JPS62140209A - Production of alloy magnetic head - Google Patents

Production of alloy magnetic head

Info

Publication number
JPS62140209A
JPS62140209A JP28135085A JP28135085A JPS62140209A JP S62140209 A JPS62140209 A JP S62140209A JP 28135085 A JP28135085 A JP 28135085A JP 28135085 A JP28135085 A JP 28135085A JP S62140209 A JPS62140209 A JP S62140209A
Authority
JP
Japan
Prior art keywords
alloy
magnetic
thin
thin film
gap forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28135085A
Other languages
Japanese (ja)
Other versions
JPH0582645B2 (en
Inventor
Masayuki Sakai
界 政行
Hideo Torii
秀雄 鳥井
Masaki Aoki
正樹 青木
Hideyuki Okinaka
秀行 沖中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP28135085A priority Critical patent/JPS62140209A/en
Publication of JPS62140209A publication Critical patent/JPS62140209A/en
Publication of JPH0582645B2 publication Critical patent/JPH0582645B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)

Abstract

PURPOSE:To provide a titled magnetic head having excellent output characteristics at a high frequency by forming thin two-layered films consisting of ceramics and lead-contg. glass as a nonmagnetic layer on the front gap forming surfaces of a pair of amorphous alloy magnetic cores and thin Ag-Cu-In alloy films having a low m.p. on the back gap forming surfaces thereof, then subjecting the cores to a heat treatment at a prescribed temp. CONSTITUTION:This right and left butt type magnetic head is constituted by sandwiching a magnetic material consisting of the amorphous alloy 2 which is a thin strips of Fe-Co-Si-B made by a liquid ultra-quick cooling method between glass substrates 1. The thin two-layered films consisting of the thin ceramic film 8 and thin lead-contg. glass film 9 are formed as the nonmagnetic layer on the front gap forming surfaces 6 of the right and left alloy magnetic cores 2. The thin Ag-Cu-In alloy films 10 are formed on the back gap forming surfaces of the alloy magnetic cores. The magnetic cores in the stage of mating the gap forming surfaces to each other is then subjected to the heat treatment in a nonoxidative atmosphere above the softening temp. of the lead-contg. glass and the temp. at which the liquid phase of the Ag-Cu-In alloy appears, by which the right and left magnetic cores 2 are diffusively joined and the magnetical gap is formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は合金磁気ヘッドの製造方法、特に高密度磁気記
録達成のための高坑磁カテープ対応のアモルファス磁気
ヘッドの狭ギヤツプ形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing an alloy magnetic head, and more particularly to a method for forming a narrow gap in an amorphous magnetic head that is compatible with high magnetic flux to achieve high-density magnetic recording.

従来の技術 近年、磁気記録密度向上のためメタルテープや蒸着テー
プ等が用いられ初めているが、これに対応する磁気ヘッ
ドとしては磁心ギャップ近傍の磁気飽和の生じにくい高
飽和磁束密度磁心材料が必要である。現在このような高
性能磁気ヘッドのコア材として、アモルファス合金(た
とえばCo−Zr−Nb系合金)やセンダスト合金(F
e−AI−3i系合金)が用いられている。特に、アモ
ルファス合金は、結晶を組んでいないことによるさまざ
まな特徴(結晶磁気異方性を持たない、硬度が高い、固
有抵抗ρが大きい及び薄板材が得られやすい等)を持っ
ていることから、材料を中心に積極的に開発が行なわれ
、Co−Zr−Nb系スパッタ膜や、Fe−Co−3t
 −B系すボンアモルファス等の材料が発表されている
。しかしながら、これらのアモルファス合金は、550
℃付近の比較的低い温度域にアモルファス状態から結晶
化がはじまる非可逆の転移点があるので、この温度以上
で磁気ヘッドの製造のための加工を行なうと磁気特性の
面で急激な劣化がおこるという欠点ももっていた。特に
ギャップ形成時の熱処理(同時にコア間の接合処理)工
程で、コア材が高温に晒されるため、上記の欠点が発生
しやすかった。
Conventional technology In recent years, metal tapes, vapor-deposited tapes, etc. have begun to be used to improve magnetic recording density, but magnetic heads that support this require high saturation magnetic flux density magnetic core materials that are less prone to magnetic saturation near the magnetic core gap. be. Currently, amorphous alloys (such as Co-Zr-Nb alloys) and Sendust alloys (F
e-AI-3i series alloy) is used. In particular, amorphous alloys have various characteristics (such as no crystal magnetic anisotropy, high hardness, high resistivity ρ, and easy to obtain thin plate materials) due to the fact that they do not have organized crystals. , materials have been actively developed, including Co-Zr-Nb sputtered films and Fe-Co-3T.
Materials such as -B-based carbon amorphous have been announced. However, these amorphous alloys
There is an irreversible transition point at which crystallization begins from an amorphous state in a relatively low temperature range around ℃, so if processing for manufacturing magnetic heads is performed above this temperature, the magnetic properties will rapidly deteriorate. It also had a drawback. In particular, since the core material is exposed to high temperatures during the heat treatment process (simultaneously with the bonding process between the cores) during gap formation, the above-mentioned drawbacks were likely to occur.

この対策として、接合部分に有機接着剤を用いて接合を
低温度領域で行なう方法が考えられているが、接合すべ
き突き合せ部分の面積が小さ過ぎることから、ヘッドと
して十分な接合強度が維持できないことから、従来のア
モルファス合金磁気ヘッドは、アモルファス合金コアを
例えばSin。
As a countermeasure to this problem, a method has been considered in which the bonding is performed at a low temperature by using an organic adhesive at the bonding part, but since the area of the butt part to be bonded is too small, sufficient bonding strength for the head cannot be maintained. Therefore, conventional amorphous alloy magnetic heads use an amorphous alloy core made of, for example, Sin.

薄膜のような非磁性層を介して突き合せた状態で更にそ
の両側を2枚のガラスコアではさみ、有機接着剤で合金
コアとガラスコアを接着しガラスコア同士も接着する方
法でヘッドとしての強度を向上させた構造になっていた
The head is made using a method in which the alloy core and the glass core are bonded together using an organic adhesive, and the glass cores are also bonded to each other. It had a structure with improved strength.

発明が解決しようとする問題点 しかしながら、この方法では、アモルファス合金コア間
の接合が行なわれておらず、フロントギャップの合金コ
ア間に非磁性材料であるSi0g薄膜が配置された状態
で、機械的に突き合わされただけで接合していないこと
から、テープ走行によって、磁気テープから脱落した磁
性粉や埃等が、上記の突き合わされて形成されたフロン
トギャップのコア間に入り込み、ギャップを拡大させて
ギャップの精度の低下、すなわちヘッド特性の低下をひ
き起こすという問題があった。
Problems to be Solved by the Invention However, in this method, the amorphous alloy cores are not bonded, and the mechanical Since the tape is only butted but not joined, magnetic powder, dust, etc. that fall off from the magnetic tape as the tape runs enters between the cores of the front gap formed by the butt, expanding the gap. There is a problem in that the accuracy of the gap decreases, that is, the head characteristics deteriorate.

問題点を解決するための手段 本発明は前記問題点を解決するために、アモルファス合
金磁心のフロントギャップ形成面に非磁性層としてセラ
ミックスと鉛含有ガラスの二層薄膜を形成し、次に左右
の合金磁心のバックギャップ形成面にAg−Cu−In
系合金薄膜を形成後、合金磁心のギャップ形成面同志を
合わせた状態で、鉛含有ガラスの軟化温度及びAg−C
u−In系合金の液相が出現する温度以上の非酸化性雰
囲気で低温熱処理することによって、高精度で機械的強
度の高い磁気ヘッドを提供するものである。
Means for Solving the Problems In order to solve the above problems, the present invention forms a two-layer thin film of ceramics and lead-containing glass as a nonmagnetic layer on the front gap forming surface of an amorphous alloy magnetic core, and then Ag-Cu-In on the back gap forming surface of the alloy magnetic core.
After forming the alloy thin film, the softening temperature of the lead-containing glass and the Ag-C
By performing low-temperature heat treatment in a non-oxidizing atmosphere above the temperature at which the liquid phase of the u-In alloy appears, a magnetic head with high precision and high mechanical strength is provided.

作用 本発明は、アモルファス合金磁心のフロントギャップ形
成面にセラミックスと低融点鉛含有ガラスを、またバッ
クギャップ形成面に低融点Ag−Cu−In系合金を形
成した後、2枚のコア板を接合することによって得られ
た。
Function The present invention involves forming ceramics and low melting point lead-containing glass on the front gap forming surface of an amorphous alloy magnetic core, and forming a low melting point Ag-Cu-In alloy on the back gap forming surface, and then joining two core plates. obtained by doing.

アモルファス合金磁心のフロントギャップ形成面に、セ
ラミックスと鉛含有ガラス薄膜を形成した場合はセラミ
ックスと鉛含有ガラスの界面は、化学反応によりごく薄
い化合物が形成され機械的にかなり強い強度を有するギ
ャップを得ることができる。またこのギャップ幅は、反
応層がご(表面だけで起こるためstozm膜と鉛含有
ガラス薄膜の厚さで規定できることになる。
When a ceramic and lead-containing glass thin film is formed on the front gap forming surface of an amorphous alloy magnetic core, a very thin compound is formed at the interface between the ceramic and lead-containing glass through a chemical reaction, resulting in a gap with considerably strong mechanical strength. be able to. Furthermore, since the reaction layer occurs only on the surface, the gap width can be defined by the thickness of the stozm film and the lead-containing glass thin film.

またバックギャップ形成面に形成するAg−Cu−In
系合金の組成がInを30〜60重量%含み、残りのA
gとCuがそれぞれ10at%以上であることにより、
その合金の融点は500℃以下になり、アモルファス合
金とAg−Cu−In合金の相互拡散が起こり、アモル
ファス合金が結晶化しない温度領域での強い接合が可能
となった。
Also, Ag-Cu-In formed on the back gap forming surface.
The composition of the alloy contains 30 to 60% by weight of In, and the remaining A
By g and Cu each being 10 at% or more,
The melting point of the alloy was 500° C. or less, and mutual diffusion between the amorphous alloy and the Ag-Cu-In alloy occurred, allowing strong bonding in a temperature range where the amorphous alloy does not crystallize.

実施例 以下実施例を示す。Example Examples are shown below.

(実施例1) 以下に示すような方法で、第1図(81に示したような
構造のへソドピースを作製し、検討した。
(Example 1) A navel piece having a structure as shown in FIG. 1 (81) was manufactured and examined by the method shown below.

アモルファス合金として液体超急冷法によるFe−Co
−31−13の薄帯を作成した。この時の合金の組成は
、Fe:5、Co ニア0. S i :10およびB
 : 15at%であった。次にこの薄帯の表面を鏡面
研摩(最大表面粗さ: Rmax O,01μm) し
、また厚みも30μmにした。これを第2図(alに示
すように、突合せ型磁気ヘッドの形状の左右のコア部に
なるようにすべく切断した。次に左右のアモルファス合
金磁心と同形状のガラス板を用意し、第2図(b)に示
すように合金磁心をはさむように配し、合金磁心とガラ
ス板を有機接着剤で接合し、一対の合金磁心を得た。次
に突合せ型磁気ヘッドの形状の左右のコアのギャップ形
成面を鏡面研摩(最大表面粗さ: Rmax O,01
μm)した。
Fe-Co produced by liquid ultra-quenching method as amorphous alloy
-31-13 thin strips were created. The composition of the alloy at this time was Fe: 5, Co, Ni 0. S i :10 and B
: 15at%. Next, the surface of this ribbon was mirror-polished (maximum surface roughness: Rmax O, 01 μm), and the thickness was made 30 μm. As shown in Figure 2 (al), this was cut to form the left and right core portions of the butt-type magnetic head.Next, glass plates with the same shape as the left and right amorphous alloy magnetic cores were prepared, and the As shown in Figure 2(b), the alloy magnetic cores were placed in between, and the alloy magnetic core and the glass plate were bonded together using an organic adhesive to obtain a pair of alloy magnetic cores.Next, the left and right sides of the butt-type magnetic head were Mirror polishing of the gap forming surface of the core (maximum surface roughness: Rmax O, 01
μm).

次に第4図(alのようにフロントギャップ形成部分の
両方にスパッタ法を用いて石英(510,)の薄膜を形
成し、さらにその上に同じくスパッタ法で鉛含有ガラス
薄膜を形成した。ここで上述の石英薄膜は、厚さが均一
に0.10μmであった。一方上述の鉛含有ガラス薄膜
は厚さが均一に0.05μmで、その組成がPboが7
3a t%、Singが27%からなるガラス薄膜であ
る。次に同じくスパッタ法にて、バックギャップ部のは
り合わせ部分の両方にAg−Cu−In合金薄膜を均一
に、0.15μm形成した。この時の組成はAgが40
at%、Cuが30at%およびInが30a t%で
あった。これらのスパッタ法により得られたフロントギ
ャップ及びバックギャップ側をそれぞれ互いにつき合わ
せ一対のチップとした状態で真空雰囲気(10−’To
rn以下)中で500℃の温度で1時間処理を行って、
ギャップ部の接合処理を行ない、アモルファス合金のヘ
ッドピースを得た。形成されたギャップ部の機械的強度
を調べるため、ヘッドの走行面に対して、メタルテープ
(保持力HC: 1400エールステツド、飽和磁束密
度B r : 3000ガウス)を相対速度3.45m
/secで500 H走行させた。この時のギャップ部
の観察からギャップの広がりとかギャップ部分のカケの
発生は認められなかった。またこのヘッドの巻線みぞに
コイルを25タ一ン巻いた時の6MHzでのヘッドの再
生出力電圧は200μ■(ピークツーピーク)であった
。この結果を表1の試料番号1に示す。以下同様の方法
でフロントギャップ部分の5in2を他のセラミックス
(Zr O!+ M g OlA I t Os+ T
 i Ox及びMgO。
Next, as shown in FIG. 4 (al), a thin film of quartz (510,) was formed using a sputtering method on both front gap forming parts, and a lead-containing glass thin film was further formed thereon using the same sputtering method. The above-mentioned quartz thin film had a uniform thickness of 0.10 μm.On the other hand, the above-mentioned lead-containing glass thin film had a uniform thickness of 0.05 μm, and its composition was Pbo7.
It is a glass thin film consisting of 3at% and Sing of 27%. Next, an Ag-Cu-In alloy thin film of 0.15 μm was uniformly formed on both of the bonding portions of the back gap portion by the same sputtering method. The composition at this time is Ag: 40
at%, Cu was 30at%, and In was 30at%. The front gap and back gap sides obtained by these sputtering methods were brought into contact with each other to form a pair of chips in a vacuum atmosphere (10-'To
rn or less) at a temperature of 500°C for 1 hour,
The gap portion was bonded to obtain an amorphous alloy head piece. In order to examine the mechanical strength of the gap formed, a metal tape (coercive force HC: 1400 Oersted, saturation magnetic flux density B r: 3000 Gauss) was moved at a relative speed of 3.45 m to the running surface of the head.
I ran it for 500 hours at /sec. Observation of the gap at this time did not reveal any widening of the gap or occurrence of chips in the gap. Further, when a coil was wound with 25 turns in the winding groove of this head, the reproduction output voltage of the head at 6 MHz was 200 .mu.cm (peak-to-peak). The results are shown in sample number 1 in Table 1. Thereafter, in the same way, 5in2 of the front gap part was covered with other ceramics (Zr O!+ M g OlA I t Os+ T
i Ox and MgO.

AI!Osのうちの一種に変えた試料の各種試験結果を
表1の試料番号2〜6に示す。また比較例として、フロ
ントギャップに鉛含有ガラスを用いない試料(すなわち
フロントギャップがSiO□だけで突き合わされている
場合)も同様の方法で作成し、各種試験を行った。その
結果を第1表試料Na7に示した。
AI! Sample numbers 2 to 6 in Table 1 show the results of various tests on samples in which one type of Os was used. Further, as a comparative example, a sample in which lead-containing glass was not used in the front gap (that is, a case in which the front gap was butted only with SiO□) was prepared in the same manner, and various tests were conducted. The results are shown in Sample Na7 in Table 1.

この結果から、フロントギャップにセラミック材料(S
tag 、Zr0z 、MgO,’Alz 03゜Ti
1t及びMgO,A1.03のいずれか一種)薄膜とガ
ラス薄膜の2層膜を用いてギャップを形成したもののテ
ープ走行後のギャップの状態に変化は無く、また良好な
再生出力電圧も得られることがわかる。比較例としてフ
ロントギャップにガラスを用いないものを示したが、こ
れはテープ走行によってギャップに欠けが発生しており
、再生出力電圧は80μvp−pと低い値を示した。
From this result, it is clear that the front gap is made of ceramic material (S).
tag , Zr0z , MgO,'Alz 03゜Ti
1t, MgO, A1.03) thin film and a glass thin film to form a gap, there is no change in the state of the gap after the tape runs, and a good reproduction output voltage can be obtained. I understand. As a comparative example, a case in which glass was not used in the front gap was shown, but in this case, the gap was chipped due to tape running, and the reproduction output voltage showed a low value of 80 μvp-p.

(実施例2) 以下に示すような方法で、第1図山)に示したような構
造のヘッドピースを作成し、検討した。
(Example 2) A headpiece having a structure as shown in Figure 1 was created and examined using the method shown below.

まずガラス基板の表面を鏡面研摩(最大表面粗さRma
x O,01μm)した。次にこの面にスパッタ法を用
いてCo−Zr−Nbのアモルファス合金の磁性体膜を
6μm形成後、その上に非磁性層のStO,膜を同様に
スパッタ法で0.01μm形成した。この操作をくり返
し行い、第3図(a)に示すように、最終的に磁性体膜
が31iの多層膜を作成した。この時の磁性体膜の組成
は、Co:85at%。
First, mirror polish the surface of the glass substrate (maximum surface roughness Rma
x O, 01 μm). Next, a 6 μm thick Co-Zr-Nb amorphous alloy magnetic film was formed on this surface by sputtering, and then a 0.01 μm thick StO film as a nonmagnetic layer was similarly formed thereon by sputtering. This operation was repeated to finally create a multilayer film with 31i magnetic films as shown in FIG. 3(a). The composition of the magnetic film at this time was Co: 85 at%.

N b : 10at%及びZr’:5at%であった
Nb: 10 at% and Zr': 5 at%.

次に第3図(blに示すように、突合せ型磁気ヘッドの
形状の左右のコア部になるようにすべく切断し、ギャッ
プ形成面を鏡面研摩(最大表面粗さRmax 0.01
#m) シた。
Next, as shown in Figure 3 (bl), the left and right core parts of the butt type magnetic head are cut, and the gap forming surfaces are mirror polished (maximum surface roughness Rmax 0.01).
#m) Shita.

次に第4図(blのようにフロントギャップ形成部分の
両方にスパッタ法を用いて石英(S i Ot )の薄
膜を形成し、さらにその上に同じくスパッタ法で鉛含有
ガラス薄膜を形成した。ここで上述の石英薄膜は、厚さ
が均一に0.10μmであった。一方上述の鉛含有ガラ
ス薄膜は厚さ均一に0.05μmで、その組成が、Pb
oが73a t%、5iOzが27at%から成るガラ
ス薄膜である。次に同じくスパッタ法にて、バックギャ
ップ部のはり合わせ部分の両方にAg−Cu−In合金
薄膜を均一に0.15μm形成した。この時の組成は、
Agが60a t%、Cuが10at%及びInが30
at%であった。これらのスパッタ法により得られたフ
ロントギャップ及びバックギャップ側をそれぞれ互いに
つき合わせ一対のチップとした状態で窒素雰囲気中で5
00℃の温度で1時間処理を行って、ギャップ部の接合
処理を行い、アモルファス合金のヘッドピースを得た。
Next, as shown in FIG. 4 (bl), a thin film of quartz (S i Ot ) was formed on both of the front gap forming portions by sputtering, and a lead-containing glass thin film was further formed thereon by the same sputtering method. Here, the above-mentioned quartz thin film had a uniform thickness of 0.10 μm.On the other hand, the above-mentioned lead-containing glass thin film had a uniform thickness of 0.05 μm, and its composition was Pb.
This is a glass thin film consisting of 73 at% o and 27 at% 5iOz. Next, by the same sputtering method, an Ag-Cu-In alloy thin film of 0.15 μm was uniformly formed on both of the bonding portions of the back gap portion. The composition at this time is
Ag is 60at%, Cu is 10at%, and In is 30at%.
It was at%. The front gap and back gap sides obtained by these sputtering methods were brought into contact with each other to form a pair of chips, and the chips were heated for 5 minutes in a nitrogen atmosphere.
Processing was performed at a temperature of 00°C for 1 hour to perform a bonding process on the gap portion, thereby obtaining an amorphous alloy head piece.

形成されたギャップ部の機械的強度と、ヘッドの再生出
力電圧を調べるため、実施例1と同様の方法で試験を行
った。この結果を表2の試料番号9に示した。以下同様
の方法でバックギャップ部のAg−Cu−In系合金薄
膜の組成を変えた試料の各種試験結果を表2の試料番号
8と10〜22に示した。ここで試料&8.12および
22は熱処理によって左右のコア間の接合は出来なかっ
た。
A test was conducted in the same manner as in Example 1 to examine the mechanical strength of the gap formed and the reproduction output voltage of the head. The results are shown in sample number 9 in Table 2. Below, various test results of samples in which the composition of the Ag-Cu-In alloy thin film in the back gap portion was changed in the same manner are shown in sample numbers 8 and 10 to 22 in Table 2. Here, in samples &8.12 and 22, bonding between the left and right cores could not be achieved by heat treatment.

考 1例 を例 以上の結果からバックギャップ形成面に形成するAg−
Cu−In系合金薄膜の組成がInを30〜60a t
%、残りのAgとCuがそれぞれ10at%以上含まれ
ているものはテープ走行後のギャップの状態に変化は無
く、また良好な再生出力電圧も得られた。このことより
、左右のコア間が強く接合されていることがわかる。
Based on the results of Example 1 and above, Ag- formed on the back gap forming surface.
The composition of the Cu-In alloy thin film is 30~60at of In.
%, and the remaining Ag and Cu contained 10 at % or more each, there was no change in the gap state after tape running, and a good reproduction output voltage was obtained. This shows that the left and right cores are strongly bonded.

ここでアモルファス合金とAg−Cu−In系合金の拡
散状態を調べるため接合面を強制的に剥離させ、その面
の深さ方向の元素分析をオーシュ電子分光分析によって
行った。その結果、アモルファス合金中へAgとCuが
、Ag−Cu−In合金中にFeが相互拡散しているこ
とがわかった。
Here, in order to examine the diffusion state of the amorphous alloy and the Ag-Cu-In alloy, the bonded surface was forcibly peeled off, and elemental analysis in the depth direction of the surface was performed using Ausch electron spectroscopy. As a result, it was found that Ag and Cu interdiffused into the amorphous alloy, and Fe interdiffused into the Ag-Cu-In alloy.

また、これは、AgとCuの両元素が10at%以上含
まれる時が顕著であることから、試料&8.12が接合
しなかったのはアモルファス合金とAg−Cu−In合
金間での相互拡散が無いためと考えられる。また試料N
a22の剥離面はAg−Cu−In合金であったことか
ら、In量が多すぎるとAg−Cu−In合金自身の強
度が弱くなるためと考えられる。
In addition, this is noticeable when both Ag and Cu elements are contained at 10 at% or more, so the reason why sample &8.12 did not bond was due to mutual diffusion between the amorphous alloy and the Ag-Cu-In alloy. This is thought to be because there is no Also, sample N
Since the peeled surface of a22 was an Ag-Cu-In alloy, it is thought that if the amount of In is too large, the strength of the Ag-Cu-In alloy itself becomes weak.

発明の効果 以上の説明および表1.2から明らかなように、本発明
は、一対のアモルファス合金磁心のフロントギャップ形
成面に非磁性層としてセラミックスと鉛含有ガラスの二
層薄膜を形成し、次にバンクギャップ形成面に低融点組
成のAg−Cu−In系合金薄膜を形成後、ガラスの軟
化点及びAg−Cu−In系合金の液相が出現する温度
以上の非酸化性雰囲気で低温熱処理して機械的強度の高
い高精度なギャップを持つ磁気ヘッドを得るものである
。ここでフロントギャップ形成面のセラミックスとガラ
スの界面においては、熱処理によって化学反応が起こり
、強固な狭ギャップを得ることが出来る。また、コア間
の接合を目的としたAg−Cu−In系合金薄膜はその
組成がInを30〜60at%含み残りのAgとCuが
それぞれ10at%以上であることにより融点が約50
0℃以下と非常に低く、コア間の接合時の熱処理(同時
にギャップ形成も行なう)によってもアモルファス状態
が結晶化する恐れがなくなり、アモルファス合金磁気ヘ
ッドの製造上の制約を著しく減少させるものである。こ
の方法で得られた磁気ヘッドは、従来のアモルファスヘ
ッドと比較しても、テープ走行による狭ギャプの精度及
び、高周波における再生比力特性等で著しく優れており
、3 w V T RやDAT等の高密度磁気記録用磁
気ヘッドとしての対応が期待できる。
Effects of the Invention As is clear from the above explanation and Table 1.2, the present invention forms a two-layer thin film of ceramic and lead-containing glass as a nonmagnetic layer on the front gap forming surface of a pair of amorphous alloy magnetic cores, and then After forming an Ag-Cu-In alloy thin film with a low melting point composition on the bank gap formation surface, low-temperature heat treatment is performed in a non-oxidizing atmosphere above the softening point of glass and the temperature at which the liquid phase of the Ag-Cu-In alloy appears. In this way, a magnetic head with high mechanical strength and a highly accurate gap can be obtained. Here, at the interface between the ceramic and the glass on the front gap forming surface, a chemical reaction occurs due to heat treatment, and a strong narrow gap can be obtained. In addition, the composition of the Ag-Cu-In alloy thin film intended for bonding between cores is 30 to 60 at% In, and the remaining Ag and Cu are each 10 at% or more, so the melting point is about 50%.
The temperature is extremely low, below 0°C, and there is no risk that the amorphous state will crystallize even during heat treatment during core-to-core bonding (which also forms a gap at the same time), significantly reducing the manufacturing constraints of amorphous alloy magnetic heads. . The magnetic head obtained by this method is significantly superior to conventional amorphous heads in terms of narrow gap precision during tape running and reproduction specific force characteristics at high frequencies, and is highly effective for 3W VTR, DAT, etc. It is expected that this material can be used as a magnetic head for high-density magnetic recording.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alは本発明の一実施例に基けるFe−Co−
3i−Bアモルファス合金磁気ヘッドの斜視図、第1図
(blは、本発明の一実施例におけるC。 −Zr−Nbアモルファス合金磁気ヘッドの斜視図、第
2図(a)はFe−Co−3t −Bアモルファス合金
リボンを突合せ型磁気ヘッドの形状に切断した一対の合
金磁心の斜視図、第2図(b)はこの合金磁心を同形状
のガラス板ではさんだ状態の斜視図、第3図(alはガ
ラス基板上にCo−Zr−Nbアモルファス合金薄膜と
Sin、薄膜の積層膜を形成した時の断面図、第3図(
blはこれを突合せ型磁気ヘッドの形状に切断した一対
のコアブロックの斜視図、第4図+a)は一対のFe−
Co−3l−Bアモルファス合金磁心のギャップ形成部
分にギャップ材料を形成した時の断面図、第4図(bl
は一対のCo−Zr−Nbアモルファス合金磁心のギャ
ップ形成部分にギャップ材料を形成した時の断面図であ
る。 1・・・・・・ガラス基板、2・・・・・・Fe−Co
−3i−B系アモルファス合金リボン、3・・・・・・
co−Zr−Nb系アモルファス合金薄膜、4・・・・
・・SiO。 薄膜、5・・・・・・巻線窓、6・・・・・・フロント
ギャップ形成面、7・・・・・・バンクギャップ形成面
、8・・・・・・セラミック薄膜、9・・・・・・ガラ
ス薄膜、10・旧・・Ag−Cu−In系合金薄膜。 代理人の氏名 弁理士 中尾敏男 はか1名第2図  
          t に/1− 33図
FIG. 1 (al is Fe-Co-based on one embodiment of the present invention)
A perspective view of a 3i-B amorphous alloy magnetic head, FIG. 1 (bl is C in one embodiment of the present invention. A perspective view of a Zr-Nb amorphous alloy magnetic head, FIG. 2(a) is a Fe-Co- A perspective view of a pair of alloy magnetic cores obtained by cutting a 3t-B amorphous alloy ribbon into the shape of a butt-type magnetic head. Fig. 2(b) is a perspective view of this alloy magnetic core sandwiched between glass plates of the same shape. Fig. 3 (Al is a cross-sectional view when a laminated film of Co-Zr-Nb amorphous alloy thin film and Sin thin film is formed on a glass substrate, Figure 3 (
bl is a perspective view of a pair of core blocks cut into the shape of a butt-type magnetic head, and Fig. 4+a) is a perspective view of a pair of Fe-
Fig. 4 is a cross-sectional view when a gap material is formed in the gap forming part of the Co-3l-B amorphous alloy magnetic core.
is a cross-sectional view when a gap material is formed in the gap forming portion of a pair of Co-Zr-Nb amorphous alloy magnetic cores. 1...Glass substrate, 2...Fe-Co
-3i-B amorphous alloy ribbon, 3...
co-Zr-Nb amorphous alloy thin film, 4...
...SiO. Thin film, 5... Winding window, 6... Front gap forming surface, 7... Bank gap forming surface, 8... Ceramic thin film, 9... ...Glass thin film, 10. Old...Ag-Cu-In alloy thin film. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 2
t ni/1-33 figure

Claims (3)

【特許請求の範囲】[Claims] (1)アモルファス合金磁心材料よりなる左右突合せ型
磁気ヘッドであって、左右の合金磁心のフロントギャッ
プ形成面に非磁性層としてセラミックスと鉛含有ガラス
の二層薄膜を形成し、次に前記左右の合金磁心のバック
ギャップ形成面に銀(Ag)−銅(Cu)−インジウム
(In)系合金薄膜を形成後、前記合金磁心のギャップ
形成面同志を合わせた状態で、鉛含有ガラスの軟化温度
及びAg−Cu−In系合金の液相が出現する温度以上
の非酸化性雰囲気で熱処理し、前記左右の合金磁心を拡
散接合することによって、磁気的なギャップを形成する
ことを特徴とする合金磁気ヘッドの製造方法。
(1) A left-right butt-type magnetic head made of amorphous alloy magnetic core material, in which a two-layer thin film of ceramics and lead-containing glass is formed as a nonmagnetic layer on the front gap forming surfaces of the left and right alloy magnetic cores, and then After forming a silver (Ag)-copper (Cu)-indium (In) based alloy thin film on the back gap forming surface of the alloy magnetic core, the softening temperature of the lead-containing glass and A magnetic alloy characterized in that a magnetic gap is formed by heat-treating in a non-oxidizing atmosphere at a temperature higher than the temperature at which a liquid phase of the Ag-Cu-In alloy appears, and diffusion bonding the left and right alloy magnetic cores. Head manufacturing method.
(2)非磁性層のセラミック薄膜が石英(SiO_2)
、ジルコニア(ZrO_2)、マグネシア(MgO)、
アルミナ(Al_2O_3)、酸化チタン(TiO_2
)及びスピネル(MgO、Al_2O_3)のいずれか
一種で形成されていることを特徴とする特許請求の範囲
第(1)項記載の合金磁気ヘッドの製造方法。
(2) The ceramic thin film of the nonmagnetic layer is quartz (SiO_2)
, zirconia (ZrO_2), magnesia (MgO),
Alumina (Al_2O_3), titanium oxide (TiO_2
) and spinel (MgO, Al_2O_3), the method for manufacturing an alloy magnetic head according to claim (1).
(3)バックギャップ形成面に形成するAg−Cu−I
n系合金薄膜の組成が、Inを30〜60重量%含み残
りのAgとCuがそれぞれ10重量%以上であることを
特徴とする特許請求の範囲第(1)項記載の合金磁気ヘ
ッドの製造方法。
(3) Ag-Cu-I formed on the back gap forming surface
Manufacture of an alloy magnetic head according to claim (1), wherein the composition of the n-based alloy thin film is 30 to 60% by weight of In, and the remaining Ag and Cu are each 10% by weight or more. Method.
JP28135085A 1985-12-13 1985-12-13 Production of alloy magnetic head Granted JPS62140209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28135085A JPS62140209A (en) 1985-12-13 1985-12-13 Production of alloy magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28135085A JPS62140209A (en) 1985-12-13 1985-12-13 Production of alloy magnetic head

Publications (2)

Publication Number Publication Date
JPS62140209A true JPS62140209A (en) 1987-06-23
JPH0582645B2 JPH0582645B2 (en) 1993-11-19

Family

ID=17637886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28135085A Granted JPS62140209A (en) 1985-12-13 1985-12-13 Production of alloy magnetic head

Country Status (1)

Country Link
JP (1) JPS62140209A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685805A1 (en) * 1991-12-31 1993-07-02 Europ Composants Electron METHOD FOR MANUFACTURING A MAGNETIC HEAD FOR LAYERS WITH HIGH COERCIVE FIELDS.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2685805A1 (en) * 1991-12-31 1993-07-02 Europ Composants Electron METHOD FOR MANUFACTURING A MAGNETIC HEAD FOR LAYERS WITH HIGH COERCIVE FIELDS.

Also Published As

Publication number Publication date
JPH0582645B2 (en) 1993-11-19

Similar Documents

Publication Publication Date Title
JPH036564B2 (en)
JP2554041B2 (en) Method of manufacturing magnetic head core
JPS62140209A (en) Production of alloy magnetic head
US4811148A (en) Alloy magnetic recording head
JPS60201509A (en) Manufacture of magnetic head
JPS63112809A (en) Magnetic head
EP0138580A2 (en) Alloy magnetic recording head
JPH03168909A (en) Production of magnetic head
JPS63102007A (en) Magnetic head
JPS63217514A (en) Magnetic head
JPS63217515A (en) Magnetic head
JPH0254405A (en) Magnetic head
JPS6394422A (en) Magnetic head
JPH0782615B2 (en) Substrate material for magnetic head and magnetic head
JPS6148114A (en) Magnetic head
JPS61107512A (en) Thin film magnetic head
JPS60234210A (en) Magnetic head using amorphous magnetic alloy
JPS63112808A (en) Magnetic head
JPS6366705A (en) Magnetic head and its production
JPH01191308A (en) Magnetic head
JPH02203406A (en) Magnetic head and production thereof
JPH07122924B2 (en) Soft magnetic metal film Magnetic head
JPS60242511A (en) Manufacture of magnetic head
JPH0237510A (en) Magnetic head
JPH0536016A (en) Magnetic head