JPS6377218A - Semiconductor logic circuit - Google Patents

Semiconductor logic circuit

Info

Publication number
JPS6377218A
JPS6377218A JP61222659A JP22265986A JPS6377218A JP S6377218 A JPS6377218 A JP S6377218A JP 61222659 A JP61222659 A JP 61222659A JP 22265986 A JP22265986 A JP 22265986A JP S6377218 A JPS6377218 A JP S6377218A
Authority
JP
Japan
Prior art keywords
circuit
turned
level
input
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61222659A
Other languages
Japanese (ja)
Inventor
Takeyuki Sudo
須藤 雄之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61222659A priority Critical patent/JPS6377218A/en
Publication of JPS6377218A publication Critical patent/JPS6377218A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain high speed operation by providing a level shift circuit com prising plural transistors (TRs) of Darlington connection between an input of an off-buffer circuit and an off-buffer circuit so as to shift an H level output voltage to a proper value. CONSTITUTION:The level shift circuit 5 comprising NPN TRs Q5, Q6 of Darling ton connection or the like is provided between a power supply VCC and a base input of an NPN TR Q3 of the off-buffer circuit. Then with an input voltage at H level, a PNP TR Q1 is turned off, an NPN TR Q2 is turned on, the TR Q3 is turned off and an NPN TR Q4 is tuned on, then an L output voltage of the circuit is nearly 0.4V. With the input voltage at an L level, the TR Q1 is turned on, the TR Q2 is turned off, the TR Q3 is turned on and the TR Q4 is turned off, and also the TRs Q5, Q6 of the circuit 5 are turned on, then the H level output voltage of the circuit is nearly 2V. Thus, the voltage deference with the input threshold value voltage of the next stage circuit is decreased, then the switching speed is quickened and the power consumption is reduced.

Description

【発明の詳細な説明】 〔JI要〕 本発明の半導体論理回路は、オフバッファ回路の入力と
高電圧TrLW端子との間に複数のトランジスタをダー
リントン接続したレベルシフト用回路を設けることによ
り、該半導体論理回路の高電位出力レベルを低下させ、
これにより出方電圧の論理振幅を適正なものにして論理
動作の高速化を図る。
[Detailed Description of the Invention] [Required by JI] The semiconductor logic circuit of the present invention provides a level shift circuit in which a plurality of transistors are connected in Darlington between the input of an off-buffer circuit and a high voltage TrLW terminal. Reduces the high potential output level of semiconductor logic circuits,
This makes the logic amplitude of the output voltage appropriate and speeds up the logic operation.

〔産業上の利用分野〕[Industrial application field]

未発すIは半導体論理回路に関するものであり、更に、
洋しく言えばゲートアレイ、スタンダードセルs、Ls
工の内部ゲート等に用いられるオフバッファ回路を備え
たバイポーラ型の半導体論理回路に関するものである。
The unissued I is related to semiconductor logic circuits, and furthermore,
In Western terms, gate array, standard cell s, Ls
The present invention relates to a bipolar semiconductor logic circuit equipped with an off-buffer circuit used for internal gates in industrial equipment.

〔従来の技術〕[Conventional technology]

第2図は従来例のインバータ機能の回路図である0図に
おいてlはPNPトランジスタQ1からなる入力回路、
2はNPN )ランジスタQ2からなるフェーズスプリ
ットトランジスタである。また3はNPNトランジスタ
Q3.抵抗R3,ダイオードDiからなるオフバッファ
回路、4はNPNトランジスタQ4からなる出力トラン
ジスタである。なおR1,R2はプルアップ抵抗。
Fig. 2 is a circuit diagram of a conventional inverter function. In Fig. 0, l is an input circuit consisting of a PNP transistor Q1;
2 is a phase split transistor consisting of an NPN) transistor Q2. 3 is an NPN transistor Q3. An off-buffer circuit includes a resistor R3 and a diode Di, and 4 is an output transistor consisting of an NPN transistor Q4. Note that R1 and R2 are pull-up resistors.

R4はプルダウン抵抗である。R4 is a pull-down resistor.

次に第2図の回路の動作について説明する。入力電圧が
“H”レベルのとき、Qlがオフ。
Next, the operation of the circuit shown in FIG. 2 will be explained. When the input voltage is “H” level, Ql is off.

Q2がオンする。従ってQ3がオフ、Q4がオンするの
で、回路の出力は“L″レベルなる。
Q2 turns on. Therefore, Q3 is turned off and Q4 is turned on, so that the output of the circuit becomes "L" level.

次に入力電圧が“L”レベルに変化すると、Qlがオン
、Q2がオフする。従ってQ3がオン、Q4がオフする
ので、回路の出力は”H”レベルとなる。このように、
第2図の回路はインバータ動作する。
Next, when the input voltage changes to "L" level, Ql is turned on and Q2 is turned off. Therefore, since Q3 is turned on and Q4 is turned off, the output of the circuit becomes "H" level. in this way,
The circuit shown in FIG. 2 operates as an inverter.

次にいtVcc=5v、GND=OVとして第2図の回
路の出力の出力電圧を概算する。出力がL″のときQ4
がオンしているので、出力電圧はほぼ0.4vである。
Next, assuming tVcc=5V and GND=OV, the output voltage of the output of the circuit shown in FIG. 2 is approximately estimated. Q4 when the output is L''
is on, the output voltage is approximately 0.4v.

一方、出力が高レベルのときQ3がオンしているので、
該Q3のVBE(ベース・エミッタ間電圧)やDlのV
r  (ダイオード順方向電圧)を考慮すると、出力電
圧はほぼ3.5vとなる。
On the other hand, since Q3 is on when the output is at a high level,
VBE (base-emitter voltage) of Q3 and V of Dl
Considering r (diode forward voltage), the output voltage will be approximately 3.5v.

〔発明が解決しようとする+Xt a点〕ところで第2
図の論理回路の入力閾値電圧は、VBE (Q2)+V
et (Q4)−VBE (Ql)=V[l[となるの
で、はぼ0.7Vである。
[+Xt a point that the invention seeks to solve] By the way, the second point
The input threshold voltage of the logic circuit in the figure is VBE (Q2) + V
et (Q4)-VBE (Ql)=V[l[, so it is approximately 0.7V.

すなわち第2図のような論理回路、を多段接2統して集
積回路をa處するとき、入力閾値電圧(0゜7V)と′
L″レベル入力電圧(0,4V)との差は0.3Vと小
さいが、“H″レベル入力電圧(3,5V)との差は2
.8Vと極めて大きいため、スイッチングスピードが遅
くなる。
In other words, when constructing an integrated circuit by connecting two logic circuits as shown in Fig. 2 in multiple stages, the input threshold voltage (0°7V) and '
The difference with the "L" level input voltage (0.4V) is small at 0.3V, but the difference with the "H" level input voltage (3.5V) is 2.
.. Since the voltage is extremely large at 8V, the switching speed becomes slow.

本発明はかかる従来の問題点に鑑みて創作されたもので
あり、“H”レベル出力電圧を適正な値にシフトして高
速動作を可使とする半導体論理回路の提供を目的とする
The present invention was created in view of such conventional problems, and an object of the present invention is to provide a semiconductor logic circuit that shifts the "H" level output voltage to an appropriate value and enables high-speed operation.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の7エーズスプリフトトランジスタのコレクタ出
力を入力とするオフバッファ回路と、該フェーズスプリ
ットトランジスタのエミッタ出力をベース入力とし、か
つ電源端子間に該オフバッファ回路と直列に接続してい
る出力トランジスタとを有する半導体論理回路において
、前記オフバッファ回路の入力と高電圧電源端子との間
に複数のトランジス、りをダーリントン接続したレベル
シフト回路を設けることを特徴とする。
An off-buffer circuit whose input is the collector output of the 7A split transistor of the present invention, and an output transistor whose base input is the emitter output of the phase-split transistor and which is connected in series with the off-buffer circuit between its power supply terminals. The semiconductor logic circuit is characterized in that a level shift circuit including a plurality of transistors connected in a Darlington manner is provided between the input of the off-buffer circuit and a high voltage power supply terminal.

〔作用〕[Effect]

半導体論理回路の高レベルシフト出力電圧は、レベルシ
フト回路により適正な値に下げられる。
The high level shift output voltage of the semiconductor logic circuit is reduced to a proper value by the level shift circuit.

このため、駆動すべき次段の論理回路の入力閾値電圧と
の差が縮小されるので、スイッチングスピードが向上す
る。
Therefore, the difference between the input threshold voltage of the next stage logic circuit to be driven is reduced, and the switching speed is improved.

〔実施例〕〔Example〕

次に図を参照しながら本発明の実施例について説明する
。第1図は本発明の実施例に係る半導体論理回路の回路
図である0図において第2図と同一符号で示すものは同
じものを示している。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a circuit diagram of a semiconductor logic circuit according to an embodiment of the present invention. In FIG. 0, the same reference numerals as in FIG. 2 indicate the same components.

第2図と異なるのは、電源Weeとオフバフフッ回路3
のQ3のベース入力との間に、ダーリントン接続のNP
NトランジスタQ5.C10および7’A/アツプ抵抗
R5、R5からなるレベルシフト回路5を設けた点であ
る。なおR7は、プルダウン抵抗である。
What is different from Fig. 2 is the power supply Wee and the off-buff circuit 3.
between the base input of Q3 and the NP of Darlington connection.
N transistor Q5. The point is that a level shift circuit 5 consisting of C10 and 7'A/up resistors R5 and R5 is provided. Note that R7 is a pull-down resistor.

次に第1図の実施例回路の動作について説明する。入力
電圧が“H”レベルのとき、Qlがオフ、Q2がオンす
る。従ってQ3がオフ、Q4がオンするので、回路のL
”出力電圧はほぼ0゜4Vとなる。
Next, the operation of the embodiment circuit shown in FIG. 1 will be explained. When the input voltage is at "H" level, Ql is turned off and Q2 is turned on. Therefore, Q3 is off and Q4 is on, so the L of the circuit
``The output voltage will be approximately 0°4V.

次に入力電圧が“L″レベルなると、Qlがオン、Q2
がオフする。従ってQ3がオ乙Q4がオフし、またレベ
ルシフト回路5のQ5゜Q6もオンするので1回路の“
H”レベル出力電圧はほぼ2vとなる。
Next, when the input voltage becomes “L” level, Ql turns on and Q2
turns off. Therefore, Q3 is turned off, Q4 is turned off, and Q5 and Q6 of level shift circuit 5 are also turned on.
The H'' level output voltage is approximately 2V.

このように本発明の実施例回路によれば、“H″レベル
出力電圧(2v)と次段回路の入力閾値電圧(0,7V
)との電圧差を縮小することができるので、スイッチン
グスピードの高速化ζ消費電力の低減化を図ることが可
能となる。
As described above, according to the embodiment circuit of the present invention, the "H" level output voltage (2V) and the input threshold voltage of the next stage circuit (0.7V
), it is possible to increase the switching speed and reduce power consumption.

なお実施例回路では、2個のトランジスタQ5 、Q6
をダーリントン接続してレベルシフト回路を構成したが
、必要な“H”レベル出力電圧に対応してダーリントン
接続のトランジスタの数を増やすことができる。
In the example circuit, two transistors Q5 and Q6
Although the level shift circuit is configured by connecting the transistors in a Darlington manner, the number of transistors in the Darlington connection can be increased depending on the required "H" level output voltage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば“H′″レベル出
力電圧を適正な値に低減化することができるので1次段
回路を高速に駆動することが回走となるとともに、消費
電力を少なくすることが可使となる。
As explained above, according to the present invention, it is possible to reduce the "H'" level output voltage to an appropriate value, so that driving the primary stage circuit at high speed becomes a circuit and reduces power consumption. The less you use, the more you can use it.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る半導体論理回路の回路図
、 第2図は従来例に係る半導体論理回路の回路図である。 (符号の説明) l・・・入力回路、 2・・・レベルシフトトランジスタ、 3・・・オフバッファ回路。 4・・・出力トランジスタ、 5・・・レベルシフト回路。
FIG. 1 is a circuit diagram of a semiconductor logic circuit according to an embodiment of the present invention, and FIG. 2 is a circuit diagram of a semiconductor logic circuit according to a conventional example. (Explanation of symbols) 1...Input circuit, 2...Level shift transistor, 3...Off buffer circuit. 4... Output transistor, 5... Level shift circuit.

Claims (1)

【特許請求の範囲】 フェーズスプリットトランジスタのコレクタ出力を入力
とするオフバッファ回路と、該フェーズスプリットトラ
ンジスタのエミッタ出力をベース入力とし、かつ電源端
子間に該オフバッファ回路と直列に接続している出力ト
ランジスタとを有する半導体論理回路において、 前記オフバッファ回路の入力と高電圧電源端子との間に
複数のトランジスタをダーリントン接続したレベルシフ
ト回路を設けることを特徴とする半導体論理回路。
[Claims] An off-buffer circuit that takes the collector output of a phase-split transistor as an input, and an output that takes the emitter output of the phase-split transistor as a base input and is connected in series with the off-buffer circuit between power supply terminals. A semiconductor logic circuit comprising: a level shift circuit in which a plurality of transistors are connected in a Darlington manner between an input of the off-buffer circuit and a high voltage power supply terminal.
JP61222659A 1986-09-20 1986-09-20 Semiconductor logic circuit Pending JPS6377218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61222659A JPS6377218A (en) 1986-09-20 1986-09-20 Semiconductor logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61222659A JPS6377218A (en) 1986-09-20 1986-09-20 Semiconductor logic circuit

Publications (1)

Publication Number Publication Date
JPS6377218A true JPS6377218A (en) 1988-04-07

Family

ID=16785914

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61222659A Pending JPS6377218A (en) 1986-09-20 1986-09-20 Semiconductor logic circuit

Country Status (1)

Country Link
JP (1) JPS6377218A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985648A (en) * 1988-07-26 1991-01-15 Matsushita Electric Industrial Co. Ltd. Switching output circuit with high speed operation and low power consumption

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4985648A (en) * 1988-07-26 1991-01-15 Matsushita Electric Industrial Co. Ltd. Switching output circuit with high speed operation and low power consumption

Similar Documents

Publication Publication Date Title
JPS63193720A (en) Logic circuit
JPS63202126A (en) Logic circuit
EP0068883A2 (en) A level converter circuit
US5166551A (en) High speed output circuit without fluctuation for semiconductor integrated circuits
KR940007299B1 (en) Semiconductor integrated circuit
JP2820980B2 (en) Logic circuit
US4625127A (en) High-fanout clock driver for low level gates
JPH0573292B2 (en)
JPS6377218A (en) Semiconductor logic circuit
KR900011153A (en) Semiconductor logic circuit
KR900006047B1 (en) Voltage level converter
US5103119A (en) Ttl-level bicmos driver
US4398103A (en) Enabling circuitry for logic circuits
US4965470A (en) High integrated Bi-CMOS logic circuit
JPH02280412A (en) Bipolar-mos semiconductor integrated circuit
JPH06196996A (en) Output buffer circuit
JPH02264519A (en) Semiconductor device
KR940007955B1 (en) Bicmos driving circuit
KR940007954B1 (en) Bicmos driving circuit
KR960007668Y1 (en) Nand circuit
JPH0661436A (en) Ttl-cmos output stage
KR930006087Y1 (en) 3 state buffer
JPH04239817A (en) Bicmos semiconductor integrated circuit
JPS59104833A (en) Input circuit
JPH05291936A (en) Bimos semiconductor integrated circuit