fea
5si1 sBl 0)+19 (Vi'○yo)yu(
Co= o 5Fe4 gsjl zBt O)9 =
A magnetic head is assembled in the same manner as in the previous example using a core material made of a second-phase particle-dispersed ultra-quenched alloy having a bipedal composition formula (WO 3).

実施例6 (Co= o、s Fe−+、s Six s 81 
o )99.9 (ZrOz )ol(CO7o、sF
e、+55ii 51h O)94.7 (Zl−0,
! L−I Vl(Co+0.*Faa3sxx 1B
10)! q、i (ZrO:)o =。
Example 6 (Co = o, s Fe-+, s Six s 81
o)99.9 (ZrOz)ol(CO7o,sF
e, +55ii 51h O)94.7 (Zl-0,
! L-I Vl(Co+0.*Faa3sxx 1B
10)! q,i (ZrO:)o=.

(Co−、o5Fe4.;Si1 sBi O)!+ 
9 (ZrO,−、b(CO7o 5Fea 5Sil
 q口x o )9 = (ZrO:: )?上記組成
式の第2相粒子分散型超急冷合金からなるコア材登用い
、前記実施例と同様に磁気ヘラ1くを組立てる。
(Co-, o5Fe4.; Si1 sBi O)! +
9 (ZrO, -, b(CO7o 5Fea 5Sil
q口xo )9 = (ZrO:: )? A magnetic spatula 1 is assembled in the same manner as in the previous example, using a core material made of a second phase particle-dispersed ultra-quenched alloy having the above compositional formula.

実施例7 (Co= o、s Fe、+、q 5j1−、Blo 
)q 9.9 (Y、=○))01(Co= o 5F
e、+、z Sj] s B:l o )−Iクー (
Y : Oコ)o、++(Co= O5FGJ−、si
□、5B]O)9 * 、5(YZ Oi)。5(Co
= o、5Fe4 zsil 581 0)09 (Y
z O:I )x(Co=o5Fe−1qsi15B1
o)er7 (YZ0:l)3上記組成式の第2相粒子
分散型超急冷合金からなるコア材を用い、前記実施例と
同様に磁気ヘッドを組立てる。
Example 7 (Co = o, s Fe, +, q 5j1-, Blo
)q 9.9 (Y,=○))01(Co= o 5F
e, +, z Sj] s B:l o )-Iku (
Y: Oco) o, ++ (Co= O5FGJ-, si
□, 5B]O)9*, 5(YZ Oi). 5(Co
= o, 5Fe4 zsil 581 0) 09 (Y
zO:I)x(Co=o5Fe-1qsi15B1
o) er7 (YZ0:l)3 A magnetic head is assembled in the same manner as in the previous example using a core material made of a second phase particle dispersed ultra-quenched alloy having the above compositional formula.

実施例8 (Ni= e 5i1o BlZ )90 (ThO=
 )J 、)<1’Ji= e Siコ o Bi :
:)q o(ThO=)z 。
Example 8 (Ni= e 5i1o BlZ )90 (ThO=
)J,)<1'Ji=e Siko o Bi:
:)qo(ThO=)z.

上記組成式の第24+1粒子分散型超急冷合金からなる
コア材を用い、前記実施例と同様に磁気ヘッドを組立て
る。
A magnetic head is assembled in the same manner as in the previous embodiment using a core material made of a 24+1 particle dispersed ultra-quenched alloy having the above compositional formula.

実施例9 (Ni= s Sir o B コ、G )−1i (
Ti(T:)z(Ni−、5Sj 3 o B l s
 )9 o (TjC) 〕 。
Example 9 (Ni=s Sir o B ko, G )-1i (
Ti(T:)z(Ni-, 5Sj 3 o B l s
)9 o (TjC)].

上記組成式の第2相粒子分散型超急冷合金からなるコア
材を用い、前記実施例と同様に磁気ヘッドを組立てる。
A magnetic head is assembled in the same manner as in the previous embodiment using a core material made of a second-phase particle-dispersed ultra-quenched alloy having the above compositional formula.

なお、走査型電子顕微鏡観察により、TiCがNi−5
i−B系の超急冷合金71−リツクス中に3次元的に均
一分散し、孔もなく、さらにその合金マトリックスはX
線回折により非晶質であることを確認した。
Furthermore, scanning electron microscopy revealed that TiC was Ni-5
It is uniformly dispersed three-dimensionally in the i-B series ultra-quenched alloy 71-ricks, has no pores, and its alloy matrix is
It was confirmed by line diffraction that it was amorphous.

実施例l0 (Fei++、+へ4oq CII+)3 a (Nb
C)z(Fe:l’i、4 Moa C1,a )=l
s (NbC,)S(Fe3 g4 Moq C) 、
、)ワ o (NbC)1 。
Example 10 (4 oq CII+ to Fei++, +) 3 a (Nb
C) z(Fe:l'i, 4 Moa C1,a)=l
s (NbC,)S(Fe3 g4 Moq C),
, ) wa o (NbC)1.

上記組成式の第2相粒子分散型超急冷合金からなるコア
材を用い、前記実施例と同様に磁気△ツ1−を組立てる
。なお、走査型電子顕微鏡観察により、NbCがFe−
Mo−C系の超急冷合金71−リツクス中に3次元的に
均一分散し6、孔もなく、X線回折により合金マトリッ
クスが超微細結晶粒の組織をもつ非平衡γ−オーステナ
イ1〜単相であることを確認した。この非平衡γ−オー
ステナイ1〜相は結晶質合金であるため、非晶質合金よ
りも熱的安定性が高い。
Magnetic ΔT 1- is assembled in the same manner as in the previous embodiment using a core material made of a second-phase particle-dispersed ultra-quenched alloy having the above compositional formula. Note that scanning electron microscopy reveals that NbC is Fe-
A non-equilibrium γ-austenite 1~single phase that is uniformly dispersed three-dimensionally in the Mo-C based ultra-rapidly solidified alloy 71, has no pores, and has an ultrafine grain structure in the alloy matrix according to X-ray diffraction. It was confirmed that Since this non-equilibrium γ-austenite 1~ phase is a crystalline alloy, it has higher thermal stability than an amorphous alloy.

実施例11 (Cut、 o Zra o )9 o (SiC)+
 0(Cue o Zrj o )−、o (SiC)
i 。
Example 11 (Cut, o Zra o )9 o (SiC)+
0(Cue o Zrj o )-, o (SiC)
i.

上記組成式の第2相粒子分散型超急冷合金からなるコア
月を用い、前記実施例と同様に磁気ヘッドを組立てる。
A magnetic head is assembled in the same manner as in the previous embodiment using a core made of a second-phase particle-dispersed ultra-quenched alloy having the above compositional formula.

なお、走査型電子顕微鏡観察により、SiCがCu−Z
r系の超急冷合金マトリックス中に3次元的に均一分散
し、孔もなく、X線回折により合金マトリックスが非晶
質であることを確認した。
Furthermore, scanning electron microscopy revealed that SiC is Cu-Z
It was three-dimensionally uniformly dispersed in the r-based ultra-quenched alloy matrix, with no pores, and it was confirmed by X-ray diffraction that the alloy matrix was amorphous.

実施例12 (Nj7ha Siz o Bz :り、3゜(BN)
x 。
Example 12 (Nj7ha Size: ri, 3° (BN)
x.

(Ni= a Sii o Blz)s o(BN)z
 。
(Ni= a Sii o Blz)s o(BN)z
.

」二足組成式の第2相粒子分散型超急冷合金からなるコ
ア材を用い、前記実施例と同様に磁気ヘットを組立てる
。なお、走査型電子顕微鏡観察により、B N ′h<
Ni −Si −B系の超急冷合金マトリックス中し3
3次元的1こ均一分散し、孔も多く、X線回析により合
金マトリックスが非晶質であることを確認した。
A magnetic head is assembled in the same manner as in the previous embodiment using a core material made of a bipedal composition type second phase particle dispersed ultra-quenched alloy. Furthermore, by scanning electron microscopy observation, B N ′h<
Ni-Si-B super-quenched alloy matrix 3
It was three-dimensionally uniformly dispersed, had many pores, and it was confirmed by X-ray diffraction that the alloy matrix was amorphous.

実施例13 (Zra s Nba o 5i1s )a o (N
bN)z 。
Example 13 (Zra s Nba o 5i1s)a o (N
bN)z.

上記組成式の第2相粒子分散型超急冷合金からなるコア
材を用い、前記実施例と同様に磁気ヘッドを組立てる。
A magnetic head is assembled in the same manner as in the previous embodiment using a core material made of a second-phase particle-dispersed ultra-quenched alloy having the above compositional formula.

なお、走査型電子顕微鏡観察により、NbNがZr−N
b−5i系の超急冷合金71−リックス中に3次元的に
均一分散し、孔もなく、X線回折により合金マトリック
スが非晶質であることを確認した。
Note that scanning electron microscopy revealed that NbN is Zr-N
It was three-dimensionally uniformly dispersed in the b-5i-based ultra-quenched alloy 71-Rix, with no pores, and it was confirmed by X-ray diffraction that the alloy matrix was amorphous.

実施例14 (Co= o、s Fea、s Six r、B 10
 )9 〕 (G)+(Co−、oSFe45Six5
BコO)9!=(C)5(Co−o、、 Fe、+、s
 Sxx s B x o )!+。((1:)1.、
、。
Example 14 (Co = o, s Fea, s Six r, B 10
)9] (G)+(Co-, oSFe45Six5
BcoO)9! =(C)5(Co-o,, Fe,+,s
Sxx s B x o )! +. ((1:)1.,
,.

上記組成式の第2相粒子分散型超急冷合金からなるコア
月を用い、前記実施例と同様に磁気ヘッドを組立てる。
A magnetic head is assembled in the same manner as in the previous embodiment using a core made of a second-phase particle-dispersed ultra-quenched alloy having the above compositional formula.

なお、走査型電子顕微鏡観察により、C7!lICo−
Fe−3i−B系の超急冷合金71へリツクス中に3次
元的に均一分散し、孔もなく、X線回折により合金マト
リックスが非晶質であることを確認した。
Furthermore, by scanning electron microscopy observation, C7! lICo-
It was confirmed by X-ray diffraction that the Fe-3i-B super-quenched alloy 71 was uniformly dispersed three-dimensionally in the helix without any pores, and that the alloy matrix was amorphous.

実施例15 (Fe cI z B x e ) ワ 9 (Fe)
 1(Feo 2 B x e >G O(Fe)z上
記組成式の第2相粒子力散型超急冷合金からなるコア材
を用い、前記実施例と同様に磁気ヘッドを組立てる6な
お、走査型電子顕微鏡観察により、FeがFe−B系の
超急冷合金71〜リツクス中に3次元的に均一・分散し
、X線回折により合金マトリックスが非晶質のインバー
合金であることを確認した。
Example 15 (Fe cI z B x e ) Wa 9 (Fe)
1 (Feo 2 B x e > G O (Fe) z A magnetic head is assembled in the same manner as in the previous example using a core material made of a second phase particle force dispersion type ultra-quenched alloy having the above compositional formula 6. Electron microscopic observation confirmed that Fe was three-dimensionally uniform and dispersed in the Fe-B-based ultra-quenched alloy 71~x, and X-ray diffraction confirmed that the alloy matrix was an amorphous invar alloy.

第8図は超急冷合金マトリックス中における第241粒
子の粒度分布図で、同図(a)はT 1C+同図(b)
はWC,同図(c)1よCrzOi、同図(d)はZ 
Fe2をそれぞれ第2相粒子とし、で用い、噴射分j枚
法によりCO70sF eJ、 5 S 11−、B 
10系の超急冷合金マトリックス中に分散せしめ、電子
顕微鏡で粒径を測定したものである。これらの各第2相
粒子の平均粒径はいずA1も約0.0(i7zmであっ
た。これら各図から明らかなように、分散されている第
2相粒子のうち約70%以上のものの粒子径が約0.1
μm未満となっており、このように第2相粒子を超微粒
子の状態で分散させるためには、添加前の第2相粒子の
粒径やそれの噴射条件を適宜調整する必要がある。
Figure 8 is a particle size distribution diagram of the 241st particle in the ultra-quenched alloy matrix, where (a) is T 1C + (b)
is WC, the same figure (c) 1 is CrzOi, the same figure (d) is Z
Fe2 was used as the second phase particle, and CO70sF eJ, 5 S 11-, B
The particles were dispersed in a 10-series ultra-quenched alloy matrix, and the particle size was measured using an electron microscope. The average particle size of each of these second phase particles was approximately 0.0 (i7zm) for A1.As is clear from these figures, approximately 70% or more of the dispersed second phase particles Particle size is approximately 0.1
In order to disperse the second phase particles in the form of ultrafine particles, it is necessary to appropriately adjust the particle size of the second phase particles before addition and the conditions for spraying them.

次の表2は、超急冷合金マトリックス (Co7o、s Fe4.s Sii s B x o
 )中における他の第2相粒子の平均粒径を示す表であ
る。
The following Table 2 shows the ultra-quenched alloy matrix (Co7o, s Fe4.s Sii s B x o
) is a table showing the average particle diameters of other second phase particles in FIG.

表 2 このようにほとんどの第2相粒子がM3w粒子−しなっ
ておれば、溶融した合金母材中でも第2相粒子の分散状
態が安定している。すなわち、第2相粒子が溶融状態の
合金母材中に懸濁する段階では、合金母材を分散媒、第
2相粒子を分散質とする分散系が存在する。この分散系
は熱力学的に不安定であるから、第2相粒子の分散ある
いは凝集には自由エネルギー変化ΔFが大きく関与する
。一般に自由エネルギー変化ΔFには、界面自由エネル
ギーの変化と化学反応による変化とがある。ところで溶
融状態の合金母材と第2相粒子とが平衡状態にある場合
は、化学反応による自由エネルギー変化が雰であると考
えられるから、第2相粒子の分散状態は界面自由エネル
ギーの変化に支配されることになる。
Table 2 If most of the second phase particles are M3w particles as described above, the state of dispersion of the second phase particles is stable even in the molten alloy base material. That is, at the stage where the second phase particles are suspended in the molten alloy base material, a dispersion system exists in which the alloy base material is the dispersion medium and the second phase particles are the dispersoid. Since this dispersion system is thermodynamically unstable, the free energy change ΔF is largely involved in the dispersion or aggregation of the second phase particles. Generally, the free energy change ΔF includes a change in interfacial free energy and a change due to a chemical reaction. By the way, when the alloy base material in the molten state and the second phase particles are in an equilibrium state, the free energy change due to the chemical reaction is considered to be the atmosphere, so the dispersion state of the second phase particles is determined by the change in the interfacial free energy. It will be controlled.

溶融合金母材中での第2相粒子の分散は、固相(第2相
粒子)−固相(第2相粒子)界面がなくなり、固相(第
2相粒子)一液相(溶融合金母料)界面が形成される変
化である。従ってこのときの界面自由エネルギーの変化
へFsは次の(8)式のように定義さオbる。なお式中
のγssは固相−固相界面の界面張力である。
The dispersion of the second phase particles in the molten alloy matrix eliminates the solid phase (second phase particles)-solid phase (second phase particles) interface, and the solid phase (second phase particles) and liquid phase (molten alloy This is a change in which an interface (matrix) is formed. Therefore, the change in interfacial free energy at this time, Fs, is defined as shown in the following equation (8). Note that γss in the formula is the interfacial tension at the solid phase-solid phase interface.

ΔFs=2γSL−γss −(8) この式よりΔFsの値が負であれば第2相粒子はi6融
合金母材中で分散あるいは自然1υ濁し5、正であれば
凝集することになる。この同相−同相界面から固相一液
相界面に変化するどさの界面自由エネルギーの変化へF
sを負にするためには、第2相粒子の粒径を可能な限り
小さく唄る必要があり、前述のように分散されている第
2相粒子のうちの約70%以上のもの、好ましくは90
 ’;t にj、 −1:’。
ΔFs=2γSL−γss−(8) According to this equation, if the value of ΔFs is negative, the second phase particles will be dispersed or naturally turbid in the i6 alloy base material5, and if it is positive, they will aggregate. F
In order to make s negative, it is necessary to make the particle size of the second phase particles as small as possible, and as mentioned above, about 70% or more of the dispersed second phase particles, preferably is 90
';t to j, -1:'.

のしのの粒子径が約0.1 )1m未満であれば、第2
用粒子は互に凝集することなく、分散状態が安定しでお
り、均一に分散する。
If the particle size of Noshino is less than about 0.1)1 m, the second
The particles do not aggregate with each other, and their dispersion state is stable and uniformly dispersed.

前記実施例1によって得られた (Co= o、s Fca、s Siy G Bt o
 )p ヮ (W C:)、! 二+ アを才を用いた
磁気ヘラ1〜と、パーンロイ(20%Fe−80%Ni
)のコア材を用いた磁気ヘッドどのエポキシ樹脂による
モールド後のI M H7,における透磁率は、前者が
4000であるのに対し、後者は高々800程度であっ
た。本発明に係る磁気・\ツ1−の場合には、樹脂モー
ルドによる透磁率の低下がほどんど認められず、モール
ド後も高い透磁率を有している。また、高周波領域での
信号波形の位4’I41’れ4示すピークシフトについ
て測定したところ、パーマロイを用いた後者の磁気ヘッ
ドではシフl−量が150〜260nsあったのに対し
、本発明に係る前者の磁気ヘッドではシフトJ’1lO
O〜150nsと小さく、従来のものに比べて高周波領
域での信号波形の対称性が改善されている。なお、この
ピークシフトの試験条件は、テープ走行速度125ip
s 、線密度9042 F ci 、パターンN RZ
 I 11,100 (10間のピークシフ1−)、書
込電流l5ATX1.I3である。
Obtained according to Example 1 (Co=o, s Fca, s Siy G Bto
)p ヮ (W C:),! 2+ Magnetic spatula 1~ using A and Pernloy (20%Fe-80%Ni)
) The magnetic permeability of the magnetic head after molding with epoxy resin was 4000 for the former, while the magnetic permeability for the latter was about 800 at most. In the case of the magnetic material according to the present invention, there is hardly any decrease in magnetic permeability due to resin molding, and the magnetic material has high magnetic permeability even after molding. Furthermore, when we measured the peak shift of the signal waveform in the high frequency region, we found that the latter magnetic head using permalloy had a shift amount of 150 to 260 ns, whereas the present invention In the former magnetic head, the shift J'1lO
It is as short as 0 to 150 ns, and the symmetry of the signal waveform in the high frequency region is improved compared to the conventional one. The test conditions for this peak shift were a tape running speed of 125 ip.
s, linear density 9042 F ci , pattern N RZ
I 11,100 (peak shift 1- between 10), write current l5ATX1. It is I3.

本発明は前述のような構成になっており、高周波領域で
の透磁率が高く、ピークシフトの対称性が良好であるか
ら、磁気ヘッドを使用している周辺機器のエラーマージ
ンが減少し信頼性の向上が図才しろ。
The present invention has the above-mentioned configuration, and has high magnetic permeability in the high frequency range and good peak shift symmetry, which reduces the error margin of peripheral devices that use the magnetic head and improves reliability. Improve your skills.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明に係るコア材の第1の製造
例を示す原理説明図、第3図は製造されたコア材の拡大
断面図、第4図は本発明に係るコア材の第2の製造例を
示す原理説明図、第5図は本発明に係るコア材の第3の
製造例を示す原理説明図、第6図は、+:発明のブ;/
l伍倒Iに係るデジタル用磁気ヘッドの一部勿解斜視図
、ガ)7図は−E−の磁気ヘッドの組立後の斜視口、第
8回(a) 、0)) 、 (c )。 (d)は合金71へリックス中におけるfiS2.1図
粒子の粒度分布図である。 1 台金母材、4 第2相粒子、12 :1ア(A、1
4 超急冷合金マトリックス217・ リート用コア、
+ 8 ・ ライト用コア。 第 1 図 第2図 第3図 ]4 第4図 第5図 手続補正書(方式) 昭和59年 2月10日 特許庁長官 若 杉 和 夫 殿 ■ 事件の表示 特願昭58−179401号 2 発明の名称 デジタル用磁気ヘット 3 補正をする者 事件との関係 出願人 住 所 東京都大田区雪谷大塚町1番7号名 称 (A
O9)アルプス電気株式会社代表者 片岡勝太部 4 代理人 住 所 〒105東京都港区西新橋1丁目6番13号相
屋ビル 6 補正の対象 (1)明細書の図面の簡単な説明の欄 7 補正の内容 別紙記載の通り (1)明細書36ペ一ジ3行〜4行の[第8図・・・・
・(d)は」を[第8図はjに補正り、ます、・“ ・
二1− 1゛i 代理人 弁理士 弐 顕次部
1 and 2 are principle explanatory diagrams showing a first manufacturing example of the core material according to the present invention, FIG. 3 is an enlarged sectional view of the manufactured core material, and FIG. 4 is a core material according to the present invention. 5 is a principle explanatory diagram showing a second manufacturing example of the core material according to the present invention. FIG. 6 is a principle explanatory diagram showing a third manufacturing example of the core material according to the present invention.
A partially exploded perspective view of the digital magnetic head according to 5. Figure 7 is a perspective view of the magnetic head of -E- after assembly, Part 8 (a), 0)), (c) . (d) is a particle size distribution diagram of fiS2.1 grains in the alloy 71 helix. 1 Base metal base material, 4 Second phase particles, 12:1A (A, 1
4 Super-quenched alloy matrix 217 core for REET,
+ 8 ・ Core for light. Figure 1 Figure 2 Figure 3 ] 4 Figure 4 Figure 5 Procedural amendment (method) February 10, 1980 Kazuo Wakasugi, Commissioner of the Japan Patent Office ■ Case indication patent application No. 179401 No. 2 Title of the invention Digital magnetic head 3 Relationship to the case of the person making the amendment Applicant address 1-7 Yukitani Otsuka-cho, Ota-ku, Tokyo Name (A
O9) Alps Electric Co., Ltd. Representative Katsutabe Kataoka 4 Agent address 6 Aiya Building, 1-6-13 Nishi-Shinbashi, Minato-ku, Tokyo 105 Subject of amendment (1) Brief explanation of drawings in the specification Column 7 Contents of amendment As stated in the attached sheet (1) Page 36 of the specification, lines 3 to 4 [Figure 8...
・(d) is corrected to [Figure 8 is j, ・“ ・
21-1゛i Agent Patent Attorney 2 Kenji Department

Claims (1)

【特許請求の範囲】 (1)非晶質、結晶質またはそれらの混合相からなる超
急冷合金71−リツクス中に、第2相粒子を少なくとb
1種3次元的に均−勺敗させてなる複合材料により磁気
回路の少なくとも一部を構成したことを特徴とするデジ
タル用磁気ヘッド。 (2)前記超急冷合金マトリックスがコバルトを主成分
とするコバルト系非晶質合金であることを特徴とする特
許請求の範囲第(1)項記載のデジタル用磁気ヘッド。 、 (3)前記超急冷合金マトリックスがニッケルを主成分
とするニッケル系非晶質合金であることを特徴とする特
許請求の範囲第(1)項記載のデジタル用磁気ヘッド。 (4) 前記超急冷合金71〜リツクスが鉄を主成分と
する鉄系非晶質合金であることを特徴とする特6e生−
bma’cm+#/l)mf+aM、;>;Jr+l+
rnO)4百4、・7(5)前記第2相粒子が炭化物で
あることを特徴とする特許請求の範囲第1項記載のデジ
タル用磁気ヘッド。 (6) 前記第2相粒子が炭化タングステンであること
を特徴とする特許請求の範囲第(5)項記載のテ゛ジタ
ル用磁気ヘッド。 (7)前記第2 IIJ粒子が炭素であることを特徴と
する特許請求の範囲第(1)項記載のデジタル用磁気ヘ
ッド。 (8) 前記第2相粒子が酸化物であることを特徴とす
る特許請求の範囲第(1)項記載のデジタル用磁気ヘッ
ド。 (9) 前記第2相粒子が酸化クロムであることを特徴
とする特許請求の範囲第(8)項記載のデジタル用磁気
ヘット。 (10) 前記第2相粒子が窒化物であることを特徴と
する特許請求の範囲jl)(1)項記載のデジタル用磁
気ヘッド。 (11)前記第2相粒子がシリケイ1−であることを特
徴とする特許請求の範囲第(1)項記載のデジタル用磁
気ヘッド。 (12) 前記第2相粒子が金属であることを特徴とす
る特許請求の範囲第(1)項記載のデジタル用磁気ヘッ
ド。 (13) 前記超急冷合金マ]ヘリックス中に均一分散
さhた第2相粒子のうち、約70%以上の第2相粒子の
粒径が約0.1μm未満であることを特徴とする特許請
求の範囲第(1)項記載のデジタル用磁気ヘッド。 (14)前記複合材料が薄板部材からなり、これら薄板
部材が所定枚数積層された積層体によりコア部が構成さ
れていることを特徴とする特許請求の範囲第(1)項記
載のデジタル用磁気ヘッド。 (15) 前記複合材料が、前記超急冷合金マトリック
スを構成する合金母材を加熱溶融したのち、その合金母
材が凝固する前に、不活性ガスからなる噴射媒体ととも
に前記第2相粒子を前記合金母材に対して噴射分散せし
め、その後冷却して第2相粒、子を均一分散したインゴ
ットをつくり、このインゴットを第2相粒子が溶解しな
い程度に再溶融して超急冷凝固せしめて得られた接合材
であることを特徴とする特許請求の範囲第([)項記載
のデジタル用磁気ヘット。 (1G) 前記複合+A利が、前記超急冷合金マトリッ
クスを構成する合金母材を前記第2相粒子が溶解しない
程度に加熱溶融し、この合金母材が凝固する前に、不活
性ガスからなる噴射媒体どどもに第2相粒子を前記台金
母材に対しC噴射分散せしめ、その後超急冷凝固せしめ
て得られた複合材であることを特徴とする特許請求の範
囲第(1)項記載のデジタル用磁気ヘット。 (17) 前記第2相粒子が前記超急冷合金71−リツ
クスに対して濡れ性の悪い金属であることを特徴とする
特許請求の範囲第(15)項あるいは第(1G)項記載
のデジタル用磁気ヘッド。 (18)前記第2相粒子が酸化クロムであること”を特
徴とする特許請求の範囲第(17)項記載のデジタル用
磁気ヘッド。 (19)前記超急冷合金71へリックス中に均一分子1
9された第2相粒子のうち、約70%以上の第2相粒子
の粒径が約0.1μm未満であることを特徴とする特許
請求の範囲第(15)項あるいは第(16)項記載のデ
ジタル用磁気ヘッド・
[Scope of Claims] (1) A super-rapidly solidified alloy 71-ricks consisting of an amorphous, crystalline or mixed phase thereof contains at least b second phase particles.
1. A digital magnetic head, characterized in that at least a part of a magnetic circuit is made of a composite material made of one type of three-dimensionally uniform composite material. (2) The digital magnetic head according to claim (1), wherein the ultra-quenched alloy matrix is a cobalt-based amorphous alloy containing cobalt as a main component. (3) The digital magnetic head according to claim (1), wherein the ultra-quenched alloy matrix is a nickel-based amorphous alloy containing nickel as a main component. (4) A special 6e raw material characterized in that the ultra-quenched alloy 71~Rix is an iron-based amorphous alloy containing iron as a main component.
bma'cm+#/l)mf+aM,;>;Jr+l+
rnO)404,.7(5) The digital magnetic head according to claim 1, wherein the second phase particles are carbide. (6) A digital magnetic head according to claim (5), wherein the second phase particles are tungsten carbide. (7) The digital magnetic head according to claim (1), wherein the second IIJ particles are carbon. (8) The digital magnetic head according to claim (1), wherein the second phase particles are oxides. (9) The digital magnetic head according to claim (8), wherein the second phase particles are chromium oxide. (10) The digital magnetic head according to claim jl) (1), wherein the second phase particles are nitride. (11) A digital magnetic head according to claim (1), wherein the second phase particles are silica 1-. (12) The digital magnetic head according to claim (1), wherein the second phase particles are metal. (13) A patent characterized in that about 70% or more of the second phase particles uniformly dispersed in the ultra-quenched alloy matrix have a particle size of less than about 0.1 μm. A digital magnetic head according to claim (1). (14) The digital magnet according to claim (1), wherein the composite material is made of thin plate members, and the core portion is constituted by a laminate in which a predetermined number of these thin plate members are laminated. head. (15) In the composite material, after the alloy base material constituting the ultra-quenched alloy matrix is heated and melted, and before the alloy base material solidifies, the second phase particles are heated and melted together with an injection medium consisting of an inert gas. The alloy is sprayed and dispersed into the alloy base material, and then cooled to create an ingot in which the second phase particles and particles are uniformly dispersed.This ingot is then remelted to an extent that the second phase particles do not dissolve and solidified by ultra-rapid cooling. A digital magnetic head according to claim 1, characterized in that the digital magnetic head is a bonding material made of (1G) The composite +A mixture heats and melts the alloy base material constituting the ultra-quenched alloy matrix to such an extent that the second phase particles do not dissolve, and before the alloy base material solidifies, the alloy base material made of an inert gas Claim 1, characterized in that the composite material is obtained by spraying and dispersing second phase particles onto the base metal base material using a spraying medium, and then solidifying the composite material by ultra-rapid cooling. Magnetic head for digital. (17) The digital device according to claim (15) or (1G), wherein the second phase particles are a metal that has poor wettability with respect to the ultra-quenched alloy 71-lix. magnetic head. (18) A digital magnetic head according to claim (17), characterized in that the second phase particles are chromium oxide. (19) Uniform molecules 1 in the super-quenched alloy 71 helix.
Claim (15) or (16), characterized in that the particle size of about 70% or more of the second phase particles obtained in the above-mentioned second phase particles is less than about 0.1 μm. The listed digital magnetic head
JP58179401A 1983-09-29 1983-09-29 Digital magnetic head Pending JPS6074104A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP58179401A JPS6074104A (en) 1983-09-29 1983-09-29 Digital magnetic head
US06/655,924 US4650712A (en) 1983-09-29 1984-09-28 Magnetic head for digital signals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58179401A JPS6074104A (en) 1983-09-29 1983-09-29 Digital magnetic head

Publications (1)

Publication Number Publication Date
JPS6074104A true JPS6074104A (en) 1985-04-26

Family

ID=16065216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58179401A Pending JPS6074104A (en) 1983-09-29 1983-09-29 Digital magnetic head

Country Status (2)

Country Link
US (1) US4650712A (en)
JP (1) JPS6074104A (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2533860B2 (en) * 1986-09-24 1996-09-11 株式会社日立製作所 Magnetic superlattice film and magnetic head using the same
KR920005044B1 (en) * 1987-07-23 1992-06-25 Hitachi Ltd Magnetic head
JPH0312809A (en) * 1989-06-09 1991-01-21 Matsushita Electric Ind Co Ltd Nanocomposite substrate
JP2635422B2 (en) * 1989-10-17 1997-07-30 アルプス電気株式会社 Magnetic head
JPH04129009A (en) * 1989-10-20 1992-04-30 Seagate Technol Internatl Thin-film magnetic reading-writing head
US5030332A (en) * 1990-04-19 1991-07-09 Massachusetts Institute Of Technology Method for making magnetic oxide precipitates
US5091253A (en) * 1990-05-18 1992-02-25 Allied-Signal Inc. Magnetic cores utilizing metallic glass ribbons and mica paper interlaminar insulation
WO2003069000A2 (en) * 2002-02-11 2003-08-21 University Of Virginia Patent Foundation Bulk-solidifying high manganese non-ferromagnetic amorphous steel alloys and related method of using and making the same
USRE47863E1 (en) 2003-06-02 2020-02-18 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
US7763125B2 (en) * 2003-06-02 2010-07-27 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
WO2005024075A2 (en) * 2003-06-02 2005-03-17 University Of Virginia Patent Foundation Non-ferromagnetic amorphous steel alloys containing large-atom metals
WO2006091875A2 (en) * 2005-02-24 2006-08-31 University Of Virginia Patent Foundation Amorphous steel composites with enhanced strengths, elastic properties and ductilities

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527595A (en) * 1963-10-01 1970-09-08 Arthur Adler Homogeneous metal-containing solid mixtures
US3431205A (en) * 1965-09-17 1969-03-04 Ashland Oil Inc Process for production of metal bearing carbon black
US3591362A (en) * 1968-03-01 1971-07-06 Int Nickel Co Composite metal powder
US3661570A (en) * 1970-04-03 1972-05-09 Rca Corp Magnetic head material method
NL182182C (en) * 1974-11-29 1988-01-18 Allied Chem DEVICE WITH AMORPHIC METAL ALLOY.
US4268564A (en) * 1977-12-22 1981-05-19 Allied Chemical Corporation Strips of metallic glasses containing embedded particulate matter
US4330027A (en) * 1977-12-22 1982-05-18 Allied Corporation Method of making strips of metallic glasses containing embedded particulate matter
US4395279A (en) * 1981-11-27 1983-07-26 Gte Products Corporation Plasma spray powder
US4508788A (en) * 1982-09-09 1985-04-02 Gte Products Corporation Plasma spray powder

Also Published As

Publication number Publication date
US4650712A (en) 1987-03-17

Similar Documents

Publication Publication Date Title
JP3913167B2 (en) Bulk Fe-based sintered alloy soft magnetic material made of metallic glass and manufacturing method thereof
US6284061B1 (en) Soft magnetic amorphous alloy and high hardness amorphous alloy and high hardness tool using the same
JP4016399B2 (en) Method for producing Fe-Co-B alloy target material
US4257830A (en) Method of manufacturing a thin ribbon of magnetic material
US5301742A (en) Amorphous alloy strip having a large thickness
JPS6074104A (en) Digital magnetic head
JPH0336243A (en) Amorphous alloy excellent in mechanical strength, corrosion resistance, and workability
JP3816595B2 (en) Manufacturing method of sputtering target
JPH03158446A (en) Amorphous alloy excellent in workability
JPH0851010A (en) Green compact of soft magnetic alloy, production method thereof and coating powder therefor
JPS6050605A (en) Magnetic head for video tape recorder
JP2008260970A (en) SINTERED SPUTTERING-TARGET MATERIAL OF Co-Zr-BASED ALLOY AND MANUFACTURING METHOD THEREFOR
JPS6015808A (en) Magnetic head
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JPS6017029A (en) Production of second phase particle dispersion type ultraquickly cooled alloy
JPS6058669A (en) Power sensor
JPS6025011A (en) Magnetic head
US4648437A (en) Method for producing a metal alloy strip
EP0148306A2 (en) Method for producing a metal alloy strip
JPS60103569A (en) Magnetic head device
JPS5824924B2 (en) Stork
JPS6234817B2 (en)
JP3532392B2 (en) Bulk core
JP2006307345A (en) Sputtering target
JPS60108144A (en) Production of thin metallic strip