JPS6376134A - Magneto-optical recording medium - Google Patents

Magneto-optical recording medium

Info

Publication number
JPS6376134A
JPS6376134A JP22123886A JP22123886A JPS6376134A JP S6376134 A JPS6376134 A JP S6376134A JP 22123886 A JP22123886 A JP 22123886A JP 22123886 A JP22123886 A JP 22123886A JP S6376134 A JPS6376134 A JP S6376134A
Authority
JP
Japan
Prior art keywords
rare earth
magneto
kinds
recording medium
earth metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22123886A
Other languages
Japanese (ja)
Inventor
Shin Funada
舩田 伸
Satoshi Shimokawato
下川渡 聡
Hiroshi Ito
浩 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP22123886A priority Critical patent/JPS6376134A/en
Publication of JPS6376134A publication Critical patent/JPS6376134A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magneto-optical recording medium which excels in all of recording and erasing characteristics as well as reproducing characteristics by forming said medium composed of elements selected respectively from light rare earth metals, heavy rare earth metals, transition metals and a group consisting of Cr, Ti, and Al. CONSTITUTION:The compsn. is so formulated as to consist of >=1 kinds among the light rare earth metals Sm, Nd, Pr, and Ce, >=1 kinds among the heavy rare earth metals Tb, Dy and Gd, >=1 kinds among the transition metals Fe, Co and Ni and >=1 kinds among Cr, Ti and Al. The compsn. is expressed by the formula I in the ranges of 0.1<=x<=0.4, 0.1<=y<=0.5, and 0.01<=z<=0.1, and the residual magnetic flux density given by this composition is taken as <=1,200 Gauss in the direction perpendicular to the substrate plane. In the formula I, LR denotes >=1 kinds among the light rare earth metals; HR denotes >=1 kinds among the heavy rare earth metal; TM denotes >=1 kinds among the transition metals; and A denotes >=1 kinds among Ti, Al and Cr. A magneto- optical recording medium having excellent recording and erasing characteristics and reproducing characteristics is thereby obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばレーザー九等の照射により、記録、再
生、消去が可能な光磁気記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magneto-optical recording medium that can be recorded, reproduced, and erased by, for example, irradiation with a laser beam or the like.

〔従来の技術〕[Conventional technology]

従来の光磁気記録媒体において、記録媒体として例えば
、特開昭57−94948のように重希土撃合iTb、
Dy、Gdのうち1種類以上およびFe4たはCoのう
ち1種類以上で形成された非晶質合金が用いられてきた
In conventional magneto-optical recording media, for example, heavy rare earth iTb as in JP-A-57-94948,
Amorphous alloys formed of one or more of Dy, Gd and one or more of Fe4 or Co have been used.

レーザー元のスポットで記録層を加熱しながら、外部磁
界を加え反転磁区な形成することにより記録し、記録時
より低パワーの直線偏光した上記レーザー光のスポット
を入射し、カー効果あるいは7アラデー効果を利用して
再生を行なう、いわゆる光磁気記録方式に用いられる記
録媒体においては、少なくとも次の性質を満たすことが
必要である。
Recording is performed by applying an external magnetic field to form reversed magnetic domains while heating the recording layer with the original laser spot.The laser beam spot is linearly polarized with a lower power than during recording, and the Kerr effect or 7 Alladay effect is generated. A recording medium used in the so-called magneto-optical recording method, in which reproduction is performed using the magnetic field, must satisfy at least the following properties.

1、 半導体レーザーで記録、消去を行なえる程度にキ
ュリ一温度が低く、通常の使用環境温度に比べて、キュ
リ一温度が充分高いこと。
1. The Curie temperature is low enough to allow recording and erasing with a semiconductor laser, and the Curie temperature is sufficiently high compared to the normal usage environment temperature.

乙 記録媒体が、多結晶であると生ずる粒界ノイズ、単
結晶であると生ずる製造の困難さを回避するため、記録
媒体が非晶質であること。この場合、結晶化温度がキュ
リ一温度に比べて充分高いことが必要である。
B. The recording medium must be amorphous in order to avoid the grain boundary noise that occurs when the recording medium is polycrystalline and the manufacturing difficulties that occur when the recording medium is single crystal. In this case, it is necessary that the crystallization temperature is sufficiently higher than the Curie temperature.

五 再生は、カー効果、ファラデー効果を利用するため
、上記の効果に起因するカー回転角、ファラデー回転角
が大きいこと。
5. Since regeneration utilizes the Kerr effect and Faraday effect, the Kerr rotation angle and Faraday rotation angle caused by the above effects must be large.

4、 垂直磁化膜であること。4. Must be a perpendicular magnetization film.

そのため、上記のような重希土類金蕩−選移金属非晶質
合金が記録層として用いられてきた。
Therefore, amorphous alloys of heavy rare earth metals and transitional metals as described above have been used as recording layers.

〔発明が解決しようとする問題点〕 しかし、光磁気記録媒体として用いられる本希土類−遷
移金属非晶質合金には、次のような欠点がある。
[Problems to be Solved by the Invention] However, the present rare earth-transition metal amorphous alloy used as a magneto-optical recording medium has the following drawbacks.

1、 室温でのみかけ上の磁化が消失する補償組成付近
で重希土類金属とa移金属は金属間化合物を作りやすい
。これらの金属r■化合物は割れやすψため、合金ター
ゲットを作製するには、特殊な技術が必要である。
1. Heavy rare earth metals and alpha-transfer metals tend to form intermetallic compounds near the compensation composition where apparent magnetization disappears at room temperature. Since these metal r■ compounds are easily cracked ψ, special techniques are required to produce alloy targets.

Z 補償組成より遷移金属が多い領域では、遷移金属中
のCOを増加することにより、キュリ一温度を上げつつ
もカー回転角、ファラデー回転角を著しく増大すること
ができる。ところが、o。
In a region where there is more transition metal than the Z compensation composition, by increasing CO in the transition metal, the Kerr rotation angle and Faraday rotation angle can be significantly increased while increasing the Curie temperature. However, o.

置換によりカー回転角、ファラデー回転角を増大させる
と飽和記録に必要な磁場HWも大きくなり、Hwを小さ
く(100エルステツド程度)できる組成の範囲が非常
に狭くなることが知られている。
It is known that when the Kerr rotation angle and Faraday rotation angle are increased by substitution, the magnetic field HW required for saturation recording also increases, and the range of compositions in which Hw can be reduced (about 100 Oersteds) becomes extremely narrow.

一方、補償組成よりIIi桜金属が少ない領域では1上
記のような磁気光学効果の向上はわずかであるが、飽和
記録に必要な最小の磁場HWを100エルステツド程度
にできる範囲は遷移金属が多い領域にあるものに比べて
広いため、再生特性では劣るが記録・消去特性ではまさ
っている。
On the other hand, in the region where the IIi cherry metal is less than the compensation composition, the improvement in the magneto-optical effect as described above is slight, but the range where the minimum magnetic field HW required for saturation recording can be about 100 oersteds is in the region where the transition metal is large. Because it is wider than the one on the market, its playback characteristics are inferior, but its recording and erasing characteristics are superior.

つまり通常、光磁気記録媒体として用いられる、希土類
−遷移金属非晶質合金においては、遷移金属が補償組成
より多い領域では、記録・消去特性の良いものを作製す
ることは困難であり、少ない領域では再生特性の良いも
のを作製することは困難でありた。
In other words, in rare earth-transition metal amorphous alloys that are normally used as magneto-optical recording media, it is difficult to produce one with good recording and erasing characteristics in regions where the transition metal is more than the compensation composition, and in regions where there is less transition metal. However, it has been difficult to produce a material with good reproduction characteristics.

ye磁気記録方式で記録・消去時に印加されるバイアス
磁場は通常500〜600エルステツドを越えることは
ない。従って、光磁気記録媒体には数百エルステッド程
度の磁場で飽和記録かできるという特性は不可欠なもの
である。
In the ye magnetic recording system, the bias magnetic field applied during recording and erasing usually does not exceed 500 to 600 oersteds. Therefore, it is essential for a magneto-optical recording medium to have the property of being able to perform saturation recording with a magnetic field of approximately several hundred oersteds.

そこで、本発明はこのように、従来の光磁気記録媒体に
おいて好ましい特性を有する組成範囲が狭いことからく
る間届点を解決するもので、その目的とするところは、
従来は作製が困難であった記録・消去特性および再生特
性ともにすぐれた光磁気記録媒体を提供することにある
Therefore, the present invention is intended to solve the shortcomings caused by the narrow composition range having favorable characteristics in conventional magneto-optical recording media, and its purpose is to:
The object of the present invention is to provide a magneto-optical recording medium with excellent recording/erasing characteristics and reproduction characteristics, which has been difficult to manufacture in the past.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光磁気記録媒体は、基体上に形成され、情報を
光により記録・消去・再生できる記録媒体として、軽希
土類金属Sm 、Nd 、Pr 、Oθのうち1種類以
上、重希土撃合FIT Tb e Dy *Gaのうち
1種類以上、遷移金属Fe 、 I:!o 。
The magneto-optical recording medium of the present invention is a recording medium formed on a substrate and capable of recording, erasing, and reproducing information using light. FIT Tb e Dy *One or more of Ga, transition metal Fe, I:! o.

N1のうち1種類以上およびCr、Ti、Aλのうち1
種類以上からなることを特徴とし、上記記録媒体として
、25℃における膜面に対して垂直な方向の残留磁束密
度が1200ガウス以下となることを特徴とする。
One or more of N1 and one of Cr, Ti, Aλ
The recording medium is characterized in that the residual magnetic flux density in the direction perpendicular to the film surface at 25° C. is 1200 Gauss or less.

〔実施例1〕 実施例により、本発明の効果について述べる。[Example 1] The effects of the present invention will be described with reference to Examples.

本実施例1および実施例2,5.4で示すyt、磁気記
録媒体はすべて低周波溶解炉で溶解し鋳造したのち、直
径8インチ、厚さ4tpaaに成形したものをスパッタ
リング用ターゲットとした。
The magnetic recording media shown in Example 1, Examples 2, and 5.4 were all melted and cast in a low frequency melting furnace, and then molded to a diameter of 8 inches and a thickness of 4 tpaa, which was used as a sputtering target.

実際に記録層を作製するにあたり使用した合金ターゲッ
ト組成と試料番号の対応表を表1に、記録層組成と試料
番号の対応表を表2に示しである表  1 表2 表1.2かられかるように、合金ターゲットからスパッ
タリングで得られる光磁気記録媒体においては、希土類
金属が合金ターゲットに含まれているよりも少なくなる
という傾向をもつ。但し、このような組成変化の程度は
、スパッタガスの種 。
Table 1 shows the correspondence between the alloy target composition and sample number used to actually produce the recording layer, and Table 2 shows the correspondence between the recording layer composition and sample number. As described above, a magneto-optical recording medium obtained by sputtering from an alloy target tends to contain less rare earth metal than the alloy target. However, the extent of such compositional changes depends on the type of sputtering gas.

類、圧力、ターゲットへの投入電力、ターゲット、基板
間距離によっても変わる。表2に示した記録層の作製条
件は、到達真空度I X 10−’ Torr以下、ス
パッタガスはArで、Arガス圧1mTorr、D(1
!スパツタ法を用い、ターゲットへの投入電力は約40
0Wでありた。″また、ターゲット基体間距離は基体中
心とターゲット中心の距離ではかつて10cW1であっ
た。
It also changes depending on the type, pressure, power input to the target, and distance between the target and the board. The conditions for producing the recording layer shown in Table 2 were as follows: ultimate vacuum level I x 10-' Torr or less, sputtering gas was Ar, Ar gas pressure was 1 mTorr, D(1
! Using the sputtering method, the power input to the target is approximately 40
It was 0W. ``Furthermore, the distance between the target substrate used to be 10 cW1 between the center of the substrate and the center of the target.

なお、本実施例1で作製した合金ターゲットの酸素濃度
は重量比で0.05%以下であり、焼結体に比べてはる
かに低濃度である。低酸素濃度のターゲットが作製でき
たのは、ターゲットを鋳造したのちに炉の中に残ったス
ラグの中に希土類金属、遷移金属中に含まれていた#に
索がとり残されているためである。つまり、ターゲット
の合金化によって得られた利点の一つであり、以下実施
例2.5に示す如く本発明の光磁気記録媒体が好ましい
特性を示しているのは、このような効果が一因となって
いる。
Note that the oxygen concentration of the alloy target produced in Example 1 is 0.05% or less by weight, which is much lower than that of the sintered body. The target with a low oxygen concentration was able to be created because the # contained in rare earth metals and transition metals was left behind in the slag left in the furnace after the target was cast. be. In other words, this is one of the advantages obtained by alloying the target, and this effect is one reason why the magneto-optical recording medium of the present invention exhibits favorable characteristics as shown in Example 2.5 below. It becomes.

通常、光磁気記録媒体として用いられる重希土類・遷移
金属非晶質合金薄膜をスパッタ法で作製するための合金
ターゲットを鋳造により作製することは非常に困難であ
った。ところが、本発明によれば、重希土類金属、yθ
、Co、Niのほか軽希土類金属およびCr、Ti、A
llを含むため鋳造によりターゲットを作製できる。1
個のターゲットで多元素からなる薄膜をスパッタで作製
するという手法は、従来から固定ディスク式磁気記憶装
置の記録媒体の量産にも使用されて成功している手法で
あり工業上の利用価値は高い。
It is usually very difficult to produce alloy targets by casting, which are used to produce heavy rare earth/transition metal amorphous alloy thin films used as magneto-optical recording media by sputtering. However, according to the present invention, heavy rare earth metals, yθ
, Co, Ni, as well as light rare earth metals and Cr, Ti, A
Since it contains ll, targets can be produced by casting. 1
The method of producing thin films made of multiple elements by sputtering using individual targets has been successfully used in the mass production of recording media for fixed disk magnetic storage devices, and has high industrial value. .

〔実施例2〕 光磁気記録媒体においては通常、バイアス磁場の大きさ
は記録層上で数百エルステッドである。
[Example 2] In a magneto-optical recording medium, the magnitude of the bias magnetic field on the recording layer is usually several hundred oersteds.

そのため、飽和記録に必要なバイアス磁場はできるだけ
小さい(100エルステツド程度)ことが望ましい、第
1図に、本発明の光磁気記録媒体の飽和記録に必要な最
小磁場Hwと25℃での磁化の関係を示す。表5は第1
図に示した記録媒体の組成と25℃における残留磁束密
度との対応表である。
Therefore, it is desirable that the bias magnetic field required for saturation recording be as small as possible (approximately 100 oersteds). Figure 1 shows the relationship between the minimum magnetic field Hw required for saturation recording of the magneto-optical recording medium of the present invention and magnetization at 25°C. shows. Table 5 is the first
It is a correspondence table between the composition of the recording medium shown in the figure and the residual magnetic flux density at 25°C.

表  3 但し、第1図および表3中で残留磁束密度が1200ガ
ウスを越えているものは、本発明の請求範囲からはずれ
るものであるが、比較のために記した。第1図より25
℃における残留磁束密度の大きさと記録磁場Hwのあい
だには強い相関があり、残留磁束密度の小さいものはH
wも小さくな・ るという事実が見い出される。
Table 3 However, in FIG. 1 and Table 3, those whose residual magnetic flux density exceeds 1200 Gauss are outside the scope of the claims of the present invention, but are listed for comparison. From Figure 1 25
There is a strong correlation between the magnitude of the residual magnetic flux density at °C and the recording magnetic field Hw, and the smaller the residual magnetic flux density, the higher the recording magnetic field Hw.
It is found that w also becomes smaller.

なお、上記記録媒体は第2図に示したような構造であり
、すべて溶解・鋳造によるターゲットからスパッタ法に
より作製した。
The above recording medium had a structure as shown in FIG. 2, and was manufactured by sputtering from a melted/cast target.

〔実施例5〕 実施例2で用いた(Ndo、z 5Dy0.7+1 )
 0.2 s (yeLsooo、4 sT1α05)
0.77を用い、第2図に示した構造の光磁気記録媒体
とし、その再生特性を記録パワーとC/N比で示したも
のが第3図である。従来から用いられているTb0.2
2(7eQ、80COQ、2G)(L7Jl  で同様
に評価したものが第4図である。
[Example 5] Used in Example 2 (Ndo, z 5Dy0.7+1)
0.2 s (yeLsooo, 4 sT1α05)
0.77 was used to create a magneto-optical recording medium having the structure shown in FIG. 2, and FIG. 3 shows its reproduction characteristics in terms of recording power and C/N ratio. Conventionally used Tb0.2
2 (7eQ, 80COQ, 2G) (L7Jl) is similarly evaluated as shown in FIG.

本発明の記録媒体は再生特性においても従来のものと比
べて遜色はなく、むしろ低パワー記録ができる分まさっ
ている。光磁気記録媒体を作製するにあたり、第4図に
示した如く基体はポリカーボネイト、保護層は窒化アル
ミニウム、窒化ケイ素の混合物を用いた。評価は熱磁気
記録方式で記録の方向と逆方向にあらかじめ磁化(消去
)したのち記録したものについて、再生することにより
行なった。
The recording medium of the present invention is not inferior to conventional media in terms of reproduction characteristics, and is actually superior in that it can perform low-power recording. In producing the magneto-optical recording medium, as shown in FIG. 4, the substrate was made of polycarbonate, and the protective layer was made of a mixture of aluminum nitride and silicon nitride. The evaluation was performed by magnetizing (erasing) in advance in the opposite direction to the recording direction using a thermomagnetic recording method, and then reproducing the recorded material.

同様の方法で軽希土類金属をかえた光磁気記録媒体の評
価結果を表4に示す。
Table 4 shows the evaluation results of magneto-optical recording media in which the light rare earth metal was changed using the same method.

表  4 再生特性についてはSm 、Ndがほぼ同程度で、次に
Pr、Oeの順となっている。上記の試料も溶解・鋳造
ターゲットからスパッタ法により作製した。
Table 4 Regarding the reproduction characteristics, Sm and Nd are almost at the same level, followed by Pr and Oe. The above samples were also produced by sputtering from melted and cast targets.

〔発明の効果〕〔Effect of the invention〕

以上述べてきたように本発明によれば、溶解・鋳造でタ
ーゲットが作製できるため、スパッタで記録層を作成す
ることが容易になり、従来は、再現よく作製することが
困難であった記録・消去特性およ及再生特性のすぐれた
光磁気記録媒体を作ることができる。
As described above, according to the present invention, the target can be manufactured by melting and casting, making it easy to create the recording layer by sputtering. A magneto-optical recording medium with excellent erasing and reproducing characteristics can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図 (NdQJ5Dy0.75)!(78α500
(L45T10.05)1−Hの飽和記録に必要な最小
磁場と残留磁束密度の関係を示す図。 第2図 本発明の(NdoJsDyo、ys)azs(
?eo、5sOoo、*5Ti0.05)Q、77の記
録パワーとO/ N比との関係を示す図。 第3図 従来例のTM、22(?811L90000.
1G)0.78  の記録パワーと07N比との関係を
示す図。 第4図 記録・再生特性評価に用いた光磁気記録媒体の
構成を示す図。 1・・・・・・ポリカーボネイト 2・・・・・・窒化アルミニウムおよび窒化ケイ素3・
・・・・・本発明の光磁気記録媒体またはTb1FeO
O4・・・・・・窒化アルミニウムおよび窒化ケイ素5
・・・・・・アルミニウム 以  上 出願人 セイコーエプソン株式会社 代理人 弁理士 最上7務(′地1名)1F−ゝノ 0    50C)      +000      
15001(留看ム采宮度(ガラ又〕 昇 1 図 客J采レしアゝパワー(mW) 易2図 首己儒1シレーサθζワー(rn W)易3図 〜1
Figure 1 (NdQJ5Dy0.75)! (78α500
(L45T10.05) A diagram showing the relationship between the minimum magnetic field required for saturation recording of 1-H and the residual magnetic flux density. Fig. 2 (NdoJsDyo, ys) azs(
? eo, 5sOoo, *5Ti0.05)Q, A diagram showing the relationship between recording power and O/N ratio of 77. Fig. 3 Conventional TM, 22(?811L90000.
1G) A diagram showing the relationship between the recording power of 0.78 and the 07N ratio. FIG. 4 A diagram showing the configuration of a magneto-optical recording medium used for evaluating recording/reproducing characteristics. 1... Polycarbonate 2... Aluminum nitride and silicon nitride 3.
...Magneto-optical recording medium of the present invention or Tb1FeO
O4...Aluminum nitride and silicon nitride5
・・・・・・Aluminium and above Applicant Seiko Epson Co., Ltd. Agent Patent Attorney Mogami 7 (1 person) 1F-ゝノ0 50C) +000
15001 (Gara Mata) Noboru 1 Figure 1 Power (mW) Figure 2 Figure 1 Power (mW) Figure 3 - 1

Claims (1)

【特許請求の範囲】[Claims] (1)基体上に形成され、情報を光により記録・消去・
再生できる記録媒体として、軽希土類金属Sm、Nd、
Pr、Ceのうち1種類以上、重希土類金属Tb、Dy
、Gdのうち1種類以上、遷移金属Fe、Co、Niの
うち1種類以上およびCr、Ti、Alのうち1種類以
上からなり、組成式を (LR_xHR_1_−_x)_yTM_1_−_y_
−_zA_zと書きあらわしたとき、 0.1≦x≦0.4 0.1≦y≦0.5 0.01≦z≦0.1 の範囲にあるもののうち基体面に対して垂直な方向に対
する残留磁束密度が1200ガウス以下であることを特
徴とする光磁気記録媒体。 (但し、LRは前記、軽希土類金属のうち1種類以上、
BRは前記、重希土類金属のうち1種類以上、TMは前
記、遷移金属のうち1種類以上およびAはTi、Al、
Crのうち1種類以上の元素をあらわす。)
(1) Formed on a substrate, information can be recorded, erased, and
As playable recording media, light rare earth metals Sm, Nd,
One or more of Pr, Ce, heavy rare earth metals Tb, Dy
, one or more of Gd, one or more of transition metals Fe, Co, and Ni, and one or more of Cr, Ti, and Al, and has a compositional formula of (LR_xHR_1_-_x)_yTM_1_-_y_
-_zA_z, in the range of 0.1≦x≦0.4 0.1≦y≦0.5 0.01≦z≦0.1 in the direction perpendicular to the base surface A magneto-optical recording medium having a residual magnetic flux density of 1200 Gauss or less. (However, LR is one or more of the above light rare earth metals,
BR is one or more of the heavy rare earth metals listed above, TM is one or more of the transition metals listed above, and A is Ti, Al,
Represents one or more elements of Cr. )
JP22123886A 1986-09-19 1986-09-19 Magneto-optical recording medium Pending JPS6376134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22123886A JPS6376134A (en) 1986-09-19 1986-09-19 Magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22123886A JPS6376134A (en) 1986-09-19 1986-09-19 Magneto-optical recording medium

Publications (1)

Publication Number Publication Date
JPS6376134A true JPS6376134A (en) 1988-04-06

Family

ID=16763629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22123886A Pending JPS6376134A (en) 1986-09-19 1986-09-19 Magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JPS6376134A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576100A (en) * 1993-07-01 1996-11-19 U.S. Philips Corporation Magneto-optical recording medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246007A (en) * 1985-04-24 1986-11-01 ミサワホ−ム株式会社 Manufacture of light-weight aerated concrete
JPS6247846A (en) * 1985-08-26 1987-03-02 Seiko Epson Corp Photomagnetic recording medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61246007A (en) * 1985-04-24 1986-11-01 ミサワホ−ム株式会社 Manufacture of light-weight aerated concrete
JPS6247846A (en) * 1985-08-26 1987-03-02 Seiko Epson Corp Photomagnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5576100A (en) * 1993-07-01 1996-11-19 U.S. Philips Corporation Magneto-optical recording medium

Similar Documents

Publication Publication Date Title
JPH0118506B2 (en)
JPS6134744A (en) Photoelectromagnetic recording medium
JPH0515778B2 (en)
JPH0351082B2 (en)
US5100741A (en) Magneto-optic recording systems
JPS6376134A (en) Magneto-optical recording medium
JPS61246946A (en) Photomagnetic recording medium
JP2594030B2 (en) Magneto-optical recording medium
JPS60253040A (en) Photomagnetic recording medium
JPS6334753A (en) Magneto-optical recording medium
JPS62222609A (en) Photomagnetic recording medium
JPS63316340A (en) Magneto-optical recording medium
JP2543677B2 (en) Magneto-optical recording medium
JPS6348636A (en) Magneto-optical recording medium
JPH0619859B2 (en) Magneto-optical recording medium
JPS6243847A (en) Photomagnetic recording medium
JPS6299937A (en) Photomagnetic recording medium
JPS63100636A (en) Magneto-optical recording medium
JPS62262245A (en) Magneto-optical recording medium
JPS63316342A (en) Magneto-optical recording medium
JPH0766579B2 (en) Magneto-optical recording medium and manufacturing method thereof
JPS6310354A (en) Magneto-optical recording medium
JPS63317945A (en) Magneto-optical recording medium
JPS63316341A (en) Magneto-optical recording medium
JPS63308750A (en) Magneto-optical recording medium