JPH01282115A - Method of purifying silicon tetrafluoride gas - Google Patents

Method of purifying silicon tetrafluoride gas

Info

Publication number
JPH01282115A
JPH01282115A JP11041188A JP11041188A JPH01282115A JP H01282115 A JPH01282115 A JP H01282115A JP 11041188 A JP11041188 A JP 11041188A JP 11041188 A JP11041188 A JP 11041188A JP H01282115 A JPH01282115 A JP H01282115A
Authority
JP
Japan
Prior art keywords
silicon tetrafluoride
activated alumina
tetrafluoride gas
gas
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11041188A
Other languages
Japanese (ja)
Inventor
Toshihiko Nishitsuji
西辻 俊彦
Yukihiro Yoda
與田 幸廣
Isao Harada
功 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP11041188A priority Critical patent/JPH01282115A/en
Publication of JPH01282115A publication Critical patent/JPH01282115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To efficiently remove CO2 in silicon tetrafluoride by passing the silicon tetrafluoride gas through an activated alumina layer specifically pre-treated. CONSTITUTION:The silicon tetrafluoride gas at least contg. CO2 is passed at -10--90 deg.C through the activated alumina layer dehydrated in advance by heating at 250-900 deg.C, without substantially contaminating water. When the activated alumina is heated below 250 deg.C, the water in the activated alumina can not be completely removed, even trough heated for a long time period, and the CO2 in the silicon tetrafluoride also can not be sufficiently removed. When the activated alumina dehydrated by heating is cooled, the contamination of water must be avoided as completely as possible. The temp. for passing the silicon tetrafluoride must be <=-10 deg.C, and the lower, the better. However, since the sublimation temp. of silicon tetrafluoride is -95 deg.C, the operation below this temp. is practically difficult.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は四弗化ケイ素ガスの精製方法に関するものであ
り、更に詳しくは、四弗化ケイ素ガス中の二酸化炭素(
Co□)の除去方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for purifying silicon tetrafluoride gas, and more specifically relates to a method for purifying silicon tetrafluoride gas.
This invention relates to a method for removing Co□).

四弗化ケイ素ガスは、アモルファスシリコン薄膜半導体
用の原料やドライエンチング剤として近年注目されて来
ているが、これらの用途としての四弗化ケイ素ガスは高
純度のものが要求されている。
Silicon tetrafluoride gas has recently been attracting attention as a raw material for amorphous silicon thin film semiconductors and as a dry etching agent, but high purity silicon tetrafluoride gas is required for these uses.

〔従来の技術及び発明が解決しようとする!!題)四弗
化ケイ素ガスは、例えばケイ弗化水素酸やケイ弗化化合
物の酸分解法、ケイ弗化化合物の熱分解法、弗化水素と
二酸化ケイ素との反応による合成法など種々の方法で製
造されている。
[Conventional techniques and inventions try to solve the problem! ! Title) Silicon tetrafluoride gas can be produced by various methods, such as the acid decomposition method of hydrofluorosilicic acid and silicofluoride compounds, the thermal decomposition method of silicofluoride compounds, and the synthesis method by reacting hydrogen fluoride with silicon dioxide. Manufactured in

しかしながらこれらの製造方法により得られた四弗化ケ
イ素ガスは、殆どの場合C(hや種々の不純物を含有し
ており、その中でCotの含有量は数百ppmにも及ぶ
場合もあるのでこれを除去する必要がある。特にアモル
ファスシリコン薄膜半導体の原料として使用する場合に
は、Cotの存在は性成したシリコン薄膜中に多量の酸
素が混入し、半導体特性に悪影響を及ぼすことになるの
で特に除去しなければならない。
However, silicon tetrafluoride gas obtained by these production methods almost always contains C(h) and various impurities, and the content of Cot may reach several hundred ppm. This must be removed.Especially when using amorphous silicon as a raw material for thin film semiconductors, the presence of Cot will cause a large amount of oxygen to be mixed into the formed silicon thin film, which will have a negative impact on the semiconductor properties. In particular, it must be removed.

COtは四弗化ケイ素ガスの製造過程において原料中に
存在する少量の炭素化合物に由来すると考えられるが、
四弗化ケイ素ガスの製造原料に含まれる少量の炭素化合
物を完全に除き、Co□の生成を防止することは非常に
困難であり、事実上不可能である。
COt is thought to originate from small amounts of carbon compounds present in raw materials during the manufacturing process of silicon tetrafluoride gas, but
It is extremely difficult and virtually impossible to completely remove small amounts of carbon compounds contained in the raw materials for producing silicon tetrafluoride gas and prevent the formation of Co□.

従って、生成した四弗化ケイ素ガス中のCO□を分離除
去することになるが、四弗化ケイ素の臨界圧は非常に高
い(36、66a Lm)ので莫留による分離も困難で
ある。
Therefore, CO□ in the generated silicon tetrafluoride gas must be separated and removed, but since the critical pressure of silicon tetrafluoride is extremely high (36, 66 a Lm), it is difficult to separate it by distillation.

四弗化ケイ素ガス中のCO□の除去に関しては、ゼオラ
イトを使用する吸着除去法が知られているが(特開昭5
9−50016号公報記載の方法)、アモルファスシリ
コン薄膜半導体原料などに要求される高純度の四弗化ケ
イ素ガス、即ち、不純物、特にCowを数ppm程度ま
で低下させる方法が強く求められているのである。
Regarding the removal of CO□ from silicon tetrafluoride gas, an adsorption removal method using zeolite is known (Japanese Unexamined Patent Publication No.
9-50016), there is a strong demand for a method of reducing impurities, especially Cow, to a few ppm of high-purity silicon tetrafluoride gas required for amorphous silicon thin film semiconductor raw materials, etc. be.

〔課題を解決するための手段] 本発明者らはかかる状態に鑑み、四弗化ケイ素中のCO
2の除去方法について種々の吸着剤を用いて鋭意検討を
重ねた結果、特定の前処理をほどこした活性アルミナ層
に四弗化ケイ素ガスを通気させることにより、四弗化ケ
イ素ガス中のCO□を極めて効率良く除去できることを
見出し、本発明を完成するに至ったものである。
[Means for Solving the Problems] In view of this situation, the present inventors have developed a solution for CO in silicon tetrafluoride.
As a result of extensive research using various adsorbents, we found that CO□ in silicon tetrafluoride gas can be removed by passing silicon tetrafluoride gas through an activated alumina layer that has been subjected to a specific pretreatment. The present invention has been completed based on the discovery that it is possible to remove these substances extremely efficiently.

即ち本発明は、予め250〜900 ”Cの範囲の温度
に加熱して脱水処理した活性アルミナ層へ、少なくとも
二酸化炭素を含有する四弗化ケイ素ガスを−10〜−9
0℃でかつ実質的に水分の混入しない状態で通気させる
ことを特徴とする四弗化ケイ素の精製方法である。
That is, in the present invention, silicon tetrafluoride gas containing at least carbon dioxide is added to an activated alumina layer which has been previously heated to a temperature in the range of 250 to 900" C and subjected to dehydration treatment.
This is a method for purifying silicon tetrafluoride, which is characterized by aeration at 0° C. and in a state substantially free of moisture.

〔発明の詳細な開示〕[Detailed disclosure of the invention]

以下本発明の詳細な説明する。 The present invention will be explained in detail below.

本発明に於いて使用する活性アルミナは、特に限定はな
く通常市販のものが何れも使用可能であるが、粒状かつ
高表面積のものがより好ましい。
The activated alumina used in the present invention is not particularly limited and any commercially available alumina can be used, but granular and high surface area activated alumina is more preferred.

活性アルミナの脱水処理は250〜900℃1好ましく
は、250〜600℃に加熱することで実施される。加
熱温度が250℃未満では活性アルミナ中に@量の水分
が残存する。
The dehydration treatment of activated alumina is carried out by heating to 250 to 900°C, preferably 250 to 600°C. When the heating temperature is less than 250° C., an amount of water remains in the activated alumina.

かかる水分の残存は、この活性アルミナ層へ四弗化ケイ
素ガスを通気した際にCO,の除去能力が低下すると共
に、四弗化ケイ素ガスが該水分と反応して分解やシロキ
サンを生成するという不都合がある。逆に必要以上の高
温はエネルギーの損失のみならず、活性アルミナの加熱
処理容器、例えばカラムの腐食などの問題が生ずるので
好ましくない。
The residual moisture reduces the ability to remove CO when silicon tetrafluoride gas is passed through the activated alumina layer, and the silicon tetrafluoride gas reacts with the moisture to decompose and produce siloxane. It's inconvenient. On the other hand, a higher temperature than necessary is not preferred because it not only causes energy loss but also causes problems such as corrosion of the activated alumina heat treatment container, such as a column.

活性アルミナの加熱による脱水処理は空気中で行なって
も良いが、該加熱は活性アルミナ中に含有する水分を気
化逸散させるために行なうので、例えば窒素ガスのよう
に水分を含有しない不活性ガスの気流中で行なうのが良
(、またガスを吸引し乍ら減圧下で行なうことも好まし
い。
Dehydration treatment by heating activated alumina may be performed in air, but since the heating is performed to vaporize and dissipate the moisture contained in activated alumina, an inert gas that does not contain moisture, such as nitrogen gas, is used. It is preferable to carry out the process in an air stream (although it is also preferable to carry out the process under reduced pressure while sucking the gas).

加熱時間は上記の加熱温度及び雰囲気において30分以
上であれば良いが、念のために通常1〜2時間行なわれ
る。
The heating time may be 30 minutes or more at the above-mentioned heating temperature and atmosphere, but it is usually carried out for 1 to 2 hours just to be sure.

本発明における活性アルミナの加熱温度は特に重要であ
り、250℃未満の加熱温度では長時間加熱を行なって
も、活性アルミナ中の水分を完全に除去することは不可
能で、従ってこのような温度で脱水処理した活性アルミ
ナ層へ四弗化ケイ素ガスを通気しても含有するC(hを
十分除去することはできない、これは、活性アルミナ中
の水分が活性アルミナに化学吸着されているため、この
水分を活性アルミナから分離し気化逸散させるためには
、ある限界以上の温度を必要とするものと考えられる。
The heating temperature of activated alumina in the present invention is particularly important; at a heating temperature of less than 250°C, it is impossible to completely remove moisture in activated alumina even if heated for a long time. Even if silicon tetrafluoride gas is passed through the activated alumina layer that has been dehydrated with It is thought that a temperature above a certain limit is required in order to separate this moisture from the activated alumina and vaporize it.

換言すれば、上記水分の除去には熱エネルギーの合計量
ではなく、強さを要求されるものであろう。
In other words, the removal of the moisture requires strength rather than the total amount of thermal energy.

かくして加熱による脱水処理された活性アルミナは、放
冷または強制冷却によって常温以下に冷却されるが、こ
の場合には当然のことながら、水分の混入を極力回避し
なければならない、従って、その方法として、上記活性
アルミナの加熱による脱水処理は、例えばカラム等に活
性アルミナを充填した状態で行ない、脱水処理後これを
冷却し、しかるのち引続きこの活性アルミナ層へ1、四
弗化ケイ素ガスを通気する方法が好ましい。
The activated alumina that has been dehydrated by heating is then cooled down to room temperature or below by either natural cooling or forced cooling.In this case, of course, it is necessary to avoid contamination with water as much as possible, and therefore, the following methods are recommended: The dehydration treatment by heating of the activated alumina is carried out, for example, in a column filled with activated alumina, which is cooled after the dehydration treatment, and then 1, silicon tetrafluoride gas is subsequently passed through the activated alumina layer. The method is preferred.

四弗化ケイ素ガスの精製は、上記の通りカラム等に充填
された活性アルミナ層に通気する方法で実施されるが、
この際の通気温度は非常に重要であって、−10″C以
下の温度でなければならず、低温はど好ましい、しかし
ながら、四弗化ケイ素の昇華温度は一95℃であるので
、この温度以下では操作が事実上困難である。従って通
気温度は本発明では、−10〜−95℃の範囲で実施さ
れる。
Purification of silicon tetrafluoride gas is carried out by venting it through an activated alumina layer packed in a column, etc., as described above.
The ventilation temperature at this time is very important; it must be below -10"C, and a low temperature is preferable; however, since the sublimation temperature of silicon tetrafluoride is -95C, this temperature Below that, the operation is practically difficult.Therefore, in the present invention, the ventilation temperature is carried out in the range of -10 to -95°C.

通気時の四弗化ケイ素の圧力はこれまた特に限定はなく
、例えばI Torr程度の真空から10気圧程度の加
圧の範囲で実施可能である。
The pressure of silicon tetrafluoride during ventilation is also not particularly limited, and can be carried out in the range of, for example, a vacuum of about I Torr to an increased pressure of about 10 atmospheres.

尚、本発明の実施により、四弗化ケイ素ガス中に含まれ
ているCOtのみでな(シロキサンが含有されたいた場
合は、これも併せて除去されることは、本発明者等が先
に出願した特開昭59−162122号公報に記載の通
りである。
It should be noted that by carrying out the present invention, not only the COt contained in the silicon tetrafluoride gas (if siloxane is contained, this is also removed, as previously described by the inventors). This is as described in Japanese Patent Application Laid-open No. 162122/1983.

〔実施例〕〔Example〕

以下、実施例により本発明を更に具体的に説明する。尚
、以下において%及びppmは特記しない限り容量基準
を表す。
Hereinafter, the present invention will be explained in more detail with reference to Examples. Note that in the following, % and ppm represent capacity standards unless otherwise specified.

実施例1〜6 内径15II11のステンレス製カラムに平均粒径が2
1の粒状活性アルミナを充填(充填高さ40cm) L
Examples 1-6 A stainless steel column with an internal diameter of 15II11 had an average particle size of 2
1 filled with granular activated alumina (filling height 40cm) L
.

た後、活性アルミナの加熱による脱水処理と四弗化ケイ
素ガスの通気を、第1表に示す条件で行なった。
After that, activated alumina was dehydrated by heating and silicon tetrafluoride gas was introduced under the conditions shown in Table 1.

四弗化ケイ素ガスの活性アルミナ層への通気前後のCO
!の含有量をガスクロマトグラフィーにて測定した。ま
た、シロキサンの含有量についてはその目安として、通
気前後のガスを10h+w長さの気体セルに採取して赤
外吸収スペクトルを測定し、四弗化ケイ素の5i−F振
動に由来する2057cm−’における吸収AI と、
シロキサンの5i−F振動に由来する839 cm−’
における吸収A2の比、即ち吸収比(R)を下記(1)
式によって求め、精製の度合いとした。
CO before and after venting silicon tetrafluoride gas into the activated alumina layer
! The content was measured by gas chromatography. In addition, as a guideline for the content of siloxane, the gas before and after ventilation was collected into a gas cell with a length of 10 h + w, and the infrared absorption spectrum was measured. Absorption AI in
839 cm-' derived from the 5i-F vibration of siloxane
The ratio of absorption A2, that is, the absorption ratio (R) in (1) below
It was determined by the formula and used as the degree of refinement.

A’ = (log(To/T+)) 2057cm−
’A” −(log(To/T+)) 839 cm−
’(R)寓A’ /A’ −−−−−−−−−−(1)
その結果は第1表に示す通りであり、本発明の方法で精
製すれば四弗化ケイ素ガス中のCO□は極めて良好に除
去される。またシロキサンが含有されていた場合はこれ
も同様に良好に除去されることがわかる。
A' = (log(To/T+)) 2057cm-
'A'-(log(To/T+)) 839 cm-
'(R) Fable A'/A' ----------(1)
The results are shown in Table 1, and when purified by the method of the present invention, CO□ in silicon tetrafluoride gas can be removed extremely well. Furthermore, it can be seen that if siloxane is contained, it can be removed equally well.

比較例1〜4 実施例と同一の活性アルミナを充填したカラムを使用し
て、第2表に示す条件で、活性アルミナの加熱による脱
水処理と、四弗化ケイ素の通気を行なった。
Comparative Examples 1 to 4 Using a column filled with the same activated alumina as in the example, dehydration treatment of activated alumina by heating and aeration of silicon tetrafluoride were performed under the conditions shown in Table 2.

結果を第2表に示すが、本発明で特定する条件(加熱温
度)で脱水処理した活性アルミナを使用しなければ、た
とえ長時間脱水処理したものでもCO□及びシロキサン
の除去効果は不十分であることが分かる。
The results are shown in Table 2, but unless activated alumina that has been dehydrated under the conditions (heating temperature) specified in the present invention is used, the removal effect of CO□ and siloxane will be insufficient even if it is dehydrated for a long time. I understand that there is something.

\ 比較例5〜7 実施例及び比較例1〜4に用いた活性アルミナに代え、
第3表に示す各吸着剤を充填したカラムを用いて、四弗
化ケイ素ガスの精製を試みた。カラムの形状、原料四弗
化・ケイ素ガスは実施例と同じものを使用した。
\ Comparative Examples 5-7 Instead of the activated alumina used in Examples and Comparative Examples 1-4,
An attempt was made to purify silicon tetrafluoride gas using a column packed with each adsorbent shown in Table 3. The column shape and raw materials tetrafluoride and silicon gas were the same as in the examples.

その結果は第3表に示す通り、本発明の脱水処理した活
性アルミナを使用しないと、四弗化ケイ素ガス中のC島
及びシロキサン除去はいずれも不完全であることが分か
る。
The results are shown in Table 3, and it can be seen that unless the dehydrated activated alumina of the present invention is used, the removal of C islands and siloxane from silicon tetrafluoride gas is incomplete.

\、 \ \ 〔発明の効果〕 本発明は以上詳細に説明したように、四弗化ケイ素ガス
中のCO,を除去をする方法において、吸着剤として安
価な活性アルミナを予め特定の温度に加熱して脱水処理
し、この活性アルミナ層へ温度−10〜−90℃でかつ
実質的に水分の混入しない状態で、四弗化ケイ素ガスを
通気するという極めて簡単な方法である。また、本発明
の実施により、同様に含有されているシロキサンも効率
よく除去されるのである。
\、\\ [Effects of the Invention] As explained in detail above, the present invention is a method for removing CO from silicon tetrafluoride gas, in which activated alumina, which is inexpensive as an adsorbent, is heated in advance to a specific temperature. This is an extremely simple method in which silicon tetrafluoride gas is passed through the activated alumina layer at a temperature of -10 to -90° C. and in a state substantially free of moisture. Moreover, by carrying out the present invention, siloxane contained in the same manner can be efficiently removed.

尚、活性アルミナの加熱による脱水処理の際の加熱温度
は、比較例3及び4が示す如く特に重要であり、本発明
で特定する温度未満での加熱では、この加熱が長時間で
あってもCO□を十分除去することは不可能である。
The heating temperature during the dehydration treatment by heating activated alumina is particularly important as shown in Comparative Examples 3 and 4, and heating below the temperature specified in the present invention, even if this heating is for a long time. It is not possible to remove CO□ sufficiently.

特許出願人  三井東圧化学株式会社Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)予め250〜900℃の範囲の温度に加熱して脱
水処理した活性アルミナ層へ、少なくとも二酸化炭素を
含有する四弗化ケイ素ガスを−10〜−90℃の温度で
かつ実質的に水分の混入しない状態で通気させることを
特徴とする四弗化ケイ素ガスの精製方法。
(1) Silicon tetrafluoride gas containing at least carbon dioxide is added to the activated alumina layer, which has been heated in advance to a temperature in the range of 250 to 900°C and subjected to dehydration treatment, at a temperature of -10 to -90°C and contains substantially no moisture. A method for purifying silicon tetrafluoride gas, characterized by aeration without contamination.
JP11041188A 1988-05-09 1988-05-09 Method of purifying silicon tetrafluoride gas Pending JPH01282115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11041188A JPH01282115A (en) 1988-05-09 1988-05-09 Method of purifying silicon tetrafluoride gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11041188A JPH01282115A (en) 1988-05-09 1988-05-09 Method of purifying silicon tetrafluoride gas

Publications (1)

Publication Number Publication Date
JPH01282115A true JPH01282115A (en) 1989-11-14

Family

ID=14535100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041188A Pending JPH01282115A (en) 1988-05-09 1988-05-09 Method of purifying silicon tetrafluoride gas

Country Status (1)

Country Link
JP (1) JPH01282115A (en)

Similar Documents

Publication Publication Date Title
US2971607A (en) Method for purifying silance
JPH01261208A (en) Method for purifying nitrogen trifluoride gas
KR20030070836A (en) Method of purifying gaseous nitrogen trifluoride
JPH02188414A (en) Method for purifying gaseous nitrogen trifluoride
JPS59162122A (en) Purification of silicon tetrafluoride
JPH01282115A (en) Method of purifying silicon tetrafluoride gas
JPH0379288B2 (en)
JPS63151608A (en) Purification of nitrogen trifluoride gas
JPS604126B2 (en) Purification method of silicon tetrafluoride
JPS62143812A (en) Purification of silicon tetrafluoride
JPS635324B2 (en)
JPH02124723A (en) Method for purifying tungsten hexafluoride
JPH03275507A (en) Method of purifying nitrogen trifluoride
JP2931660B2 (en) Purification method of silicon tetrafluoride gas
JPH0329726B2 (en)
JP2931662B2 (en) Purification method of nitrogen trifluoride gas
JPS63147825A (en) Refining method for germanium tetrafluoride
JPH01261209A (en) Method for purifying nitrogen trifluoride gas
JPH07330318A (en) Production of high-purity anhydrous hydrazine
JP4173824B2 (en) Method for purifying fluorooxy compounds
JP2003128412A (en) Method for purifying silicon tetrafluoride
JPS61247609A (en) Purifying method for nitrogen trifluoride
JPH0891812A (en) Purifying method of gaseous nitrogen trifluoride
JPH0531489B2 (en)
KR102074832B1 (en) Method for refining of high purity tetrafluoromethane