JPS6376106A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS6376106A
JPS6376106A JP22136286A JP22136286A JPS6376106A JP S6376106 A JPS6376106 A JP S6376106A JP 22136286 A JP22136286 A JP 22136286A JP 22136286 A JP22136286 A JP 22136286A JP S6376106 A JPS6376106 A JP S6376106A
Authority
JP
Japan
Prior art keywords
magnetic
core
layer
magnetic core
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22136286A
Other languages
Japanese (ja)
Inventor
Osamu Hirai
修 平井
Saburo Suzuki
三郎 鈴木
Harunobu Saito
斉藤 治信
Shunichiro Kuwazuka
鍬塚 俊一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22136286A priority Critical patent/JPS6376106A/en
Publication of JPS6376106A publication Critical patent/JPS6376106A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve the resolution at reading, to prevent the saturation of magnetization at recording and to contrive to improve the conversion efficiency by providing a nonmagnetic layer only to a part between a 1st magnetic layer and a 2nd magnetic layer. CONSTITUTION:A 2nd magnetic core is split into the 1st magnetic layer 11 continuing from the magnetic gap to the core connection and the 2nd magnetic layer 14 continuing from the position retrogressing by a prescribed quantity from the magnetic gap toward the core connection to the core connection. Then a nonmagnetic layer 13 is provided only to a part between the 1st magnetic layer 11 and the 2nd magnetic layer 14. That is, even if the film thickness of the magnetic layer 11 is equal, in comparing the magnetic core having the nonmagnetic layer 13 at the middle and the magnetic core without the nonmagnetic layer 13, the magnetic core without the nonmagnetic layer 13 is hard to be saturated. Thus, by reducing the nonmagnetic layer 13 in the magnetic core as much as possible, the magnetic core hardly being subject to magnetic flux saturation is to be made. Thus, the resolution at reading is improved, the magnetic saturation at recording is prevented and the conversion efficiency of the magnetic head is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、薄膜磁気ヘッドに関し、特に磁性層と非磁性
層とからなる磁気コアを有する薄膜磁気ヘッドに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film magnetic head, and more particularly to a thin film magnetic head having a magnetic core consisting of a magnetic layer and a nonmagnetic layer.

〔従来の技術) 薄膜磁気ヘッドは、電気めっき法、真空蒸着法。[Conventional technology] Thin film magnetic heads are manufactured using electroplating or vacuum deposition methods.

スパッタリング法等の薄膜形成技術とフォトリソグラフ
ィと呼ばれる高精度バターニング技術を用いて作製され
る。この代表的な構成は特開昭55−840201号公
報に記載されている。このような薄膜磁気ヘッドにおい
て、読取時の分解能を高めかつ記録時の磁化飽和を緩和
すると共に磁気ヘッドの変換効率を高めるためには、各
磁気コアの媒体対向面側、すなわち磁気ギャップ部分と
これにつながる後側部分で膜厚を変え、各磁気コアの後
側部分の厚さを磁気ギャップ部分より厚くして2段構造
とする必要のあることが特開昭55−84019号公報
に記載されている。
It is manufactured using thin film formation techniques such as sputtering and high-precision patterning technology called photolithography. This typical configuration is described in Japanese Unexamined Patent Publication No. 55-840201. In such a thin-film magnetic head, in order to increase the resolution during reading, reduce magnetization saturation during recording, and increase the conversion efficiency of the magnetic head, it is necessary to JP-A-55-84019 discloses that it is necessary to change the film thickness at the rear part connected to the magnetic core and to make the rear part of each magnetic core thicker than the magnetic gap part to form a two-stage structure. ing.

磁気コアの形成方法としては、電気めっき法。The method for forming the magnetic core is electroplating.

真空蒸着法、スパッタリング法が一般に用いられている
。スパッタリング法では、真空槽内に基板と磁性材料と
を対向させて置き、Ar等のガスを毎分10cc程度流
しながら、基板と磁性材料との間に高電圧を印加するこ
とによりグロー放電を発生させ、このグロー放電により
基板全面に磁性層を堆積する。このとき堆積する速度は
毎分200人程度であり、投入電力、ガス圧等の条件を
定めることにより決定可能である。また、堆積層の膜厚
は磁気コア作製に必要な厚さになるようにする。
Vacuum deposition method and sputtering method are generally used. In the sputtering method, a substrate and a magnetic material are placed facing each other in a vacuum chamber, and a glow discharge is generated by applying a high voltage between the substrate and the magnetic material while flowing a gas such as Ar at a rate of about 10 cc per minute. This glow discharge causes a magnetic layer to be deposited over the entire surface of the substrate. The deposition rate at this time is about 200 people per minute, and can be determined by determining conditions such as input power and gas pressure. Further, the thickness of the deposited layer is set to be the thickness necessary for manufacturing the magnetic core.

この後、基板を真空槽より取り出し、フォトリソグラフ
ィー技術およびスパッタエツチングあるいはイオンビー
ムエツチング等の高精度エツチング技術により所定形状
に成形し磁気コアを作る。真空蒸着法では、真空槽内に
基板と磁性材料を乗せたヒーターとを対向させておき、
ヒーターを加熱することにより磁性材料を蒸発させ基板
全面に堆積させる。堆積する膜厚は、磁気コアに必要な
膜厚とし、水晶振動子を利用した膜厚モニターを基板の
近くに取付けることにより正確にコントロールできる。
Thereafter, the substrate is taken out of the vacuum chamber and formed into a predetermined shape by photolithography and high-precision etching techniques such as sputter etching or ion beam etching to form a magnetic core. In the vacuum evaporation method, a substrate and a heater carrying a magnetic material are placed facing each other in a vacuum chamber.
By heating the heater, the magnetic material is evaporated and deposited on the entire surface of the substrate. The thickness of the deposited film is set to the thickness required for the magnetic core, and can be precisely controlled by installing a film thickness monitor using a crystal oscillator near the substrate.

この後、真空槽より取出し、スパッタリング法あるいは
真空蒸着法を用いて基板全面に薄く磁性層を堆積する。
Thereafter, the substrate is taken out from the vacuum chamber, and a thin magnetic layer is deposited over the entire surface of the substrate using sputtering or vacuum evaporation.

このときの膜厚は電気めっきの際の通電膜としての機能
を果すことが可能な膜厚であればよく、磁気コアに必要
な膜厚の10分の1程度である。この後、基板上にフォ
トレジストを用いて磁気コア形状の抜きパターンを形成
し、その上に電気めっきを行い磁気コアを作製する。
The film thickness at this time may be as long as it can function as a current-carrying film during electroplating, and is approximately one-tenth of the film thickness required for the magnetic core. Thereafter, a punched pattern in the shape of a magnetic core is formed on the substrate using a photoresist, and electroplating is performed on the punched pattern to produce a magnetic core.

電気めっき法によれば、膜の堆積途中で磁気コアの一部
分を覆うよう再度フォトレジストを形成することにより
、上述した部分的に膜が厚くなる2段構造の磁気コアを
作製しやすいという利点がある。また、電気めっき法で
は磁気コアの形状はフォトレジストパターンだけに依存
するため、高精度なパターニングが容易に行えるという
利点もある。しかし、特開昭55−82793号公報に
記載されているように、起伏を有している対象物上に成
分比が高度に均一な磁性薄膜を形成するためには、めっ
き条件を厳密に制御しなければならない煩わしさがある
。また、薄膜磁気ヘッドの作製工数には複数回の加熱プ
ロセスがあり、電気めっき法によって形成した磁性薄膜
はこの加熱プロセス中に磁気特性が劣化しやすい欠点が
あることがわかった。
The electroplating method has the advantage that by forming a photoresist again to cover a portion of the magnetic core during film deposition, it is easy to fabricate the above-mentioned two-tiered magnetic core where the film is partially thick. be. Furthermore, since the shape of the magnetic core depends only on the photoresist pattern in the electroplating method, there is also the advantage that highly accurate patterning can be easily performed. However, as described in JP-A No. 55-82793, in order to form a magnetic thin film with a highly uniform component ratio on an object with undulations, plating conditions must be strictly controlled. There is a hassle that has to be done. In addition, it has been found that manufacturing a thin film magnetic head requires multiple heating processes, and that magnetic thin films formed by electroplating have the disadvantage that their magnetic properties tend to deteriorate during this heating process.

一方、真空蒸着法あるいはスパッタリング法によれば、
起伏を有した対象物上に成分比が均一な磁性薄膜を容易
に形成できるという利点があるが、上述した2段構造の
磁気コアを作製する際に、磁性薄膜あるいは磁気ギャッ
プ膜の直上でイオンミリング等によりエツチングを行う
必要があり、オーバエツチングによって膜厚精度を劣化
するという欠点がある1以上述べた問題点について、特
開昭59−104717号公報には、磁気コアを2段構
造とし、中間に無機絶縁膜を設けることによって、真空
蒸着法あるいはスパッタリング法によって形成した磁性
薄膜で、上述した2段構造の磁気コアが実現できること
が記載されている。
On the other hand, according to the vacuum evaporation method or sputtering method,
It has the advantage that a magnetic thin film with a uniform component ratio can be easily formed on an object with undulations. It is necessary to perform etching by milling, etc., and over-etching deteriorates the film thickness accuracy. Regarding the above-mentioned problems, JP-A-59-104717 discloses that the magnetic core has a two-stage structure. It is described that by providing an inorganic insulating film in the middle, the above-mentioned two-stage magnetic core can be realized with a magnetic thin film formed by vacuum evaporation or sputtering.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、磁気コア内に非磁性体層を設けること
によって生じる電磁変換特性に対する悪影響について十
分配慮されておらず、記録特性が劣化するという問題が
あった。
The above-mentioned conventional technology does not give sufficient consideration to the adverse effect on electromagnetic conversion characteristics caused by providing a non-magnetic layer within the magnetic core, resulting in a problem of deterioration of recording characteristics.

本発明の目的は、このような従来の問題を解決し、読取
時の分解能を高め、かつ記録時の磁化飽和を緩和すると
共に磁気ヘッドの変換効率を向上させる薄膜磁気ヘッド
を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a thin film magnetic head that solves these conventional problems, improves resolution during reading, alleviates magnetization saturation during recording, and improves conversion efficiency of the magnetic head. .

[問題点を解決するための手段] 上記問題点を解決するため、本発明では、第1の磁気コ
アと、該第1の磁気コアが形成された後に形成される第
2の磁気コアと、該第2の磁気コアと上記第1の磁気コ
アとの一端に形成される磁気ギャップ部と、上記第1の
磁気コアと上記第2の磁気コアとを接続するためのコア
接続部を有し、かつ上記第2の磁気コアが磁気ギャップ
部分よりも、これにつながる後側部分で膜厚が厚い2段
構造を有する薄膜磁気ヘッドにおいて、上記第2の磁気
コアを、磁気ギャップ部からコア接続部まで連続した第
1の磁性層と、磁気ギャップ部よりコア接続部方向へ所
定量後退させた位置からコア接続部まで連続した第2の
磁性層とに分割し、上記第1の磁性層と上記第2の磁性
層との層間の1部にのみ非磁性層を設けることに特徴が
ある。
[Means for Solving the Problems] In order to solve the above problems, the present invention includes a first magnetic core, a second magnetic core formed after the first magnetic core is formed, A magnetic gap portion formed at one end of the second magnetic core and the first magnetic core, and a core connection portion for connecting the first magnetic core and the second magnetic core. , and in a thin film magnetic head having a two-stage structure in which the second magnetic core has a thicker film thickness at a rear portion connected to the magnetic gap portion than at a rear portion thereof, the second magnetic core is connected to the core from the magnetic gap portion. The first magnetic layer is divided into a first magnetic layer continuous to the core connection part, and a second magnetic layer continuous to the core connection part from a position set back a predetermined amount from the magnetic gap part in the direction of the core connection part. A feature is that a non-magnetic layer is provided only in a part of the space between the second magnetic layer and the second magnetic layer.

〔作用〕[Effect]

磁性層の膜厚が等しくとも、中間に非磁性層がある磁気
コアと非磁性層がない磁気コアとを比較すると、非磁性
層を持たない磁気コアの方が磁束が飽和し難い。従って
、磁気コア内の非磁性層をできる限り少なくすることは
、磁束飽和のし難い磁気コアを作製することになる。
Even if the thickness of the magnetic layer is the same, when comparing a magnetic core with a non-magnetic layer in the middle and a magnetic core without a non-magnetic layer, the magnetic flux is less likely to be saturated in the magnetic core without a non-magnetic layer. Therefore, reducing the number of nonmagnetic layers in the magnetic core as much as possible will produce a magnetic core that is difficult to saturate with magnetic flux.

〔実施例〕〔Example〕

以下、本発明の一実施例を、図面により詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例を示す薄膜磁気ヘッドの縦
断面図概略図である。ここで、(a)〜(d)は本薄膜
磁気ヘッドの製造(作製)プロセスを示している。以下
、本図により作製プロセスを説明する。
FIG. 1 is a schematic longitudinal sectional view of a thin film magnetic head showing an embodiment of the present invention. Here, (a) to (d) show the manufacturing (manufacturing) process of the present thin film magnetic head. The manufacturing process will be explained below with reference to this figure.

まず、第1図(a)に示すように、基板1上に、基板と
磁気ヘッド素子との絶縁をとるためのアルミナ膜2をス
パッタリングにより堆積し、ポリッシング等で表面を平
滑にした後、パーマロイ膜をスパッタリングで堆積する
。次に、ホトレジストを塗布し、希望する形状を有する
ホトマスクを介して露光する。これを現像した後、イオ
ンミリングあるいはスパッタエツチング等のドライエツ
チング法によりパターン形成し磁性層3を形成する。
First, as shown in FIG. 1(a), an alumina film 2 for insulating the substrate and the magnetic head element is deposited on a substrate 1 by sputtering, and after smoothing the surface by polishing etc. Deposit the film by sputtering. Next, photoresist is applied and exposed through a photomask having the desired shape. After developing this, a pattern is formed by a dry etching method such as ion milling or sputter etching to form the magnetic layer 3.

次に磁性層3と同様にして、磁性層4を形成する。Next, magnetic layer 4 is formed in the same manner as magnetic layer 3.

このとき、磁性層3を完全に覆うようにし、後側部分B
が磁気ギャップ部分Aより厚い第1の磁気コアを形成す
る。次に、磁気ギャップ膜5をスパッタリングにより堆
積した後、層間絶縁膜6となるポリイミド樹脂を塗布、
硬化し、所定形状にエツチングする。この上に、電気め
っき法あるいは。
At this time, the magnetic layer 3 is completely covered, and the rear part B
forms a first magnetic core that is thicker than the magnetic gap portion A. Next, after depositing the magnetic gap film 5 by sputtering, a polyimide resin that will become the interlayer insulating film 6 is applied.
It is cured and etched into the desired shape. On top of this, electroplating method or.

基板全面に導体コイルとなるCu膜をスパッタリングで
堆積してからエツチングする方法により、導体コイル7
を形成する1次に、2層目の層間絶縁膜8,2層目の導
体コイル9を同様にして形成した後、層間絶縁膜10を
塗布、硬化し1層間絶縁膜6,8.10を一括してエツ
チングして所定形状を得る。この後、磁気ギャップ膜5
をエツチングしてコア接続部を設ける。
The conductor coil 7 is formed by depositing a Cu film, which will become the conductor coil, on the entire surface of the substrate by sputtering and then etching it.
First, after forming the second interlayer insulating film 8 and the second layer conductor coil 9 in the same manner, the interlayer insulating film 10 is applied and cured to form the first interlayer insulating film 6, 8, and 10. A predetermined shape is obtained by etching all at once. After this, the magnetic gap film 5
Provide a core connection by etching.

次に、スパッタリングによりパーマロイIIQ(磁性層
)11を基板全面に堆積し、この上に、磁性層14と同
じ平面形状となるようホトレジストパターン12を形成
する。このホトレジストパターン12はエツジ部分が逆
テーパまたは、ひさし状であることが望ましい。このホ
トレジストの上に非磁性層13を基板全面に渡ってスパ
ッタリングにより堆積した後、ホトレジストを溶解する
溶剤中に基板を浸すことにより非磁性N13のうちホト
レジスト上にある部分のみを基板より除去する。
Next, a permalloy IIQ (magnetic layer) 11 is deposited on the entire surface of the substrate by sputtering, and a photoresist pattern 12 is formed thereon so as to have the same planar shape as the magnetic layer 14. It is desirable that the edge portion of this photoresist pattern 12 has a reverse taper or a canopy shape. After a nonmagnetic layer 13 is deposited on the photoresist by sputtering over the entire surface of the substrate, only the portion of the nonmagnetic N 13 on the photoresist is removed from the substrate by immersing the substrate in a solvent that dissolves the photoresist.

この後、第1図(b)に示すように、基板全面にパーマ
ロイ膜(磁性FJ)14をスパッタリングにより堆積し
、ホトレジストパターン15を形成してからイオンミリ
ング法等によりエツチングしてパターン形成し、磁性層
14を得る。このとき、非磁性層13により磁性層11
となるパーマロイ膜の膜厚減少を防止する。磁性層14
上に残ったホトレジストを除去した後、第1図(C)に
示すように、新たにホトレジストパターン16を形成し
、非磁性層13とパーマロイ膜(磁性層)11を連続し
てイオンミリング法によりエツチングして磁性層11を
形成する。この後、ホトレジストを除去して第1図(d
)に示すような薄膜磁気ヘッド素子を得る。
After that, as shown in FIG. 1(b), a permalloy film (magnetic FJ) 14 is deposited on the entire surface of the substrate by sputtering, a photoresist pattern 15 is formed, and a pattern is formed by etching by ion milling or the like. A magnetic layer 14 is obtained. At this time, the nonmagnetic layer 13 causes the magnetic layer 11 to
This prevents the permalloy film from decreasing in thickness. magnetic layer 14
After removing the photoresist remaining on the top, a new photoresist pattern 16 is formed as shown in FIG. A magnetic layer 11 is formed by etching. After this, the photoresist is removed and the photoresist is removed.
A thin film magnetic head element as shown in ) is obtained.

〔発明の効果] 以上説明したように、本発明によれば、後側部分が磁気
ギャップ部分より厚い形状を有し、中間に非磁性層を含
まない磁気コアを形成できるので、読取時の分解能を高
め、かつ記録時の磁化飽和を緩和すると共に、変換効率
を向上させた薄膜磁気ヘッドを作製できる。
[Effects of the Invention] As explained above, according to the present invention, it is possible to form a magnetic core in which the rear portion has a thicker shape than the magnetic gap portion and does not include a nonmagnetic layer in the middle, so that the resolution during reading can be improved. It is possible to manufacture a thin film magnetic head that has increased conversion efficiency, alleviated magnetization saturation during recording, and improved conversion efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す薄膜磁気ヘッドの縦断
面概略図である。 4、磁性層、5:磁気ギャップ膜、9;コイル、10:
層間絶縁膜、11:磁性層、12:ホトレジスト、13
:非磁性層、14:磁性層、15:ホトレジスト、16
:ホトレジスト。 第1図 f^1
FIG. 1 is a schematic vertical cross-sectional view of a thin film magnetic head showing an embodiment of the present invention. 4. Magnetic layer, 5: Magnetic gap film, 9; Coil, 10:
Interlayer insulating film, 11: Magnetic layer, 12: Photoresist, 13
: non-magnetic layer, 14: magnetic layer, 15: photoresist, 16
: Photoresist. Figure 1 f^1

Claims (1)

【特許請求の範囲】[Claims] 1、第1の磁気コアと、該第1の磁気コアが形成された
後に形成される第2の磁気コアと、該第2の磁気コアと
上記第1の磁気コアとの一端に形成される磁気ギャップ
部と、上記第1の磁気コアと上記第2の磁気コアとを接
続するためのコア接続部を有し、かつ上記第2の磁気コ
アが磁気ギャップ部分よりも、これにつながる後側部分
で膜厚が厚い2段構造を有する薄膜磁気ヘッドにおいて
、上記第2の磁気コアを、磁気ギャップ部からコア接続
部まで連続した第1の磁性層と、磁気ギャップ部よりコ
ア接続部方向へ所定量後退させた位置からコア接続部ま
で連続した第2の磁性層とに分割し、上記第1の磁性層
と上記第2の磁性層との層間の1部にのみ非磁性層を設
けることを特徴とする薄膜磁気ヘッド。
1. A first magnetic core, a second magnetic core formed after the first magnetic core is formed, and a second magnetic core formed at one end of the second magnetic core and the first magnetic core. a magnetic gap portion and a core connection portion for connecting the first magnetic core and the second magnetic core, and the second magnetic core is connected to the rear side of the magnetic gap portion. In a thin film magnetic head having a two-stage structure where the film thickness is thick in some parts, the second magnetic core is connected to a first magnetic layer that is continuous from the magnetic gap part to the core connection part, and a first magnetic layer that is continuous from the magnetic gap part toward the core connection part. A second magnetic layer continuous from a position set back by a predetermined amount to a core connection portion, and a nonmagnetic layer provided only in a part between the first magnetic layer and the second magnetic layer. A thin film magnetic head featuring:
JP22136286A 1986-09-19 1986-09-19 Thin film magnetic head Pending JPS6376106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22136286A JPS6376106A (en) 1986-09-19 1986-09-19 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22136286A JPS6376106A (en) 1986-09-19 1986-09-19 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS6376106A true JPS6376106A (en) 1988-04-06

Family

ID=16765602

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22136286A Pending JPS6376106A (en) 1986-09-19 1986-09-19 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS6376106A (en)

Similar Documents

Publication Publication Date Title
US8424192B1 (en) Method for manufacturing a pole for a magnetic recording head
US6451514B1 (en) Method for formation of upper magnetic pole layer of thin film magnetic head, method of forming miniature block pattern with high aspect ratio on bottom part of step on surface with step, and thin film magnetic head
JPH0361243B2 (en)
JPH0210508A (en) Manufacture of magnetic pole for magnetic recording
JP2008293655A (en) Wiring pattern, manufacturing method thereof, thin-film magnetic head, and manufacturing method thereof
US4516180A (en) Thin film magnetic head
US4900650A (en) Method of producing a pole piece with improved magnetic domain structure
JPS6376106A (en) Thin film magnetic head
US6345435B1 (en) Method to make laminated yoke for high data rate giant magneto-resistive head
JPH0594603A (en) Perpendicular magnetic head
JPH0380410A (en) Thin-film magnetic head and production thereof
JP2747099B2 (en) Thin film magnetic head
JPH06111245A (en) Thin film magnetic head and fabrication thereof
JP2861080B2 (en) Method for forming pattern of amorphous alloy magnetic film
JPS6045918A (en) Production of thin film magnetic head
JPH05197920A (en) Thin film magnetic head and its production
JPH1021507A (en) Production of induction type thin-film magnetic head
JPH0520640A (en) Production of thin-film magnetic head
JPS62164203A (en) Production of thin film magnetic head
JP2000207709A (en) Manufacture of thin film magnetic head
JP2574260B2 (en) Thin film magnetic head
JPH0192914A (en) Thin film magnetic head
JPS6111914A (en) Production of thin film magnetic head
JPH0316686B2 (en)
JPH06195634A (en) Production of thin film magnetic head