JPS6374910A - Production of high-purity silicon tetrafluoride - Google Patents

Production of high-purity silicon tetrafluoride

Info

Publication number
JPS6374910A
JPS6374910A JP21929186A JP21929186A JPS6374910A JP S6374910 A JPS6374910 A JP S6374910A JP 21929186 A JP21929186 A JP 21929186A JP 21929186 A JP21929186 A JP 21929186A JP S6374910 A JPS6374910 A JP S6374910A
Authority
JP
Japan
Prior art keywords
silicon tetrafluoride
thermal decomposition
metal
silicofluoride
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21929186A
Other languages
Japanese (ja)
Other versions
JPH0329726B2 (en
Inventor
Hiroyuki Momotake
宏之 百武
Isao Harada
功 原田
Nobuhiko Koto
信彦 古藤
Yukihiro Yoda
與田 幸広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP21929186A priority Critical patent/JPS6374910A/en
Publication of JPS6374910A publication Critical patent/JPS6374910A/en
Publication of JPH0329726B2 publication Critical patent/JPH0329726B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce silicon tetrafluoride hardly containing impurities, by heat- treating a metal silicofluoride at a temperature above the thermal decomposition initiation temperature and thermally decomposing the silicofluoride. CONSTITUTION:A metal silicofluoride such as sodium silicofluoride is heat- treated at a temperature above its thermal decomposition initiation temperature and under a dissociation pressure of about <=20mmHg. The heat-treated compound is subjected to thermal decomposition e.g. in vacuum to produce silicon tetrafluoride gas. A high-purity silicon tetrafluoride can be produced by this process in high yield without necessitating the purification with an adsorbent.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は四弗化珪素の製造法に関し、さらに詳しくは、
ヘキサフルオロジシロキサン、HF、 S(h。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing silicon tetrafluoride, and more specifically,
Hexafluorodisiloxane, HF, S (h.

C08等の不純物をほとんど含まない、電子材料等の原
料として好適な高純度四弗化珪素の製造法に関する。
The present invention relates to a method for producing high-purity silicon tetrafluoride, which contains almost no impurities such as C08 and is suitable as a raw material for electronic materials.

(背景技術及びその問題点) 四弗化珪素は弗素含有アルモファスシリコン膜製造原料
として、あるいはドライエツチング剤として近年注目さ
れているが、これらの用途には高純度の四弗化珪素が要
求されている。
(Background technology and its problems) Silicon tetrafluoride has recently attracted attention as a raw material for producing fluorine-containing amorphous silicon films or as a dry etching agent, but high purity silicon tetrafluoride is required for these uses. ing.

四弗化珪素は種々の方法で製造されるが、はとんどの場
合不純物としてヘキサフルオロジシロキサン、HF、 
SQ、、Co□等を含んでいる。これらの不純物を除去
する方法としては、四弗化珪素をガス状で活性炭、アル
ミナ、ゼオライトなどの吸着剤層に通気させて精製する
方法が知られている(特公昭60−4126 、特開昭
59−50016、特開昭59−162122)、 L
かしながら、これら吸着剤を用いる精製方法は吸着剤が
四弗化珪素自身をも吸着してしまうので、四弗化珪素自
体の損失が大きいという問題がある。また、吸着剤は乾
燥等の前処理を十分に行わないと不純物が更に増加して
仕舞うという問題もある。
Silicon tetrafluoride is produced in a variety of ways, but most often contains impurities such as hexafluorodisiloxane, HF,
Contains SQ, , Co□, etc. A known method for removing these impurities is to purify silicon tetrafluoride in gaseous form by passing it through an adsorbent layer of activated carbon, alumina, zeolite, etc. 59-50016, JP 59-162122), L
However, purification methods using these adsorbents have a problem in that the adsorbent also adsorbs silicon tetrafluoride itself, resulting in a large loss of silicon tetrafluoride itself. Further, there is also the problem that impurities will further increase if the adsorbent is not sufficiently pretreated such as drying.

(問題を解決するための手段) 本発明者らは上記問題点を解決する手段として、本質的
に不純物を含有しにくい四弗化珪素の製造方法である金
属珪弗化物の熱分解法を基礎とし、核熱分解に先立って
金属珪弗化物に特定の加熱処理を施せば、吸着剤による
精製を行うことなく前記不純物をほとんど含有しない高
純度の四弗化珪素が得られることを発見し、本発明を完
成するに至ったものである。
(Means for Solving the Problem) As a means for solving the above-mentioned problems, the present inventors have based a method of thermal decomposition of metal silicofluoride, which is a method for producing silicon tetrafluoride, which is essentially less likely to contain impurities. discovered that if a metal silifluoride is subjected to a specific heat treatment prior to nuclear pyrolysis, high-purity silicon tetrafluoride containing almost no impurities can be obtained without purification using an adsorbent, This has led to the completion of the present invention.

すなわち、本発明は金属珪弗化物を熱分解して四弗化珪
素を製造するにあたり、金属珪弗化物を予め熱分解開始
温度以上の温度で加熱処理することを特徴とする高純度
四弗化珪素の製造法であって、特には加熱処理温度が金
属珪弗化物の熱分解開始点以上でかつ解離圧が2Qmd
g以下の温度で加熱処理する高純度四弗化珪素の製造法
である。
That is, the present invention provides high-purity tetrafluoride, which is characterized in that, in producing silicon tetrafluoride by thermally decomposing a metal silicofluoride, the metal silicofluoride is previously heat-treated at a temperature equal to or higher than the thermal decomposition initiation temperature. A method for producing silicon, in particular a heat treatment temperature equal to or higher than the starting point of thermal decomposition of metal silifluoride and a dissociation pressure of 2Qmd.
This is a method for producing high-purity silicon tetrafluoride, which is heat-treated at a temperature of 100 g or less.

(発明の詳細な開示) 以下本発明の詳細な説明する。(Detailed disclosure of the invention) The present invention will be explained in detail below.

本発明は前述の通り金属珪弗化物を加熱処理した後熱分
解させて四弗化珪素を製造する方法であるが、熱分解は
それ自体従来公知の方法によって行われる。
As described above, the present invention is a method for producing silicon tetrafluoride by heat-treating a metal silifluoride and then thermally decomposing it. The thermal decomposition itself is carried out by a conventionally known method.

即ち、反応管等に充填された金属珪弗化物を、真空脱気
しながら熱分解開始温度以上に加熱すると共に、核熱分
解により発生した四弗化珪素ガスは液体窒素等で深冷さ
れたトラップに導き液化または固化して捕集するのであ
る。
That is, the metal silifluoride filled in a reaction tube or the like is heated to a temperature above the thermal decomposition start temperature while being degassed under vacuum, and the silicon tetrafluoride gas generated by nuclear thermal decomposition is deep cooled with liquid nitrogen or the like. It is led to a trap where it liquefies or solidifies and is collected.

尚、従来公知の方法では、金属珪弗化物は熱分解に先立
って、例えば100〜120°Cで十分乾燥し水分を除
去しておかなければならないとされている。蓋し、該金
属珪弗化物中に水分が残留していると、熱分解時にヘキ
サフルオロジシロキサンなどがかなりの量生成し四弗化
珪素の純度を更に低下させるからである。
In addition, in the conventionally known method, it is said that the metal silicate fluoride must be sufficiently dried at, for example, 100 to 120°C to remove moisture before being thermally decomposed. If the lid is closed and water remains in the metal silicofluoride, a considerable amount of hexafluorodisiloxane and the like will be produced during thermal decomposition, further reducing the purity of silicon tetrafluoride.

しかしながら、本発明の方法では、金属珪弗化物の熱分
解に先立って該金属珪弗化物を本発明で規定する条件で
加熱処理するので、この加熱処理が金属珪弗化物の乾燥
の役割をも兼ね果たすため、上記従来技術における乾燥
は本発明では必ずしも必要ではない。
However, in the method of the present invention, the metal silifluoride is heat-treated under the conditions specified in the present invention prior to thermal decomposition of the metal silifluoride, so this heat treatment also plays the role of drying the metal silifluoride. Therefore, the drying in the prior art described above is not necessarily necessary in the present invention.

本発明の四弗化珪素の製造に用いうる金属珪弗化物を例
示すると、珪弗化ナトリウム、珪弗化カリウム、珪弗化
ルビジウム、珪弗化セシウム、珪弗化バリウム等が挙げ
られる。
Examples of metal silifluorides that can be used in the production of silicon tetrafluoride of the present invention include sodium silifluoride, potassium silifluoride, rubidium silifluoride, cesium silifluoride, barium silifluoride, and the like.

本発明の特徴は前記の通り、かかる金属珪弗化物を予め
熱分解に先立って特定の条件で加熱処理することにある
。加熱処理温度は金属珪弗化物の熱分解開始温度以上が
望ましいが、加熱温度があまり高いと核熱分解によって
四弗化珪素が発生ししかも該発生した四弗化珪素はかな
り不純物が多く到底製品とすることが出来ないようなも
のであるので、加熱温度は金属珪弗化物の熱分解開始温
度以上でかつ解離圧が2Qma+Hg以下の温度が好ま
しい、この範囲の加熱温度ならば、金属珪弗化物の熱処
理時に熱分解によって生成する不純物含有四弗化珪素の
量はわずかであり、加熱処理後における四弗化珪素製造
時の収率低下はほとんど問題にならない。
As mentioned above, the feature of the present invention is that such a metal silifluoride is heat-treated under specific conditions prior to thermal decomposition. The heat treatment temperature is preferably higher than the thermal decomposition temperature of the metal silicofluoride, but if the heating temperature is too high, silicon tetrafluoride will be generated by nuclear pyrolysis, and the generated silicon tetrafluoride will have a large amount of impurities and cannot be used as a product. Therefore, it is preferable that the heating temperature is higher than the thermal decomposition start temperature of the metal silicofluoride and the dissociation pressure is 2Qma+Hg or lower.If the heating temperature is within this range, the metal silicofluoride The amount of impurity-containing silicon tetrafluoride produced by thermal decomposition during the heat treatment is small, and a decrease in yield during the production of silicon tetrafluoride after the heat treatment is hardly a problem.

加熱処理温度は上記の通り、金属珪弗化物の熱分解開始
温度以上でかつ解離圧が20mmHg以下の温度が好ま
しいが、この温度は金属珪弗化物の種類によって区々で
ある。これを具体的に例示すると、珪弗化ナトリウムの
場合330〜520°C1珪弗化カリウムの場合430
〜550°C1珪弗化バリウムの場合300〜410°
C1珪弗化ルビジウムの場合580〜700°C1珪弗
化セシウムの場合570〜690°Cが適当である。
As mentioned above, the heat treatment temperature is preferably at least the thermal decomposition starting temperature of the metal silicofluoride and at a dissociation pressure of 20 mmHg or less, but this temperature varies depending on the type of the metal silicofluoride. To specifically illustrate this, in the case of sodium silicofluoride, 330 to 520°C1, in the case of potassium silicofluoride, 430°C
~550°C1 300-410° for barium silicofluoride
In the case of C1 rubidium silicofluoride, a temperature of 580 to 700°C is suitable; in the case of cesium silicofluoride, a temperature of 570 to 690°C is suitable.

なお、加熱処理温度が熱分解開始温度より低い場合には
、引き続く熱分解時に前記不純物、特にヘキサフルオロ
ジシロキサン、CO2などがかなりの量生成し四弗化珪
素の純度を低下させる。従って、電子材料等の原料とし
て好適な高純度のものを得るためには、生成した四弗化
珪素を従来公知の方法、すなわち活性炭、アルミナ、ゼ
オライト等の吸着剤層に通気させる方法で精製する必要
があるので本発明の目的を達成出来ない。
If the heat treatment temperature is lower than the thermal decomposition start temperature, a considerable amount of the impurities, particularly hexafluorodisiloxane, CO2, etc., will be produced during the subsequent thermal decomposition, reducing the purity of silicon tetrafluoride. Therefore, in order to obtain highly pure silicon tetrafluoride suitable as a raw material for electronic materials, the produced silicon tetrafluoride is purified by a conventionally known method, that is, by passing it through an adsorbent layer of activated carbon, alumina, zeolite, etc. Since this is necessary, the purpose of the present invention cannot be achieved.

加熱処理時間はある程度長い方がより高純度の四弗化珪
素を得る上から好ましいが、あまり長すぎるとエネルギ
ーの損失となるばかりでなく四弗化珪素の損失にもつな
がるので1〜5時間時間跡好ましい。
It is preferable for the heat treatment time to be somewhat long in order to obtain higher purity silicon tetrafluoride, but if it is too long, it will not only result in a loss of energy but also lead to a loss of silicon tetrafluoride, so the heat treatment time is 1 to 5 hours. I like the traces.

加熱処理時の雰囲気は窒素、ヘリウムなどの不活性ガス
雰囲気、乾燥空気雰囲気、真空中などいずれでもかまわ
ない。
The atmosphere during the heat treatment may be any atmosphere such as an inert gas atmosphere such as nitrogen or helium, a dry air atmosphere, or a vacuum.

加熱処理後の金属珪弗化物は一旦冷却してもかまわない
が、冷却中または冷却後の金属珪弗化物は空気中の湿分
を吸湿しやすい(吸湿すると熱分解時にヘキサフルオロ
ジシロキサン等の不純物が生成し四弗化珪素の純度を低
下させる。)ので、吸湿しない様に乾燥状態を保つ工夫
が必要である、したがって、加熱処理後の金属珪弗化物
はひき続いて熱分解を行い四弗化珪素を製造するのが最
も好ましい、従って、加熱処理を実施するための装置と
しては、従来の熱分解装置をそのまま使用するのが最も
容易である。
Metal silicofluoride after heat treatment may be cooled once, but metal silicofluoride tends to absorb moisture in the air during or after cooling (if it absorbs moisture, it will cause the formation of hexafluorodisiloxane etc. during thermal decomposition). Impurities are generated and reduce the purity of silicon tetrafluoride.) Therefore, it is necessary to keep the metal silicofluoride in a dry state so that it does not absorb moisture. It is most preferable to produce silicon fluoride, and therefore, it is easiest to use a conventional pyrolysis apparatus as is as an apparatus for carrying out the heat treatment.

本発明の方法で得られた四弗化珪素は従来公知の方法で
得られたものと異なり高純度であるので、基本的にはな
んら精製を必要とせず、そのまま電子材料等の原料とし
て好適に使用可能ではあるが、更に高純度とするために
従来公知の吸着剤による精製を行うことは勿論構わない
Silicon tetrafluoride obtained by the method of the present invention has a high purity unlike that obtained by conventionally known methods, so it basically does not require any purification and is suitable as a raw material for electronic materials, etc. Although it can be used, it is of course possible to perform purification using a conventionally known adsorbent in order to obtain even higher purity.

(発明の効果) 本発明は以上詳細に説明した如(、金属珪弗化物を熱分
解して四弗化珪素を製造するにあたり、熱分解に先立っ
て予め特定の温度で加熱処理を行うと云う掻めて簡単な
操作の変化であり、これにより電子材料等の原料として
好適な高純度の四弗化珪素が得られる。このことは従来
必須であった四弗化珪素の精製工程を、本発明の方法で
は不要とすることが出来るものであり、その経済的効果
は極めて大きいものがある。
(Effects of the Invention) The present invention has been described in detail above (in order to produce silicon tetrafluoride by thermally decomposing a metal silifluoride, a heat treatment is performed in advance at a specific temperature prior to thermal decomposition). This is a very simple change in operation, and this makes it possible to obtain high-purity silicon tetrafluoride, which is suitable as a raw material for electronic materials. This can be made unnecessary in the method of the invention, and its economic effects are extremely large.

また、加熱処理を行うために熱分解工程で付加しなけれ
ばならない装置的なものは実際上何ら必要としないので
ある。
Further, in order to carry out the heat treatment, there is practically no need for any equipment that must be added in the pyrolysis step.

(実施例) 以下、実施例及び比較例により本発明をさらに具体的に
説明する。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

実施例1〜5 金属珪弗化物として珪弗化ナトリウム5Kgを、内径1
50g+/s+ 、高さ50に/偽のステンレス製の熱
分解用容器に入れ、外部加熱により表−1に示す時間、
温度及び雰囲気で加熱処理を行った。なお、加熱処理時
の雰囲気が真空中においては、雰囲気の圧力は真空ポン
プで吸引し、系内をO,1Torr以下にした。加熱処
理された珪弗化ナトリウムは引続き真空下700°Cで
熱分解を行い、生成した四弗化珪素ガスを液体窒素で冷
却したトランプ中に捕集した。捕集量、収率及び捕集さ
れた四弗化珪素中の不純物含有量は表−1に示す通りで
あった。
Examples 1 to 5 5 kg of sodium silifluoride was used as a metal silifluoride, and an inner diameter of 1
50g+/s+, placed in a fake stainless steel pyrolysis container at a height of 50mm, heated externally for the time shown in Table 1,
Heat treatment was performed at different temperatures and atmospheres. Note that when the atmosphere during the heat treatment was in a vacuum, the pressure of the atmosphere was suctioned with a vacuum pump to reduce the pressure in the system to 0.1 Torr or less. The heat-treated sodium silicofluoride was subsequently thermally decomposed at 700°C under vacuum, and the generated silicon tetrafluoride gas was collected in a playing card cooled with liquid nitrogen. The collected amount, yield, and impurity content in the collected silicon tetrafluoride were as shown in Table-1.

比較例1 実施例1で用いたと同一の珪弗化ナトリウム5Kgを1
20°Cで充分乾燥した後、加熱処理を行うことなく以
下実施例1と同様に真空下700°Cで熱分解を行った
。四弗化珪素の捕集量、収率及び捕集された四弗化珪素
中の不純物含有量は表−1に示す通りであった。
Comparative Example 1 5 kg of the same sodium silicofluoride used in Example 1 was
After sufficiently drying at 20°C, thermal decomposition was carried out at 700°C under vacuum in the same manner as in Example 1 without performing any heat treatment. The amount of silicon tetrafluoride collected, the yield, and the content of impurities in the collected silicon tetrafluoride were as shown in Table 1.

比較例2 加熱処理条件を300°C15時間に変更した以外は、
実施例1と同一の条件で珪弗化ナトリウム(5Kg )
の熱分解を行った。四弗化珪素の捕集量、収率及び捕集
された四弗化珪素中の不純物含有量は表−1に示す通り
であった。
Comparative Example 2 Except that the heat treatment conditions were changed to 300°C for 15 hours,
Sodium silicofluoride (5Kg) under the same conditions as Example 1
was thermally decomposed. The amount of silicon tetrafluoride collected, the yield, and the content of impurities in the collected silicon tetrafluoride were as shown in Table 1.

実施例6〜7 金属珪弗化物として珪弗化バリウム5Kgを、実施例1
で使用した装置を用い、表−2に示す温度、時間及び雰
囲気で加熱処理を行ったのち、引続き真空下soo’c
で熱分解を行って実施例1と同様に四弗化珪素の捕集し
た。捕集量、収率及び捕集された四弗化珪素中の不純物
含有量は表−2に示す通りであった。
Examples 6 to 7 5 kg of barium silifluoride was used as the metal silifluoride in Example 1
After heat treatment was performed using the equipment used in Table 2 at the temperature, time, and atmosphere shown in Table 2, soo'c under vacuum was continued.
Thermal decomposition was carried out in the same manner as in Example 1, and silicon tetrafluoride was collected. The collected amount, yield, and impurity content in the collected silicon tetrafluoride were as shown in Table-2.

比較例3 加熱処理条件を表−2に示す条件に変更した以外は、実
施例6.7と同一条件で珪弗化バリウム5に、の熱分解
を行った。四弗化珪素の捕集量、収率及び捕集された四
弗化珪素中の不純物含有量は表−2に示す通りであった
Comparative Example 3 Barium fluorosilicate 5 was thermally decomposed under the same conditions as in Example 6.7, except that the heat treatment conditions were changed to those shown in Table 2. The amount of silicon tetrafluoride collected, the yield, and the content of impurities in the collected silicon tetrafluoride were as shown in Table 2.

実施例1〜7及び比較例1〜3から分かるように、本発
明の加熱処理を行ったのち熱分解して得られた四弗化珪
素(実施例1〜7)は極めて高純度であり、電子材料用
原料として好適に使用しうる品質である。これに対し、
従来の方法である金属珪弗化物を十分乾燥した後分解す
る方法(比較例1)や加熱処理温度が低い場合(比較例
2.3)は、得られる四弗化珪素中の不純物が高く、電
子材料用原料とするためには従来公知の方法による精製
を必要とする。尚、加熱処理温度が高過ぎる場合(実施
例4.7)は、得られる四弗化珪素は高純度である点で
は他の実施例同様問題ないが、収率が低下する傾向があ
る点からは、場合によっては好ましくない。
As can be seen from Examples 1 to 7 and Comparative Examples 1 to 3, silicon tetrafluoride obtained by thermal decomposition after the heat treatment of the present invention (Examples 1 to 7) has extremely high purity. The quality is such that it can be suitably used as a raw material for electronic materials. On the other hand,
In the conventional method of decomposing the metal silicofluoride after sufficiently drying it (Comparative Example 1) or when the heat treatment temperature is low (Comparative Example 2.3), the impurities in the obtained silicon tetrafluoride are high; In order to use it as a raw material for electronic materials, it is necessary to purify it by a conventionally known method. In addition, if the heat treatment temperature is too high (Example 4.7), there is no problem in that the obtained silicon tetrafluoride has high purity as in other examples, but the yield tends to decrease. is undesirable in some cases.

Claims (1)

【特許請求の範囲】 1)金属珪弗化物を熱分解して四弗化珪素を製造するに
あたり、該金属珪弗化物を予め熱分解開始温度以上の温
度で加熱処理することを特徴とする高純度四弗化珪素の
製造法。 2)該加熱処理温度が該金属珪弗化物の熱分解開始温度
以上でかつ解離圧が20mmHg以下の温度である特許
請求の範囲第1項記載の方法。
[Scope of Claims] 1) In producing silicon tetrafluoride by thermally decomposing a metal silifluoride, the metal silifluoride is heat-treated in advance at a temperature equal to or higher than the thermal decomposition start temperature. A method for producing pure silicon tetrafluoride. 2) The method according to claim 1, wherein the heat treatment temperature is higher than the thermal decomposition starting temperature of the metal silifluoride and the dissociation pressure is 20 mmHg or lower.
JP21929186A 1986-09-19 1986-09-19 Production of high-purity silicon tetrafluoride Granted JPS6374910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21929186A JPS6374910A (en) 1986-09-19 1986-09-19 Production of high-purity silicon tetrafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21929186A JPS6374910A (en) 1986-09-19 1986-09-19 Production of high-purity silicon tetrafluoride

Publications (2)

Publication Number Publication Date
JPS6374910A true JPS6374910A (en) 1988-04-05
JPH0329726B2 JPH0329726B2 (en) 1991-04-25

Family

ID=16733198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21929186A Granted JPS6374910A (en) 1986-09-19 1986-09-19 Production of high-purity silicon tetrafluoride

Country Status (1)

Country Link
JP (1) JPS6374910A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770253B2 (en) 2001-09-11 2004-08-03 Central Glass Company, Limited Process for producing silicon tetrafluoride
CN104843713A (en) * 2015-06-04 2015-08-19 贵州省产品质量监督检验院 Method and device for preparing silicon tetrafluoride by sodium fluosilicate pyrolysis

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6770253B2 (en) 2001-09-11 2004-08-03 Central Glass Company, Limited Process for producing silicon tetrafluoride
CN104843713A (en) * 2015-06-04 2015-08-19 贵州省产品质量监督检验院 Method and device for preparing silicon tetrafluoride by sodium fluosilicate pyrolysis

Also Published As

Publication number Publication date
JPH0329726B2 (en) 1991-04-25

Similar Documents

Publication Publication Date Title
US2971607A (en) Method for purifying silance
JP5298292B2 (en) A temperature swing method VOC concentration and a low-temperature liquefied VOC recovery method in which moisture is removed using an adsorbent and cold energy is recovered.
JP3092101B2 (en) Recovery and purification of impure argon
EA002045B1 (en) Decarbonating gas streamsusing zeolite adsorbents
US4948571A (en) Process for purifying nitrogen trifluoride gas
JPS6374910A (en) Production of high-purity silicon tetrafluoride
JPH0379288B2 (en)
US4717697A (en) Method of regenerating zeolite to remove acetone and water
JP2021088744A (en) Method for manufacturing high purity manganese and high purity manganese
JPH0353017B2 (en)
JPS5950016A (en) Method for purifying silicon tetrafluoride
JPS59162122A (en) Purification of silicon tetrafluoride
JPS61293548A (en) Carbon monoxide separating and adsorbing agent
JPH04925B2 (en)
JPS62143812A (en) Purification of silicon tetrafluoride
JPH03275507A (en) Method of purifying nitrogen trifluoride
JP4173824B2 (en) Method for purifying fluorooxy compounds
JPH01282115A (en) Method of purifying silicon tetrafluoride gas
KR102074832B1 (en) Method for refining of high purity tetrafluoromethane
JPH0531489B2 (en)
JPH02124723A (en) Method for purifying tungsten hexafluoride
JPH075305B2 (en) Method for producing low oxygen rare earth halide
JPH0242766B2 (en)
JP2931660B2 (en) Purification method of silicon tetrafluoride gas
JPS6140748B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees