JPH01191308A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH01191308A
JPH01191308A JP63013892A JP1389288A JPH01191308A JP H01191308 A JPH01191308 A JP H01191308A JP 63013892 A JP63013892 A JP 63013892A JP 1389288 A JP1389288 A JP 1389288A JP H01191308 A JPH01191308 A JP H01191308A
Authority
JP
Japan
Prior art keywords
magnetic
superconductor
thin film
head
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63013892A
Other languages
Japanese (ja)
Inventor
Hideo Koseki
小関 秀夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63013892A priority Critical patent/JPH01191308A/en
Publication of JPH01191308A publication Critical patent/JPH01191308A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To widely decrease a magnetic flux to leak from the side surface of a head and to improve head efficiency by holding the both surfaces of a metallic magnetic thin film, which is a main core, with a superconductor. CONSTITUTION:The both surfaces of a metallic magnetic thin film 1, which is the main core, are held by a superconductor 2. For example, on the both surfaces of a superconductor substrate 2, whose thickness is 1mm, an amorphous alloyed thin film 1 is formed and on the film, an SiO2 film is formed as a protecting layer. Further, on the both surfaces of the superconductor substrate, a glass layer, whose thickness is 3mum, is prepared. Then, the three pieces of the former and the four pieces of the latter are alternatively laminated and adhered at a glass fusion temperature. Then, a laminating block is obtained. Thus, the side surface of the magnetic head is covered with the superconductor and the leakage of the magnetic flux in the side surface of a magnetic path, which is composed of the metallic magnetic thin film, can be extremely decreased by a Meissner effect. Then, the efficiency of the magnetic head can be extremely improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はVTRまたは、デジタルオーディオ等に用いら
れる高保磁力の磁気記録媒体に高周波信号を記録するの
に好適な磁気ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a magnetic head suitable for recording high frequency signals on a high coercive force magnetic recording medium used for VTRs, digital audio, and the like.

従来の技術 VTR,デジタルオーディオ等の高密度磁気記録再生装
置においては、磁気記録媒体の保磁力Hcを大きくすれ
ば、有利であることは良く知られているが、高保磁力の
磁気記録媒体に情報を記録するためには強い磁場が必要
になる。ところが現在磁気ヘッドに多用されているフェ
ライト材は、その飽和磁束密度が4000〜5000ガ
ウス程度であるため、得られる記録磁界の強さに限界が
あり、磁気記録媒体の保磁力が1000エルステツド程
度以上になると記録が不十分になるという欠点を有して
いる。
Conventional Technology It is well known that it is advantageous to increase the coercive force Hc of a magnetic recording medium in high-density magnetic recording and reproducing devices such as VTRs and digital audio. A strong magnetic field is required to record. However, the ferrite material currently widely used in magnetic heads has a saturation magnetic flux density of about 4,000 to 5,000 Gauss, so there is a limit to the strength of the recording magnetic field that can be obtained, and the coercive force of the magnetic recording medium is about 1,000 Oe or more. This has the disadvantage that records are insufficient.

一方、金属磁性材料で総称されるFe−Aj!−St金
合金センダストと称される)、Ni−Fe合金(パーマ
ロイ)等の結晶質磁性合金、或は非晶質合金を用いた磁
気ヘッドは、一般にフェライト材より飽和磁束密度が高
く、かつ、摺動ノイズも少ないと言う優れた特徴を有す
るが、加工が難しく、歩留りが悪いためコストが高くな
るという欠点を有していた。
On the other hand, Fe-Aj! is a generic name for metallic magnetic materials. Magnetic heads using crystalline magnetic alloys such as -St gold alloy sendust), Ni-Fe alloys (permalloy), or amorphous alloys generally have a higher saturation magnetic flux density than ferrite materials, and Although it has an excellent feature of low sliding noise, it has the drawbacks of being difficult to process and having a low yield, resulting in high costs.

特に、金属磁性薄膜を主コアとして用いる場合には、通
常これを適当な基板上に接着した後所定の厚さに研磨し
、同様の基板で金属磁性薄膜を挟み込むようにして接着
した後加工、ヘッド化される。
In particular, when a metal magnetic thin film is used as the main core, it is usually bonded onto a suitable substrate, polished to a predetermined thickness, and then bonded between similar substrates to sandwich the metal magnetic thin film, and then processed. Becomes a head.

発明が解決しようとする課題 しかしながら、高密度記録においてはトラック幅は益々
狭くなる傾向にあり、それを規定する金属磁性薄膜の厚
さが薄くなると上記のような構造を有する磁気ヘッドの
効率が低下し所望の出力が得られなくなるという欠点を
有している。
Problems to be Solved by the Invention However, in high-density recording, the track width tends to become narrower and narrower, and as the thickness of the metal magnetic thin film that defines it becomes thinner, the efficiency of the magnetic head with the above structure decreases. However, it has the disadvantage that the desired output cannot be obtained.

課題を解決するための手段 本発明は、上記課題について、基板として、超伝導体を
用いることにより解決を図ろうとするものである。基板
として超伝導体を用いることにより、磁気ヘッドの側面
は超伝導体によって覆われる構成となり、マイスナー効
果によって金属磁性薄膜が構成する磁路の側面の磁束の
漏洩を著しく減少させることができ、磁気ヘッドの効率
を著しく向上させることができる。
Means for Solving the Problems The present invention attempts to solve the above problems by using a superconductor as a substrate. By using a superconductor as a substrate, the sides of the magnetic head are covered with the superconductor, and the Meissner effect can significantly reduce the leakage of magnetic flux on the sides of the magnetic path made up of the metal magnetic thin film. Head efficiency can be significantly improved.

作用 基板材として超伝導体を用いることにより金属磁性薄膜
を主コアとする高性能な磁気ヘッドの製造が容易となる
By using a superconductor as a working substrate material, it becomes easy to manufacture a high-performance magnetic head whose main core is a metal magnetic thin film.

実施例 第1図は、本発明の構造を示す磁気ヘッドの斜視図であ
る。主コアである金属磁性薄膜1の両面を超伝導体2が
挟持する構造となっている。以下にこのヘッドの具体的
な製造方法を示す。
Embodiment FIG. 1 is a perspective view of a magnetic head showing the structure of the present invention. It has a structure in which superconductors 2 sandwich both sides of a metal magnetic thin film 1, which is the main core. A specific method for manufacturing this head will be shown below.

実施例1 第2図に示すように、厚さ1flの超伝導体基板2の両
面にCOを主成分とするアモルファス合金薄膜lを厚さ
21μmにスパッタリングにより形成し、その上に保護
層として0.5〜1μmの厚さのS i O2膜(図面
では省略)を形成する。さらに、前記と同様の超伝導体
基板の両面に厚さ3μmのガラス層(図面では省略)を
形成したものを用意し、前者3枚、後者4枚(ただし、
外側に積層される基板にはガラス層は片側にのみ形成す
る)を交互に積層し、ガラス融着温度(500℃)にて
接着し積層ブロック3を得る。次に第3図の点線に示す
ように所定のアジマス角に応じて切断し、第4図に示す
コア半体対4.4°を得る。一方のコア、半体4に巻線
溝加工を施した後、コア半休4゜4゛の突合せ面を研磨
加工した後所定のギャップ長になるようギャップ材とし
てSiO2および接着ガラスの薄膜を形成し、電気炉中
にて加熱(500℃)、接着することによりギャップ形
成バー5を得る。その後破線に示すように積層ピッチに
応じて切断して第6図に示すスライスパー6を得、さら
に破線で示すように巻線溝ピッチに応じて切断すること
により第1図に示すようなヘッドチップが得られる。ヘ
ッドチップはベース板に接着されテープ摺動面の曲面加
工研磨、巻線等の工程を経て磁気ヘッドとして完成する
Example 1 As shown in FIG. 2, an amorphous alloy thin film l containing CO as a main component was formed by sputtering on both sides of a superconductor substrate 2 with a thickness of 1 fl to a thickness of 21 μm. A SiO2 film (not shown in the drawing) with a thickness of .5 to 1 μm is formed. Furthermore, we prepared superconductor substrates similar to those described above with glass layers (omitted in the drawing) having a thickness of 3 μm formed on both sides, 3 of the former and 4 of the latter (however,
Glass layers are formed on only one side of the substrates to be laminated on the outside) are alternately laminated and bonded at a glass fusing temperature (500° C.) to obtain a laminated block 3. Next, it is cut according to a predetermined azimuth angle as shown by the dotted line in FIG. 3 to obtain a pair of core halves of 4.4° as shown in FIG. After winding grooves are formed on one of the cores and half body 4, the abutting surfaces of the core halves 4° and 4° are polished, and then a thin film of SiO2 and adhesive glass is formed as a gap material to obtain a predetermined gap length. The gap forming bar 5 is obtained by heating (500° C.) in an electric furnace and bonding. Thereafter, the slicer 6 shown in FIG. 6 is obtained by cutting according to the lamination pitch as shown by the broken line, and the head as shown in FIG. 1 is obtained by cutting according to the winding groove pitch as shown by the broken line. You get chips. The head chip is adhered to a base plate, and the magnetic head is completed through processes such as curved surface processing and polishing of the tape sliding surface, and winding.

以上のような工程において、主コアである金属磁性薄膜
の蒸着基板かつ保持材として超伝導体を用いるので、マ
イスナー効果によりヘッドの側面から漏洩する磁束を大
幅に減少させることができるためヘッド効率を向上させ
ることができるとともに、テープとの摺動において同効
果により適度な間隙を有するため偏摩耗の発生が少なく
良好な摺動面を維持し得る等価れた特徴を多く有してお
り、磁気特性が良好なヘッドを製造できる。
In the process described above, a superconductor is used as the evaporation substrate and holding material for the metal magnetic thin film that is the main core, so the Meissner effect can significantly reduce the magnetic flux leaking from the sides of the head, thereby improving head efficiency. In addition, due to the same effect when sliding with the tape, it has an appropriate gap, so it has many equivalent features that can maintain a good sliding surface with less occurrence of uneven wear, and magnetic properties. can produce good heads.

実施例2 実施例1のアモルファス合金薄膜1の代わりに、超伝導
体基板2の両面に、センダスト薄膜を真空蒸着により2
1μmの厚さに形成する。その他は実施例1と同様の工
程でヘッドを作成することができる。本実施例の場合に
はセンダスト薄膜の耐熱性により、積層ブロック、ギャ
ップ形成バーを得る際の加熱温度は800℃程度が可能
であり、高い融着温度(800℃)の接着ガラスを用い
た。
Example 2 Instead of the amorphous alloy thin film 1 of Example 1, two Sendust thin films were deposited on both sides of the superconductor substrate 2 by vacuum evaporation.
It is formed to a thickness of 1 μm. Otherwise, the head can be manufactured using the same steps as in Example 1. In the case of this example, due to the heat resistance of the sendust thin film, the heating temperature for obtaining the laminated block and the gap forming bar can be about 800°C, and adhesive glass with a high fusing temperature (800°C) was used.

こうして得られた磁気ヘッドの磁気特性、および摩耗特
性は、実施例1と同様に良好なものである。
The magnetic properties and wear characteristics of the magnetic head thus obtained are as good as in Example 1.

なお、上記実施例中、超伝導体材料としては、たとえば
、いわゆる常温超伝導体を用いるか、または、超伝導臨
界温度が室温と液体窒素温度の沸点の間の材料を用いて
液体窒素で冷却するか(図示せず)、もしくは超伝導臨
界温度が液体窒素温度の沸点以下の材料を用いて液体ヘ
リウムで冷却するか(図示せず)をすればよい。常温超
伝導体の一例としては、組成としてストロンチウム(S
r)、バリウム(Ba)、  インドリウム(Y)およ
び銅(Cu)をそれぞれ1:1:1:3の比率で含有す
るセラミック酸化物がある。その製造方法の一例として
は、出発原料として5rCO’。
In the above examples, as the superconductor material, for example, a so-called room temperature superconductor is used, or a material whose superconducting critical temperature is between room temperature and the boiling point of liquid nitrogen temperature is used and cooled with liquid nitrogen. (not shown), or cooled with liquid helium using a material whose superconducting critical temperature is below the boiling point of liquid nitrogen temperature (not shown). An example of a room-temperature superconductor is strontium (S) as a composition.
There are ceramic oxides containing barium (Ba), indium (Y) and copper (Cu) in a ratio of 1:1:1:3, respectively. As an example of its production method, 5rCO' is used as a starting material.

BaCO3,Y2O3,CuOのそれぞれの粉体を所定
量混合し、粉砕し、空気中において920℃で5時間焼
成する。この焼成、粉砕を3回操り返し、均質性を高め
る。このようにして処理した混合粉体を冷間圧縮成型し
た後、空気中において1000℃で5時間焼成し、徐冷
することにより製造する。
Predetermined amounts of powders of BaCO3, Y2O3, and CuO are mixed, pulverized, and fired in air at 920° C. for 5 hours. This firing and crushing process is repeated three times to improve homogeneity. After cold compression molding the mixed powder treated in this way, it is produced by firing in air at 1000° C. for 5 hours and slowly cooling.

発明の効果 以上のように本発明は、主コアである金属磁性薄膜の蒸
着基板かつ保持材として超伝導体を用いることにより、
そのマイスナー効果によ砂ヘッドの側面から漏洩する磁
束を大幅に減少させることができるためヘッド効率を向
上させることができるとともに、テープとの摺動におい
て同効果により適度な間隙を有するため偏摩耗の発生が
少なく良好な摺動面を維持し得る等価れた特徴を多く有
しており、磁気特性が良好なヘッドを製造できる。
Effects of the Invention As described above, the present invention uses a superconductor as the deposition substrate and holding material for the metal magnetic thin film that is the main core.
The Meissner effect can significantly reduce the magnetic flux leaking from the side of the sand head, improving head efficiency, and the same effect creates an appropriate gap when sliding with the tape, reducing uneven wear. It has many equivalent features that can maintain a good sliding surface with less generation, and a head with good magnetic properties can be manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁気ヘッドの構造を示す斜視図、第2
図から第6図は本発明の実施例におけるヘッドの製造方
法を説明する説明図である。 1・・・・・・金属磁性薄膜、2・・・・・・超伝導体
、3・・・・・・積層ブロック、4,4°・・・・・・
コア半休対、5・・・・・・ギャソフ形成バー、6・・
・・・・スライスバー。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 第2図 第3図 84図 11開平1−191308(4)
FIG. 1 is a perspective view showing the structure of the magnetic head of the present invention, and FIG.
6 to 6 are explanatory diagrams illustrating a method of manufacturing a head in an embodiment of the present invention. 1...Metal magnetic thin film, 2...Superconductor, 3...Laminated block, 4,4°...
Core half-rest pair, 5...Gasoff formation bar, 6...
...Slice bar. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1 Figure 2 Figure 3 Figure 84 Figure 11 Kaihei 1-191308 (4)

Claims (2)

【特許請求の範囲】[Claims] (1)主コアである金属磁性薄膜の両面を超伝導体で挟
持してなる構造を有する磁気ヘッド。
(1) A magnetic head having a structure in which both sides of a metal magnetic thin film, which is the main core, are sandwiched between superconductors.
(2)金属磁性薄膜が、アモルファス合金またはセンダ
スト薄膜であることを特徴とする特許請求の範囲第(1
)項記載の磁気ヘッド。
(2) Claim No. 1, characterized in that the metal magnetic thin film is an amorphous alloy or a sendust thin film.
) The magnetic head described in section 2.
JP63013892A 1988-01-25 1988-01-25 Magnetic head Pending JPH01191308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63013892A JPH01191308A (en) 1988-01-25 1988-01-25 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63013892A JPH01191308A (en) 1988-01-25 1988-01-25 Magnetic head

Publications (1)

Publication Number Publication Date
JPH01191308A true JPH01191308A (en) 1989-08-01

Family

ID=11845834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63013892A Pending JPH01191308A (en) 1988-01-25 1988-01-25 Magnetic head

Country Status (1)

Country Link
JP (1) JPH01191308A (en)

Similar Documents

Publication Publication Date Title
US4608297A (en) Multilayer composite soft magnetic material comprising amorphous and insulating layers and a method for manufacturing the core of a magnetic head and a reactor
US5663857A (en) Magnetic head
KR910009970B1 (en) Amorphous magnetic alloy of co-nb-zr system and magnetic head made from the same
JP2554041B2 (en) Method of manufacturing magnetic head core
US5247415A (en) Magnetic head having main and auxiliary magnetic paths
US5386332A (en) Magnetic head for high-frequency, high density recording
JPH0624044B2 (en) Composite type magnetic head
JPH01191308A (en) Magnetic head
JPS5888814A (en) Magnetic head
JPS58100412A (en) Manufacture of soft magnetic material
US4731299A (en) Composite magnetic material
JPS63112809A (en) Magnetic head
JPS60231903A (en) Composite type magnetic head and its production
KR19980081856A (en) Magnetic thin film and magnetic head
KR0152601B1 (en) Core of composite magnetic head and the manufacturing method
JPS63311611A (en) Composite type magnetic head
KR950007905Y1 (en) Mixed magnetic head
KR100232141B1 (en) Manufacturing method of magnetic head
JPS63217515A (en) Magnetic head
JPS62140209A (en) Production of alloy magnetic head
JPS63279403A (en) Production of magnetic head
JPH05114111A (en) Magnetic head
JPS63293708A (en) Magnetic head
JPS63112808A (en) Magnetic head
JPS60242511A (en) Manufacture of magnetic head