JPS6375327A - Fuel feed control device for internal combustion engine - Google Patents

Fuel feed control device for internal combustion engine

Info

Publication number
JPS6375327A
JPS6375327A JP21970686A JP21970686A JPS6375327A JP S6375327 A JPS6375327 A JP S6375327A JP 21970686 A JP21970686 A JP 21970686A JP 21970686 A JP21970686 A JP 21970686A JP S6375327 A JPS6375327 A JP S6375327A
Authority
JP
Japan
Prior art keywords
correction
acceleration
deceleration
air
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21970686A
Other languages
Japanese (ja)
Inventor
Shinpei Nakaniwa
伸平 中庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Unisia Automotive Ltd
Original Assignee
Japan Electronic Control Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Electronic Control Systems Co Ltd filed Critical Japan Electronic Control Systems Co Ltd
Priority to JP21970686A priority Critical patent/JPS6375327A/en
Publication of JPS6375327A publication Critical patent/JPS6375327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To improve acceleration and deceleration performance, by a method wherein, during acceleration and deceleration, a correction amount, reloadably stored at each running region, is read, and based on a detecting value from a wide range type O2 sensor, the correction amount is corrected from a devia tion between the detecting value and a demand air-fuel ratio. CONSTITUTION:A control unit 11 computes a fundamental fuel injection amount, based on an intake air amount from an airflow meter 6 and the number of revolutions from a crank angle sensor 10, and performs various kinds of correc tion based on detecting values from a throttle opening sensor 8, a water tempera ture sensor 12, a wide range type O2 sensor 14. Namely, during steady running in that a change factor of the opening of a throttle valve is below a given value, feedback correction is performed based on a detecting value from the O2 sensor 14. During acceleration and deceleration, a correction factor is read according to a change rate of the opening of the throttle valve, the number of revolutions, and a water temperature for setting, meanwhile, based on a difference between a present and a preceding value of an output from the O2 sensor 14, the correction factor is corrected.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、内燃機関の燃料供給制御装置に関し、特に機
関加・減速時における燃料供給量の制御に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a fuel supply control device for an internal combustion engine, and particularly to control of the amount of fuel supplied during engine acceleration/deceleration.

(従来の技術〉 内燃機関の燃料供給装置としては従来、以下のようなも
のがある。
(Prior Art) Conventionally, there are the following types of fuel supply devices for internal combustion engines.

即ち、エアフローメータにより検出される吸入空気流i
1Qとクランク角センサ等によって検出される機関回転
速度Nとから基本燃料供給量Tp (=KXQ/N;に
は定数)を演算し、更に、機関温度等の機関運転状態に
応じた各種補正係数C0EFと排気通路中に設けられた
酸素センサからの排気中酸素濃度によって設定される空
燃比フィードバンク補正係数αとバッテリ電圧による補
正分子sとを演算した後、前記基本燃料噴射ITpを補
正演算して最終的な燃料噴射ff1Ti(=TpxCO
EFxα+Ts)を設定する。
That is, the intake air flow i detected by the air flow meter
The basic fuel supply amount Tp (=KXQ/N; is a constant) is calculated from 1Q and the engine rotational speed N detected by a crank angle sensor, etc., and various correction coefficients are calculated depending on the engine operating state such as the engine temperature. After calculating the air-fuel ratio feedbank correction coefficient α set based on C0EF, the oxygen concentration in the exhaust from the oxygen sensor installed in the exhaust passage, and the correction numerator s based on the battery voltage, the basic fuel injection ITp is corrected. final fuel injection ff1Ti (=TpxCO
EFxα+Ts).

そして、設定された燃料噴射fiTiに相当するパルス
巾の噴射パルス信号を電磁式燃料噴射弁に出力すること
により、機関に所定量の燃料を噴射供給するようにして
いた(特開昭59−203828号公報等参照)。
Then, by outputting an injection pulse signal with a pulse width corresponding to the set fuel injection fiTi to the electromagnetic fuel injection valve, a predetermined amount of fuel was injected and supplied to the engine (Japanese Patent Laid-Open No. 59-203828 (Refer to the publication number, etc.)

ところで、機関の加・減速時には、燃料の供給遅れやエ
アフローメータによる吸入空気流量の検出遅れ、更に燃
料噴射量の演算遅れ等によって前記酸素センサの検出に
基づく空燃比フィードバック制御を行うと空燃比の応答
遅れを伴うため、該空燃比フィードバック制御を行うの
は応答遅れが比較的少ない緩やかな加・減速時に限られ
ており、ある程度以上の加・減速条件では、空燃比の変
動を修正すべく燃料噴射量の増量補正(加速時)を行っ
ている。
By the way, when accelerating or decelerating the engine, air-fuel ratio feedback control based on the detection of the oxygen sensor is performed due to a delay in fuel supply, a delay in the detection of the intake air flow rate by the air flow meter, a delay in the calculation of the fuel injection amount, etc. Because of the response delay, air-fuel ratio feedback control is only performed during gentle accelerations and decelerations with relatively little response delay. Under acceleration and deceleration conditions exceeding a certain level, the air-fuel ratio feedback control is performed to correct fluctuations in the air-fuel ratio. The injection amount is being corrected to increase (during acceleration).

(発明が解決しようとする問題点〉 しかしながら、予め加・減速状態に応じて燃料の増・減
補正量を設定しても様々の運転条件に対応して良好な空
燃比特性を得ることには限界があり、バラツキ、経時変
化等も伴うものである。
(Problem to be solved by the invention) However, even if the fuel increase/decrease correction amount is set in advance according to the acceleration/deceleration state, it is difficult to obtain good air-fuel ratio characteristics corresponding to various driving conditions. There are limits, and there are also variations and changes over time.

また、通常の酸素センサは、空燃比を所定値(例えば理
論空燃比)に対して、リッチかリーンかをオン・オフ的
にしか検出できないため、緩やかな加・減速条件での空
燃比フィードバック制御も必しも良好に行えるものでは
なかった。
In addition, normal oxygen sensors can only detect whether the air-fuel ratio is rich or lean with respect to a predetermined value (for example, the stoichiometric air-fuel ratio) in an on/off manner. However, it was not always possible to perform well.

一方、近年では、上記オン・オフ的な検出を行う酸素セ
ンサに代わり、気体中の酸素濃度を広範囲に測定できる
酸素センサが開発されている(SAE paper85
0378.特願昭60−167440号等参照)。
On the other hand, in recent years, instead of the oxygen sensor that performs on-off detection, an oxygen sensor that can measure the oxygen concentration in a gas over a wide range has been developed (SAE paper 85).
0378. (See Japanese Patent Application No. 167440/1983, etc.)

そこで、かかる広域型酸素センサを空燃比センサとして
使用して、空燃比を目標値にフィードバック制御する方
式とすれば、空燃比を一点(例えば理論空燃比)より濃
いか薄いかのみを判定するON、OFF型の酸素センサ
を使用する場合に比較し、空燃比の制御精度が大きく向
上する。
Therefore, if such a wide-range oxygen sensor is used as an air-fuel ratio sensor and a method is adopted in which the air-fuel ratio is feedback-controlled to a target value, an ON signal that only determines whether the air-fuel ratio is richer or leaner than one point (for example, the stoichiometric air-fuel ratio) , the air-fuel ratio control accuracy is greatly improved compared to the case where an OFF type oxygen sensor is used.

但し、広域型酸素センサは、空燃比の変化に対して酸素
イオンの汲み出し、汲み入れを行う必要があるため、検
出遅れが相当大きく、加・減速時には該センサからの検
出に基づく空燃比フィードバック制御を行うことはでき
ない。
However, since wide-area oxygen sensors need to pump out and pump oxygen ions in response to changes in the air-fuel ratio, there is a considerable detection delay, and air-fuel ratio feedback control based on the detection from the sensor is required during acceleration and deceleration. cannot be done.

本発明は、このような従来の問題点に鑑みなされたもの
で、加・減速運転時には加・減速運転状態に応じた燃料
供給量の増減補正を行いつつも、部品特性(燃料噴射弁
、エアフローメータ等)のバラツキ、劣化等にて加減速
機関要求混合比に対して狂いがちな場合が多い為、該補
正量を広域型酸素センサからの検出値に基づく学習によ
って修正することにより、加・減速時の要求空燃比を可
及的に満足することができ、もって加・減速性能を可及
的に高めた内燃機関の燃料供給制御装置を提供すること
を目的とする。
The present invention was developed in view of these conventional problems. During acceleration/deceleration operation, the amount of fuel supplied is adjusted to increase or decrease according to the acceleration/deceleration operation state, while adjusting the characteristics of the parts (fuel injection valve, air flow, etc.). In many cases, the acceleration/deceleration engine mixture ratio tends to deviate from the required mixture ratio due to variations or deterioration in the acceleration/deceleration engine (meters, etc.). It is an object of the present invention to provide a fuel supply control device for an internal combustion engine that can satisfy a required air-fuel ratio during deceleration as much as possible, thereby improving acceleration and deceleration performance as much as possible.

く問題点を解決するための手段〉 このため、本発明は、第1図に示すように、機関運転状
態に基づいて基本燃料供給量を設定する基本燃料供給量
設定手段と、機関の排気中酸素濃度を広域に亘って検出
する広域型酸素センサと、機関の加・減速状態を検出す
る加・減速検出手段と、機関の定常運転時に前記酸素セ
ンサの検出値に基づいて混合気の空燃比を一定の目標値
に保つように前記基本燃料供給量をフィードバック補正
する空燃比フィードバック補正手段と、機関の加・減速
運転′時の運転状態に基づいて前記基本燃料供給量の補
正量を運転状態によって複数に区分された領域毎に書き
換え自由に記憶した補正量記憶手段と、加・減速運転検
出時に前記酸素センサからの検出値に基づいて空燃比を
要求空燃比に近づけるように前記補正量記憶手段の当該
運転状態に対応する領域に記憶された補正量を修正して
書き換える補正量修正手段と、加・減速運転検出時に基
本燃料供給量を補正量記憶手段から検索した補正量に基
づいて補正する加・減速用補正手段と空燃比フィードバ
ック補正手段又は加・減速用補正手段によって補正され
た量の燃料を供給する燃料供給手段とを備えた構成とす
る。
Means for Solving the Problems> Therefore, as shown in FIG. A wide-area oxygen sensor that detects oxygen concentration over a wide area, an acceleration/deceleration detection means that detects the acceleration/deceleration state of the engine, and an air-fuel ratio of the air-fuel mixture based on the detected value of the oxygen sensor during steady operation of the engine. air-fuel ratio feedback correction means for feedback correcting the basic fuel supply amount so as to maintain the basic fuel supply amount at a constant target value; a correction amount storage means that can be freely rewritten and stored for each region divided into a plurality of areas, and a correction amount storage means that stores the correction amount so as to bring the air-fuel ratio closer to the required air-fuel ratio based on the detected value from the oxygen sensor when acceleration/deceleration operation is detected. a correction amount correction means that corrects and rewrites the correction amount stored in an area corresponding to the operating state of the means; and a correction amount correction means that corrects the basic fuel supply amount based on the correction amount retrieved from the correction amount storage means when acceleration/deceleration operation is detected. The configuration includes an acceleration/deceleration correction means for correcting the acceleration/deceleration, and a fuel supply means for supplying the amount of fuel corrected by the air-fuel ratio feedback correction means or the acceleration/deceleration correction means.

く作用〉 定常運転時は機関運転状態に応じて基本燃料供給量設定
手段により設定した基本燃料供給量を、空燃比フィード
バック補正手段により広域型酸素センサからの検出値に
基づいて空燃比を一定の目標値に近づけるように補正し
、該補正された量の燃料が燃料供給手段によって供給さ
れ、高精度な空燃比検出に基づいて良好な空燃比フィー
ドバック制御が行われる。
During steady operation, the basic fuel supply amount set by the basic fuel supply amount setting means according to the engine operating state is adjusted to a constant air-fuel ratio based on the detected value from the wide-range oxygen sensor by the air-fuel ratio feedback correction means. The corrected amount of fuel is corrected so as to approach the target value, and the corrected amount of fuel is supplied by the fuel supply means, and good air-fuel ratio feedback control is performed based on highly accurate air-fuel ratio detection.

一方、加・減速検出手段によって検出された加・減速運
転時は、補正量修正手段によって運転状態に対応する補
正量記憶手段の補正量を広域型酸素センサからの積出値
に基づいて修正しつつ、加・減速用補正手段が修正され
た補正量によって基本燃料供給量を補正し、この補正さ
れた量の燃料が燃料供給手段によって供給される。
On the other hand, during acceleration/deceleration operation detected by the acceleration/deceleration detection means, the correction amount correction means corrects the correction amount in the correction amount storage means corresponding to the operating state based on the output value from the wide area oxygen sensor. At the same time, the acceleration/deceleration correction means corrects the basic fuel supply amount by the corrected correction amount, and this corrected amount of fuel is supplied by the fuel supply means.

この結果、加・減速時は広域型酸素センサにより検出さ
れる空燃比の変動を修正する方向に補正量の修正がなさ
れ、これにより、要求空燃比を満たした良好な加・減速
性能が得られる。
As a result, during acceleration and deceleration, the correction amount is corrected to correct the fluctuations in the air-fuel ratio detected by the wide-range oxygen sensor, thereby achieving good acceleration and deceleration performance that satisfies the required air-fuel ratio. .

〈実施例〉 以下に本発明の一実施例を図面に基づいて説明する。<Example> An embodiment of the present invention will be described below based on the drawings.

第2図に本発明にかかる燃料供給制御装置(電子制御燃
料噴射装置)の構成を示しである。
FIG. 2 shows the configuration of a fuel supply control device (electronically controlled fuel injection device) according to the present invention.

図において、内燃機関1には、エアクリーナ2゜吸気ダ
クト3.スロットルチャンバ4及び吸気マニホールド5
を介して空気が吸入される。
In the figure, an internal combustion engine 1 includes an air cleaner 2°, an intake duct 3. Throttle chamber 4 and intake manifold 5
Air is inhaled through.

吸気ダクト3には、吸入空気流量Qを検出する熱線式流
量計6が設けられていて、吸入空気流量Qに対応する電
圧信号Usを出力する。スロットルチャンバ4には、図
示しないアクセルペダルと連動するスロットル弁7が設
けられていて、吸入空気流iQを制御する。スロットル
弁7には、その開度θを検出するスロットル開度センサ
8が付設されている。吸気マニホールド5には、各気筒
毎に電磁式の燃料噴射弁9が設けられていて、後述する
マイクロコンピュータを内蔵したコントロールユニット
11からの噴射パルス信号によって開弁駆動し、図示し
ない燃料ポンプから圧送されプレッシャレギュレータに
より所定圧力に制御された燃料を吸気マニホールド5内
に噴射供給する。
The intake duct 3 is provided with a hot wire flowmeter 6 that detects the intake air flow rate Q, and outputs a voltage signal Us corresponding to the intake air flow rate Q. The throttle chamber 4 is provided with a throttle valve 7 that operates in conjunction with an accelerator pedal (not shown) to control the intake air flow iQ. A throttle opening sensor 8 is attached to the throttle valve 7 to detect its opening θ. The intake manifold 5 is provided with an electromagnetic fuel injection valve 9 for each cylinder, which is driven to open by an injection pulse signal from a control unit 11 containing a microcomputer (described later), and is pressurized from a fuel pump (not shown). The pressure is controlled to a predetermined pressure by a pressure regulator, and the fuel is injected into the intake manifold 5.

更に、機関の冷却ジャケット13内の冷却水温度T。Furthermore, the cooling water temperature T in the cooling jacket 13 of the engine.

を検出する水温センサ12が設けられると共に、排気通
路13内の排気中酸素濃度を広域に亘って検出できる広
域型酸素センサ14が設けられる。
A water temperature sensor 12 is provided to detect the oxygen concentration in the exhaust gas in the exhaust passage 13, and a wide area oxygen sensor 14 is provided which can detect the oxygen concentration in the exhaust gas in the exhaust passage 13 over a wide area.

コントロールユニット11は、クランク角センサ10か
ら機関回転に同期して出力されるクランク単位角度信号
を一定時間カウントして又はクランク基準角度信号の周
期を計測して機関回転速度Nを検出する。
The control unit 11 detects the engine rotation speed N by counting the crank unit angle signal output from the crank angle sensor 10 in synchronization with the engine rotation for a certain period of time or by measuring the period of the crank reference angle signal.

コントロールユニット11は、上記のようにして検出さ
れた吸入空気流ff1Q、スロットル弁開度θ。
The control unit 11 controls the intake air flow ff1Q and throttle valve opening degree θ detected as described above.

機関回転速度N2機関冷却水温度T8及び排気中酸素儂
度Sに基づいて燃料噴射量Tiを演算すると共に、設定
した燃料噴射iTiに基づいて燃料噴射弁9を駆動制御
する。即ち、コントロールユニット11は、本実施例に
おいて、基本燃料供給量設定手段、空燃比フィードバッ
ク補正手段、補正量記憶手段、補正量修正手段、加・減
速用補正手段を兼ねるものであり、また、スロットル開
度センサ8とによって加減速検出手段を構成し、燃料噴
射弁9と共に燃料供給手段を構成する。
The fuel injection amount Ti is calculated based on the engine rotational speed N2, the engine cooling water temperature T8, and the exhaust oxygen degree S, and the fuel injection valve 9 is driven and controlled based on the set fuel injection iTi. That is, in this embodiment, the control unit 11 also serves as a basic fuel supply amount setting means, an air-fuel ratio feedback correction means, a correction amount storage means, a correction amount correction means, and an acceleration/deceleration correction means. The opening sensor 8 constitutes acceleration/deceleration detection means, and together with the fuel injection valve 9 constitutes a fuel supply means.

かかる燃料噴射量Tiの演算制御を第3図のフローチャ
ートに基づいて説明すると、ステップ(図中では「S」
としてあり、以下同様とする)lでは、各センサによっ
て検出される吸入空気流量Q1機関回転速度N、スロッ
トル弁開度θ、冷却水温度T1及び排気中酸素濃度Sを
入力する。
The calculation control of the fuel injection amount Ti will be explained based on the flowchart of FIG. 3.
(The same applies hereafter) In 1, the intake air flow rate Q1, engine rotational speed N, throttle valve opening θ, cooling water temperature T1, and exhaust oxygen concentration S detected by each sensor are input.

ステップ2では、スロットル弁7の開度θの前回との差
、即ち、変化率Δθを演算する。
In step 2, the difference between the opening degree θ of the throttle valve 7 and the previous time, that is, the rate of change Δθ is calculated.

ステップ3では、機関が加速状態であるか否かを判定す
る。具体的には、ステップ2で演算した変化率Δθがス
ロットル弁が開側に所定以上の値であるときは、機関が
加速状態であるとしてステップ4へ進んで加・減速判定
用のフラグnを加速を示す値としてOにセットする。
In step 3, it is determined whether the engine is in an acceleration state. Specifically, when the rate of change Δθ calculated in step 2 is a value greater than a predetermined value for the throttle valve to open, it is assumed that the engine is in an accelerating state, and the process proceeds to step 4, where flag n for acceleration/deceleration determination is set. Set to O as a value indicating acceleration.

ステップ3の判定がNoのときはステップ5へ進み、変
化率Δθが閉側に所定以上の値であるときは、ステップ
6へ進んでフラグnを減速を示す値としてlにセントす
る。
If the determination in step 3 is No, the process proceeds to step 5, and if the rate of change Δθ is a predetermined value or more on the closing side, the process proceeds to step 6, where the flag n is set to l as a value indicating deceleration.

変化率Δθが所定値未満の場合は、定常運転と判断して
加・減速補正を行うことなくステップ7へ進んで広域型
酸素センサ14からの検出値に基づいて空燃比を目標値
に近づけるべくフィードバック補正係数αを増減して設
定し、かつ、後述する加速用の補正値Ka、Kbを0に
クランプした後ステップ25へ進む。
If the rate of change Δθ is less than the predetermined value, it is determined that the operation is steady, and the process proceeds to step 7 without performing acceleration/deceleration correction to bring the air-fuel ratio closer to the target value based on the detected value from the wide-range oxygen sensor 14. After increasing/decreasing the feedback correction coefficient α and clamping correction values Ka and Kb for acceleration, which will be described later, to 0, the process proceeds to step 25.

加・減速時は、ステップ4又は6からステップ8へ進み
、ステップ8では、酸素センサ14の今回の出力値S、
と前回の出力値81−3との差ΔSを演算する。
During acceleration/deceleration, the process proceeds from step 4 or 6 to step 8, and in step 8, the current output value S of the oxygen sensor 14,
The difference ΔS between the output value 81-3 and the previous output value 81-3 is calculated.

ステップ9ではΔSが正(リッチ)か負(リーン)か0
かを判定する。
In step 9, ΔS is positive (rich), negative (lean) or 0
Determine whether

ステップ9でΔSが0と判定されたときはステップ24
へ進むが、ΔSが負(リーン)と判定されたときは、ス
テップIOへ進み、フラグnが0か否かを判定する。
If ΔS is determined to be 0 in step 9, step 24
However, when it is determined that ΔS is negative (lean), the process advances to step IO, and it is determined whether the flag n is 0 or not.

n=0の場合は、ステップ11へ進み、水温T。If n=0, proceed to step 11 and set the water temperature T.

が設定値T−0を上回る111機完了後であるか否かを
判定し、NOの場合、即ち暖機完了前はステップ12へ
進んでメモリから検索された水温T。に対する加速増補
正係数KFの値を所定割合ΔKvit1大させる修正を
行う。
It is determined whether or not after the completion of the 111th aircraft in which T exceeds the set value T-0. If NO, that is, before the warm-up is completed, the process advances to step 12 and the water temperature T retrieved from the memory. A correction is made to increase the value of the acceleration increase correction coefficient KF by a predetermined proportion ΔKvit1.

ここで、加速増補正係数に、は、水温T、4が低い稚気
化しにくいため、大きな値に設定されている。
Here, the acceleration increase correction coefficient is set to a large value because the water temperature T, 4 is low and is difficult to become juvenile.

また、ステップ11で暖機完了と判定された場合は、ス
テップ13へ進み、機関回転数が特定の回転数、例えば
1200rpmであるか否かを判定し、YESとなった
ときは、ステップ14へ進んでメモリから検索されたス
ロットル弁開度θの変化率Δθに対する加速増補正係数
に1を所定割合Δに+増大させる修正を行う。
If it is determined in step 11 that warm-up has been completed, the process proceeds to step 13, where it is determined whether the engine speed is a specific rotation speed, for example 1200 rpm, and if YES, the process proceeds to step 14. Then, the acceleration increase correction coefficient for the rate of change Δθ of the throttle valve opening θ retrieved from the memory is corrected by increasing 1 to a predetermined percentage Δ.

ここで、加速増補正係数に、はΔθが大きい程応答遅れ
が増大するため、大きな値に設定される。
Here, the acceleration increase correction coefficient is set to a large value because the response delay increases as Δθ increases.

尚、特定回転数でのみに、の修正を行うのはKlの特性
は回転数を一定として定められるからである。
The reason why the correction is performed only at a specific rotational speed is because the characteristics of Kl are determined with the rotational speed constant.

ステップ13の判定がNOであるときは、ステップ15
へ進んでスロットル弁開度の変化率Δθが一定以上(例
えば全閉から全開までの時間が0.5秒以上の緩加速)
であると判定した後、スロットル16で回転数Nに対す
る加速増補正係数に、を所定割合Δに3増大させる修正
を行う、ここで、加・減速補正係数に、は、回転数が大
きい程演算遅れによる誤差が増大するため大きく設定さ
れている。
If the determination in step 13 is NO, step 15
Proceed to and check that the rate of change Δθ of the throttle valve opening is above a certain level (for example, slow acceleration where the time from fully closed to fully open is 0.5 seconds or more)
After determining that , the acceleration increase correction coefficient for the rotation speed N is corrected by increasing it by 3 at a predetermined rate Δ using the throttle 16. Here, the acceleration/deceleration correction coefficient is calculated as the rotation speed increases. This is set large because errors due to delays increase.

このように加速時にリーン化しているときは、各加速増
補正係数を増大させる修正を行ってリッチ化に移行させ
るよう修正学習を行う。
When the vehicle is lean during acceleration in this way, correction learning is performed to increase each acceleration increase correction coefficient and shift to a rich state.

また、ステップ9の判定で、ΔSが正、即ち、空燃比が
リッチと判定され、かつ、ステップ17へ進んでn=0
か否かの判定を行ってYES、即ち、加速時と判定され
たときは、ステップ1B、 20.22において前記ス
テップ11.13.15と同様の判定を行うが、暖機完
了前と判定されたときは、ステップ19で水温に対する
加速増補正係数に、を所定割合ΔKrff1少させ、回
転数が1200rpであるときは、変化率へ〇に対する
加速増補正係数に、を所定割合ΔKl減少させ、それ以
外の回転数ではΔθ=一定以上の条件で回転数Nに対す
る加速増補正係数に、を所定割合Δに3減少させる修正
を行う。
Also, in the determination at step 9, ΔS is determined to be positive, that is, the air-fuel ratio is determined to be rich, and the process proceeds to step 17 where n=0.
If the determination is YES, that is, the acceleration is in progress, the same determination as in step 11.13.15 is made in step 1B, 20.22, but it is determined that the warm-up is not yet completed. If so, in step 19, the acceleration increase correction coefficient for the water temperature is decreased by a predetermined proportion ΔKrff1, and when the rotation speed is 1200 rpm, the acceleration increase correction coefficient for the change rate is decreased by a predetermined proportion ΔKl, and then At other rotational speeds, the acceleration increase correction coefficient for the rotational speed N is corrected by decreasing it by 3 at a predetermined rate Δ under the condition that Δθ=a certain value or higher.

このように加速時にリッチ化しているときは、各加速増
補正係数を減少させる修正を行って、リーン化に移行さ
せるよう修正学習を行う。
When the engine is rich during acceleration in this way, correction learning is performed to reduce each acceleration increase correction coefficient and shift to lean.

一方、減速時は、n==1となっているため、ステップ
9でリッチと判定されたときは、ステップ17からステ
ップ11以降へ進んで、各条件でKF。
On the other hand, during deceleration, n==1, so when it is determined to be rich in step 9, the process proceeds from step 17 to step 11 and thereafter, and KF is performed under each condition.

Kl、Kz、Kzを増大側に修正学習し、逆にステップ
9でリーンと判定された時はステップ10からステップ
l「以降へ進んで同じ< KF 、 Kl 、  K3
を減少側に修正学習する。
Correctly learn Kl, Kz, Kz to the increasing side, and conversely, if it is determined to be lean in step 9, proceed from step 10 to step l and the same < KF, Kl, K3
Learn to modify to the decreasing side.

このようにして、加・減速時にステップ12.14゜1
6、19.21.23のいずれかを経由した後はステッ
プ24に進んで最終的な加・減速用の補正値Ka(吸入
空気流量に依存する)及び補正値Kb(燃料密度に依存
する)を次式にて演算する。
In this way, step 12.14゜1 during acceleration/deceleration
6, 19.21.23, the process proceeds to step 24 where the final acceleration/deceleration correction value Ka (depends on the intake air flow rate) and correction value Kb (depends on the fuel density) is calculated using the following formula.

Ka= (−1)′1 (Kl +に:l )  ・K
tKb= (−1)’  −KF 但し、K!は現状の基本燃料噴射ff1Tp(後述する
ステップ25で求められる前回値)に略反比例した値と
して例えば次式により求められる。
Ka= (-1)'1 (Kl +:l) ・K
tKb= (-1)' -KF However, K! is determined by, for example, the following equation as a value substantially inversely proportional to the current basic fuel injection ff1Tp (previous value determined in step 25, which will be described later).

Kt =(MAXTp−現状Tp)/ (MAXTp−
MINTp)ここで、MAXTpはスロットル弁の全開
時における基本燃料噴射1iTp、MINTpは減速時
の最小基本燃料噴射ff1Tpである。尚、K2もΔS
に基づいた修正を行ってもよいが、修正量は充分小さく
なるため、本実施例では学習は行わず、演算を簡易化す
る。
Kt = (MAXTp-current Tp)/(MAXTp-
MINTp) Here, MAXTp is the basic fuel injection 1iTp when the throttle valve is fully opened, and MINTp is the minimum basic fuel injection ff1Tp during deceleration. Furthermore, K2 is also ΔS
Although correction may be performed based on the above, since the amount of correction is sufficiently small, learning is not performed in this embodiment, and the calculation is simplified.

ステップ25では最新の基本燃料噴射量を次式にて演算
する。
In step 25, the latest basic fuel injection amount is calculated using the following equation.

〜 次いで、ステップ26で最終的な燃料噴射量Tiを次式
により演算する。
~ Next, in step 26, the final fuel injection amount Ti is calculated using the following equation.

T i =Tp −C0EF・α+TSここで、C0E
Fは、各種補正係数の総合値で水温係数Ktw  l始
動補正係数K A M +空燃比補正係数KMII及び
前記加・減速用補正係数Kbで構成される(COEF=
1+Kt□+Kas+に□+Kb)。
T i =Tp −C0EF・α+TS Here, C0E
F is the total value of various correction coefficients, and is composed of the water temperature coefficient Ktw l starting correction coefficient K A M + air-fuel ratio correction coefficient KMII and the acceleration/deceleration correction coefficient Kb (COEF=
1+Kt□+Kas+□+Kb).

かかる制御を行った場合の加・減速時の空燃比の変化を
第4図に基づいて説明すると、加速時に増量補正を行わ
ない場合は、エアフローメータ6の検出遅れ等により、
まず、空燃比はオーバーリーン化し、次いでスロットル
弁下流側の負圧大の吸気管に空気が流入することにより
吸入空気流量の検出値が過大となることによりオーバー
リッチ化するので、図示点線のようになる。これを修正
すべく燃料増量補正が行われるが、それでもなお、バブ
ツキや加・減速の条件の相異によって空燃比の変動を生
じ、燃料増量が過大であり過ぎる時はオーバーリッチを
早めに生じる場合もある。
The changes in the air-fuel ratio during acceleration and deceleration when such control is performed will be explained based on FIG.
First, the air-fuel ratio becomes over-lean, and then air flows into the intake pipe with large negative pressure downstream of the throttle valve, causing the detected value of the intake air flow rate to become excessive, resulting in over-rich, as shown by the dotted line in the figure. become. Fuel increase correction is performed to correct this, but the air-fuel ratio still fluctuates due to buzzing and differences in acceleration/deceleration conditions, and if the fuel increase is too large, overrich may occur early. There is also.

広域型酸素センサ14の検出値は、点線で示した実際の
空燃比に対して実線で示す如く応答遅れを生じる。
The detected value of the wide-range oxygen sensor 14 has a response delay as shown by the solid line with respect to the actual air-fuel ratio shown by the dotted line.

そこで、前記実施例による学習制御を行うと、加速初期
にリーン化されるとステップ12.14.15で各加速
増補正係数KF 、に+ 、に2が増大されて燃料増量
補正量がより増大させるように修正され、これにより、
空燃比はリッチ方向に修正され、次いで空燃比の検出値
がリッチ方向に移行すると、今度はステップ1B、 2
0.21で各係数に、、に、。
Therefore, when the learning control according to the above embodiment is performed, when lean is made at the beginning of acceleration, each acceleration increase correction coefficient KF, +, 2 is increased by 2 in step 12.14.15, and the fuel increase correction amount is further increased. This has been modified to make
The air-fuel ratio is corrected in the rich direction, and then when the detected value of the air-fuel ratio shifts to the rich direction, steps 1B and 2 are performed.
0.21 for each coefficient.

Kaが減少されて、燃料増量補正量を減少させるように
修正され、これによりオーバーシュートによるオーバー
リッチ化を抑制できる。
Ka is reduced and the fuel increase correction amount is corrected to be reduced, thereby suppressing over-richness due to overshoot.

即ち、学習前の空燃比の変動特性が異なる場合であって
も、常に空燃比の検出値が安定する方向に修正が行われ
るため、かかる学習を繰り返すことにより、実際の空燃
比も図示鎖線で示すように安定し、加速初期から安定し
た空燃比特性が得られて加速性能が向上し、排気エミッ
ション特性も改善される。
In other words, even if the fluctuation characteristics of the air-fuel ratio before learning are different, the detected value of the air-fuel ratio is always corrected in the direction of stabilization. As shown, stable air-fuel ratio characteristics are obtained from the initial stage of acceleration, improving acceleration performance and improving exhaust emission characteristics.

特に燃料性状が異なる場合は、空燃比特性が異なってく
るが、この場合でも学習を行うことにより、空燃比特性
を良化することができるのである。
In particular, if the fuel properties differ, the air-fuel ratio characteristics will differ, but even in this case, the air-fuel ratio characteristics can be improved by performing learning.

減速時の場合は、加速時とは逆に、吸入空気流量の検出
遅れにより初期にオーバーリッチ化し、次いで燃料噴射
量の減少に対し、スロットル弁下流側の残留空気が補充
されることによりオーバーリーン化する。したがって実
際の空燃比は図示点線のように変化し、広域型酸素セン
サ14による検出値は応答遅れにより実線のように変化
する。
In the case of deceleration, contrary to the case of acceleration, over-richness occurs initially due to a delay in the detection of the intake air flow rate, and then over-leaning occurs as residual air on the downstream side of the throttle valve is replenished in response to a decrease in the amount of fuel injection. become Therefore, the actual air-fuel ratio changes as shown by the dotted line in the figure, and the detected value by the wide-range oxygen sensor 14 changes as shown by the solid line due to the response delay.

これに対し、減速時はKa、Kbが負の値となってKF
 、に+ 、Ksは夫々減速域補正係数として作用し、
減速時にリッチ傾向のときはステップ12、14.15
で各補正係数が増大することによって減量補正量が増大
し、もってリーン傾向に修正され、逆にリージ傾向のと
きは、ステップ18.20゜21で各種補正係数が減少
して減量補正量が減少するので、リッチ方向に修正され
る。したがって減速時も空燃比が図示鎖線が示すように
安定させることができ、減速性能、排気エミッション特
性を改善できる。
On the other hand, during deceleration, Ka and Kb become negative values and KF
, ni+, Ks each act as a deceleration region correction coefficient,
If there is a rich tendency during deceleration, step 12, 14.15
By increasing each correction coefficient in , the weight loss correction amount increases, thereby correcting the lean tendency, and conversely, when the lean tendency occurs, the various correction coefficients decrease in step 18.20゜21 and the weight loss correction amount decreases. Therefore, it is corrected in the rich direction. Therefore, even during deceleration, the air-fuel ratio can be stabilized as shown by the chain line in the figure, and deceleration performance and exhaust emission characteristics can be improved.

尚、補正係数Ky 、に+ 、に3のマツプは加・減速
用で別々に設定して精度向上を図るようにしてもよい。
Note that the maps for the correction coefficients Ky, ni+, and 3 may be set separately for acceleration and deceleration to improve accuracy.

上記実施例は、気筒毎に燃料噴射弁を備えたものに適用
したが、スロットル弁上流等、吸気通路の上流部に1個
の燃料噴射弁を備えたいわゆるシングルポイントインジ
ェクション(SPI)方式のちのにも適用できる。
The above embodiment was applied to a system in which each cylinder was equipped with a fuel injection valve, but the so-called single point injection (SPI) system, which has one fuel injection valve upstream of the intake passage, such as upstream of the throttle valve, was applied later. It can also be applied to

このものでは、噴射下流側の吸気通路が長く、吸気通路
壁に付着して流れる燃料(壁流燃料)が燃焼室に至るま
での遅れ時間が大きいため、これに伴う空燃比変化の補
正が主体となる。
In this type, the intake passage on the downstream side of the injection is long, and the delay time for the fuel that adheres to the intake passage wall and flows (wall flow fuel) to reach the combustion chamber is large, so the correction is mainly for the air-fuel ratio change associated with this. becomes.

具体的には、加速時は、前記壁流燃料量は温度が低い稚
気化性が低下するため増大し、かつ、加速が急である程
増大するため、第5図に示す如くこれに見合った増量補
正を行っているが、それでもリーン化する場合は補正係
数K Al:Cを少し増大修正し、逆にリッチ化する場
合は少し減少修正する学習を行う。
Specifically, during acceleration, the wall flow fuel amount increases due to the lower temperature and the lower evaporation property, and the faster the acceleration, the greater the increase, so as shown in Fig. 5, the wall flow fuel amount increases. Even though an increase correction is being performed, if the fuel is still lean, the correction coefficient KAl:C is slightly increased, and if the fuel is rich, the correction coefficient is slightly decreased.

一方、減速時は、吸入空気流量の減少に対しスロットル
弁下流の残留壁流燃料が流入し続けることによりオーバ
ーリッチ傾向となる。
On the other hand, during deceleration, the residual wall flow fuel downstream of the throttle valve continues to flow in response to a decrease in the intake air flow rate, resulting in an overrich tendency.

そして、暖機完了前は、壁流燃料量は温度による影響が
主となるため、第8図に示す減補正係数K DC?−を
設定しであるが、それでもリッチ化する場合は、補正係
数Koctwを増大修正し、逆にIJ −ン化する場合
は減少修正する学習を行う。
Before warm-up is completed, the wall flow fuel amount is mainly affected by temperature, so the reduction correction coefficient K DC? shown in FIG. - is set, but if the correction coefficient Koctw is still to be enriched, the correction coefficient Koctw is modified to increase, and conversely, if the correction coefficient Koctw is to be enriched, learning is performed to decrease the correction coefficient Koctw.

暖機完了後は減速直前のスロットル弁開度が大きい程、
又、機関回転数が大きい程、スロットル弁下流の壁流燃
料量は大きくなっているため、第6図及び第7図に示す
ような滅補正係数KDCθ。
After warming up, the larger the throttle valve opening just before deceleration, the
Furthermore, as the engine speed increases, the wall flow fuel amount downstream of the throttle valve increases, so the reduction correction coefficient KDCθ is as shown in FIGS. 6 and 7.

K flcNが設定されている。K flcN is set.

したがって暖機完了後の減速時にリッチ傾向を示す場合
は、回転数一定(例えば120Orpm)の条件でKゎ
c、4を少し増大させ、減速直前のスロットル弁が所定
開度(例えば4/4)の条件でKDeθを夫々少し増大
させる修正を行う。
Therefore, if a rich tendency occurs during deceleration after warm-up is completed, increase Kc,4 a little under the condition of constant rotation speed (for example, 120 rpm), and set the throttle valve to a predetermined opening (for example, 4/4) just before deceleration. ), the correction is made to slightly increase KDeθ.

そして、最終的な燃料噴射iTiを次式により求める。Then, the final fuel injection iTi is determined by the following equation.

7i=に−Q/N’α・(COEF +KACC−KI
、c)  十TsKDC=KDCθ・K、3.H このものでも減速時に安定した空燃比特性が得られ、加
・減速性能、排気エミッション性能を向上できる。
7i=ni-Q/N'α・(COEF +KACC-KI
, c) 10TsKDC=KDCθ・K, 3. H Even with this, stable air-fuel ratio characteristics can be obtained during deceleration, and acceleration/deceleration performance and exhaust emission performance can be improved.

尚、加・減速及びリッチ・リーンの判定は前記実施例同
様に行えばよい。
Incidentally, acceleration/deceleration and rich/lean determination may be performed in the same manner as in the embodiment described above.

〈発明の効果) 以上説明したように、本発明によれば、広域型酸素セン
サを利用して良好な空燃比フィードバッグ制御を行える
と共に、加・減速時の燃料供給量を広域型センサの検出
値に基づいて学習制御する7−どことにより安定した空
燃比特性が得られ、加・減速性能が向上し、排気エミッ
ション特性も改善されるという効果が得られる。
<Effects of the Invention> As explained above, according to the present invention, good air-fuel ratio feedback control can be performed using a wide-area oxygen sensor, and the amount of fuel supplied during acceleration/deceleration can be detected by the wide-area sensor. By performing learning control based on the value, stable air-fuel ratio characteristics can be obtained, acceleration/deceleration performance is improved, and exhaust emission characteristics are also improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成1m能を示すブロック図、第2図
は本発明の一実施例の構成図、第3図は同じく燃料噴射
量の演算ルーチンを示すフローチャート、第4図は加・
減速時の空燃比の変化を説明するための線図、第5図〜
第8図は別の実施例における各種補正係数の特性を示す
図である。 1・・・機関  6・・・エアフローメータ  8・・
・スロットル開度センサ  9・・・燃料噴射弁  1
0・・・クランク角センサ  11・・・コントロール
ユニット特許出願人 日本電子機器株式会社 代理人 弁理士 笹 島  冨二雄 第1図
Fig. 1 is a block diagram showing a 1m function of the configuration of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is a flowchart showing a calculation routine for the fuel injection amount, and Fig. 4 is a flowchart showing the calculation routine of the fuel injection amount.
Diagram for explaining changes in air-fuel ratio during deceleration, Figure 5~
FIG. 8 is a diagram showing the characteristics of various correction coefficients in another embodiment. 1... Engine 6... Air flow meter 8...
・Throttle opening sensor 9...Fuel injection valve 1
0... Crank angle sensor 11... Control unit Patent applicant Japan Electronics Co., Ltd. Agent Patent attorney Fujio Sasashima Figure 1

Claims (1)

【特許請求の範囲】[Claims] 機関運転状態に基づいて基本燃料供給量を設定する基本
燃料供給量設定手段と、機関の排気中酸素濃度を広域に
亘って検出する広域型酸素センサと、機関の加・減速状
態を検出する加・減速検出手段と、機関の定常運転時に
前記酸素センサの検出値に基づいて混合気の空燃比を一
定の目標値に保つように前記基本燃料供給量をフィード
バック補正する空燃比フィードバック補正手段と、機関
の加・減速運転時の運転状態に基づいて前記基本燃料供
給量の補正量を運転状態によって複数に区分された領域
毎に書き換え自由に記憶した補正量記憶手段と、加・減
速運転検出時に前記酸素センサからの検出値に基づいて
空燃比を要求空燃比に近づけるように前記補正量記憶手
段の当該運転状態に対応する領域に記憶された補正量を
修正して書き換える補正量修正手段と、加・減速運転検
出時に基本燃料供給量を補正量記憶手段から検索した補
正量に基づいて補正する加・減速用補正手段と空燃比フ
ィードバック補正手段又は加・減速用補正手段によって
補正された量の燃料を供給する燃料供給手段とを備えて
なる内燃機関の燃料供給制御装置。
A basic fuel supply amount setting means that sets the basic fuel supply amount based on the engine operating state, a wide range oxygen sensor that detects the oxygen concentration in the exhaust gas of the engine over a wide range, and an acceleration sensor that detects the acceleration/deceleration state of the engine. - deceleration detection means, and air-fuel ratio feedback correction means for feedback-correcting the basic fuel supply amount so as to maintain the air-fuel ratio of the mixture at a constant target value based on the detected value of the oxygen sensor during steady operation of the engine; a correction amount storage means for freely rewriting and storing the correction amount of the basic fuel supply amount for each region divided into a plurality of regions depending on the operating state, based on the operating state during acceleration/deceleration operation of the engine; correction amount correction means for correcting and rewriting the correction amount stored in the area corresponding to the operating state of the correction amount storage means so as to bring the air-fuel ratio closer to the required air-fuel ratio based on the detected value from the oxygen sensor; Acceleration/deceleration correction means corrects the basic fuel supply amount based on the correction amount retrieved from the correction amount storage means when acceleration/deceleration operation is detected, and the amount corrected by the air-fuel ratio feedback correction means or the acceleration/deceleration correction means. A fuel supply control device for an internal combustion engine, comprising a fuel supply means for supplying fuel.
JP21970686A 1986-09-19 1986-09-19 Fuel feed control device for internal combustion engine Pending JPS6375327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21970686A JPS6375327A (en) 1986-09-19 1986-09-19 Fuel feed control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21970686A JPS6375327A (en) 1986-09-19 1986-09-19 Fuel feed control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS6375327A true JPS6375327A (en) 1988-04-05

Family

ID=16739687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21970686A Pending JPS6375327A (en) 1986-09-19 1986-09-19 Fuel feed control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS6375327A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237147A (en) * 1988-07-27 1990-02-07 Mitsubishi Electric Corp Air-fuel ratio control device
JPH02201048A (en) * 1989-01-31 1990-08-09 Suzuki Motor Co Ltd Fuel control device of internal combustion engine
US5271374A (en) * 1991-07-16 1993-12-21 Nissan Motor Co., Ltd. Air-fuel ratio controller for engine
US5727536A (en) * 1995-09-22 1998-03-17 Sanshin Kogyo Kabushiki Kaisha Engine control system and method
US6176227B1 (en) 1999-02-16 2001-01-23 Mitsubishi Denki Kabushiki Kaisha Control system for cylinder injection type internal combustion engine with exhaust gas recirculation feedback control

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219428A (en) * 1984-04-16 1985-11-02 Nissan Motor Co Ltd Acceleration fuel controlling device for internal-combustion engine
JPS60224945A (en) * 1984-04-24 1985-11-09 Nissan Motor Co Ltd Air/fuel ratio controller
JPS62261629A (en) * 1986-04-30 1987-11-13 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60219428A (en) * 1984-04-16 1985-11-02 Nissan Motor Co Ltd Acceleration fuel controlling device for internal-combustion engine
JPS60224945A (en) * 1984-04-24 1985-11-09 Nissan Motor Co Ltd Air/fuel ratio controller
JPS62261629A (en) * 1986-04-30 1987-11-13 Honda Motor Co Ltd Air-fuel ratio control method for internal combustion engine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0237147A (en) * 1988-07-27 1990-02-07 Mitsubishi Electric Corp Air-fuel ratio control device
JPH02201048A (en) * 1989-01-31 1990-08-09 Suzuki Motor Co Ltd Fuel control device of internal combustion engine
US5271374A (en) * 1991-07-16 1993-12-21 Nissan Motor Co., Ltd. Air-fuel ratio controller for engine
US5727536A (en) * 1995-09-22 1998-03-17 Sanshin Kogyo Kabushiki Kaisha Engine control system and method
US6176227B1 (en) 1999-02-16 2001-01-23 Mitsubishi Denki Kabushiki Kaisha Control system for cylinder injection type internal combustion engine with exhaust gas recirculation feedback control

Similar Documents

Publication Publication Date Title
US7742870B2 (en) Air-fuel ratio control device of internal combustion engine
JPH0833127B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6153436A (en) Control device for amount of fuel supply in internal-combustion engine
JPS582444A (en) Air-fuel ratio control
JP2544817Y2 (en) Evaporative fuel control system for internal combustion engine
JPS6375327A (en) Fuel feed control device for internal combustion engine
JPH0689686B2 (en) Air-fuel ratio controller for engine
JP2582562B2 (en) Air-fuel ratio control device for internal combustion engine
JPH07127505A (en) Air-fuel ratio controller for internal combustion engine
JP2579908B2 (en) Engine throttle valve control device
JPS62258143A (en) Electronic control fuel injection device for internal combustion engine
JP2808214B2 (en) Air-fuel ratio control device for internal combustion engine with evaporative fuel control device
JPS6146435A (en) Air fuel ratio controller
JP2631585B2 (en) Air-fuel ratio learning control device for internal combustion engine
JP2757064B2 (en) Air-fuel ratio control device for internal combustion engine
JPS60216042A (en) Air-fuel ratio controller
JPS6181536A (en) Method of controlling feed of fuel during idle running of internal-combustion engine
JPH0833133B2 (en) Air-fuel ratio control device for internal combustion engine
JPS635128A (en) Fuel injection amount control device for internal combustion engine
JPS60230533A (en) Fuel feeding apparatus for internal-combustion engine
JPH1030479A (en) Air-fuel ratio controller of internal combustion engine
JPH0227127A (en) Device for controlling internal combustion engine
JPH01121537A (en) Fuel supply control device of internal combustion engine
JPH0914015A (en) Internal combustion engine fuel control device
JPH0275738A (en) Air/fuel feedback controller for internal combustion engine