JPS63147825A - Refining method for germanium tetrafluoride - Google Patents
Refining method for germanium tetrafluorideInfo
- Publication number
- JPS63147825A JPS63147825A JP29499386A JP29499386A JPS63147825A JP S63147825 A JPS63147825 A JP S63147825A JP 29499386 A JP29499386 A JP 29499386A JP 29499386 A JP29499386 A JP 29499386A JP S63147825 A JPS63147825 A JP S63147825A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- zeolite
- gef4
- gefa
- impurity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- PPMWWXLUCOODDK-UHFFFAOYSA-N tetrafluorogermane Chemical compound F[Ge](F)(F)F PPMWWXLUCOODDK-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title claims description 20
- 238000007670 refining Methods 0.000 title 1
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 33
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 33
- 239000010457 zeolite Substances 0.000 claims abstract description 33
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 239000012535 impurity Substances 0.000 claims abstract description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 10
- 208000005156 Dehydration Diseases 0.000 claims description 6
- 230000018044 dehydration Effects 0.000 claims description 6
- 238000006297 dehydration reaction Methods 0.000 claims description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 5
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 229910006160 GeF4 Inorganic materials 0.000 abstract description 10
- 239000007789 gas Substances 0.000 description 40
- 239000011521 glass Substances 0.000 description 13
- 238000009423 ventilation Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000000741 silica gel Substances 0.000 description 4
- 229910002027 silica gel Inorganic materials 0.000 description 4
- 239000011148 porous material Substances 0.000 description 3
- 239000003463 adsorbent Substances 0.000 description 2
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- PKWOZTRFQJQFJI-UHFFFAOYSA-N F[Ge]Cl Chemical compound F[Ge]Cl PKWOZTRFQJQFJI-UHFFFAOYSA-N 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 108091008695 photoreceptors Proteins 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Landscapes
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Silicates, Zeolites, And Molecular Sieves (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は四フッ化ゲルマニウム(Gem、)の精製方法
に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for purifying germanium tetrafluoride (Gem).
更に詳しくは、GeF aガス中の二酸化炭素(Co□
)の除去方法に関する。More specifically, carbon dioxide (Co□
).
GeF、は、GeHa、GeCl aなどと共にアモル
ファスシリコン薄膜形成の際のゲルマニウムドーピング
剤として、近年盛んに使用されつつあるが、これらの用
途に用いるためには高純度であることが要求されている
。GeF, along with GeHa, GeCl a, and the like, has been increasingly used in recent years as a germanium doping agent in the formation of amorphous silicon thin films, but it is required to be highly pure for use in these applications.
(従来技術及び問題点)
GeF4の製造方法としては、l)四塩化ゲルマニウム
に5bFz/SbC1sを加え反応させるハロゲン交換
法(H,S、Booth et al、、ジャーナル
オブ アメリカン ケミカル ソサイエテイ (J、A
m、ChemSoc、) 58.90(1936))
、2)六フフ化ゲルマニウム酸塩を熱分解する方法〔イ
ンオーガニック シンセンス(Inorganic 5
yntheses ) IV 147] 、3)Ge0
2とBrF、との反応による方法CH,J、Emelo
nset al、ジャーナル オブ ケミカル ソサイ
エテイ (J、Chem、Soc、)164. (19
50) 1などの方ン去が欠口られている。(Prior art and problems) As a method for producing GeF4, l) a halogen exchange method in which 5bFz/SbC1s is added to germanium tetrachloride and reacted (H,S, Booth et al., Journal
of American Chemical Society (J,A
m, ChemSoc, ) 58.90 (1936))
, 2) Method for thermally decomposing hexafufluoride germanate [Inorganic 5
yntheses) IV 147], 3) Ge0
Method by reaction of 2 with BrF, CH, J, Emelo
nset al, Journal of the Chemical Society (J, Chem, Soc,) 164. (19
50) The words such as 1 are omitted.
しかしながら、これらの方法で得られるGeF aガス
中には、フッ化塩化ゲルマニウム、HF、 CO2、S
O2、SiF、、C01N2.0□ など多11頚のガ
スを不純物として含有していて、上記ドーピング剤とし
て用いるためには、精製により上記多種類の不純物を除
去する必要がある。However, the GeFa gas obtained by these methods contains germanium fluoride chloride, HF, CO2, S
It contains many gases as impurities, such as O2, SiF, and C01N2.0□, and in order to use it as the doping agent, it is necessary to remove the various impurities by purification.
本発明者らが検討したところによると、上記GeF a
中の上記不純物の内C(h以外は、蒸溜によりドーピン
グ剤として使用可能な値上精製除去することが可能であ
るが、COtのみはGeF 4と沸点が近接しているの
で、蒸溜による精製除去は困難であることが判った。According to the studies conducted by the present inventors, the above-mentioned GeF a
Among the impurities mentioned above, C(h) can be purified and removed by distillation to a value that makes it usable as a doping agent, but only COt has a boiling point close to that of GeF4, so it can be purified and removed by distillation. proved difficult.
(問題を解決する為の手段)
本発明者らはGeF 、中のC(h除去方法について種
々研究を行い、特に主として各種吸着剤によるCO□の
除去方法について鋭意検討を重ねた結果、特定の条件で
前処理を施したゼオライト層に、特定の条件でGeFa
ガスを通気させれば、これが可能であることを見出した
0本発明はかかる知見に基づき成されるに到ったもので
ある。(Means for solving the problem) The present inventors conducted various studies on methods for removing C (h) in GeF, and in particular, as a result of intensive studies on methods for removing CO□ using various adsorbents, we found that GeFa is added to the zeolite layer pretreated under certain conditions.
It has been discovered that this is possible if gas is vented. The present invention has been accomplished based on this knowledge.
即ち本発明の四フッ化ゲルマニウムの精製方法は、予め
脱水処理を施したゼオライト層に、温度−37℃〜常温
の範囲において、少なくとも不純物として二酸化炭素を
含をする四弗化ゲルマニウムガスを通気させることを特
徴とするものであって、特には脱水処理が加熱処理であ
り、また加熱温度が200〜600″Cであるものであ
る。That is, the germanium tetrafluoride purification method of the present invention involves passing germanium tetrafluoride gas containing at least carbon dioxide as an impurity through a zeolite layer that has been previously dehydrated at a temperature in the range of -37°C to room temperature. In particular, the dehydration treatment is a heat treatment, and the heating temperature is 200 to 600''C.
(発明を実施するための具体的条件) 以下、本発明を更に具体的に説明する。(Specific conditions for carrying out the invention) The present invention will be explained in more detail below.
本発明において使用するゼオライトは特に限定はなく、
3A、4A、5A、IOA、13Xなどの通常重版のも
のが何れも使用可能である。その形状についても特に制
限がないが、粒状高比表面積のものがより好ましい。The zeolite used in the present invention is not particularly limited,
Regular reprints such as 3A, 4A, 5A, IOA, and 13X can all be used. There are no particular restrictions on its shape, but granular shapes with a high specific surface area are more preferable.
本発明においては、かかるゼオライトを予め脱水処理し
て用いるが、該ゼオライトの脱水処理は、これを200
〜600″C程度に加熱することで実施するのが好まし
い、加熱処理温度が200°C未満の温度では、ゼオラ
イト中に微量の水分が残存し、この様なゼオライトでは
GeF、ガスを通気した際、この残存した水分の存在に
よるGeF4の加水分解反応が起こり、該加水分解によ
る生成物が不純物としてGeF4中に含有されるので好
ましくなく、またゼオライトを劣化させてCO□の吸着
能力を著しく低下させる。逆に加熱処理温度が600℃
を越える場合は、熱エネルギーの損失となるのみならず
、ゼオライトの細孔構造が破壊されて吸着能力が低下す
るので好ましくない。In the present invention, such zeolite is used after being dehydrated in advance.
It is preferable to carry out heating to about ~600"C. If the heat treatment temperature is less than 200°C, a trace amount of water will remain in the zeolite, and when the GeF and gas are aerated in such zeolite, The presence of this residual moisture causes a hydrolysis reaction of GeF4, which is undesirable because the product of this hydrolysis is contained in GeF4 as an impurity, and also deteriorates the zeolite and significantly reduces its adsorption capacity for CO□. .On the contrary, the heat treatment temperature is 600℃
Exceeding this is not preferable because not only will thermal energy be lost, but the pore structure of the zeolite will be destroyed and the adsorption capacity will be reduced.
加熱してゼオライトを脱水処理する場合の脱水処理時の
雰囲気は、空気中で行ってもよいが、ゼオライト中の水
分を完全に気化連敗させるためには、例えば乾燥窒素ガ
スのように水分を含有しないガスの気流中で行うことが
好ましく、またガスを吸引しなから減圧下で行うことも
好ましい。When dehydrating zeolite by heating, the dehydration treatment may be carried out in air, but in order to completely vaporize the moisture in the zeolite, it is necessary to use a moisture-containing atmosphere such as dry nitrogen gas. It is preferable to carry out the process in an air stream of a gas that does not contain any gas, and it is also preferable to carry out the process under reduced pressure without suctioning the gas.
加熱処理時間は上記の加熱温度及び雰囲気において30
分以上あれば良いが、念のために通常1〜6時間さらに
好ましくは1〜3時間程度行われるのが望ましい。The heat treatment time was 30 minutes at the above heating temperature and atmosphere.
It is sufficient if the heating time is at least 1 minute, but to be safe, it is usually desirable to carry out the heating for about 1 to 6 hours, more preferably about 1 to 3 hours.
加熱処理後のゼオライトは、GeF、の通気温度まで冷
却されるが、その際水分の混入を回避することが要請さ
れることは勿論である。The zeolite after the heat treatment is cooled to the ventilation temperature of GeF, but it is of course necessary to avoid contamination with moisture at this time.
本発明は以上の如くして予め脱水処理を施したゼオライ
ト層に、実質的に水分の混入しない状態でGeFaガス
を通気せしめて実施されるが、該精製は、実際的な実施
Ldlとしては、カラム等に充填されたゼオライト層に
通気する方法で一般に実施される。The present invention is carried out by aerating GeFa gas into the zeolite layer which has been subjected to the dehydration treatment in advance as described above in a state in which substantially no water is mixed. This is generally carried out by a method of aerating a zeolite layer packed in a column or the like.
この際の通気温度は重要で常温以下の温度であることが
要請される。通気温度は低ければ低い方が好ましいが、
四フン化ゲルマニウムの昇華温度が一37°Cであるの
で、この温度以下では実質的に操作が著しく困難である
。従って通気温度は、本発明において5よ、−37℃〜
常温の範囲で実施するのが好ましい。The ventilation temperature at this time is important and is required to be below room temperature. The lower the ventilation temperature, the better.
Since the sublimation temperature of germanium tetrafluoride is 137°C, it is substantially difficult to operate below this temperature. Therefore, in the present invention, the ventilation temperature is 5 to -37°C.
It is preferable to carry out the reaction at room temperature.
通気時のGeF aの圧力も特に限定はなく、例えばl
Torr程度の真空から10気圧程度の加圧の範囲で
実施可能である。The pressure of GeF a during ventilation is also not particularly limited, for example, l
This can be carried out in a range from a vacuum of about Torr to a pressurization of about 10 atmospheres.
(発明の効果)
本発明は、この様にGeF a中に含有する不純物とし
てのCO,を吸着除去する方法において、吸着剤として
安価なゼオライトを予め加熱により脱水処理した後、こ
れにGeF4ガスを特定の条件下で通気するという極め
て節単な方法であって、これによりアモルファスシリコ
ン薄膜のドーピング剤として好適な高純度のGeFaガ
スの提供を可能としたものである。(Effects of the Invention) The present invention provides a method for adsorbing and removing CO, which is an impurity contained in GeFa, by dehydrating inexpensive zeolite as an adsorbent by heating in advance, and then adding GeF4 gas to it. This is an extremely simple method of aeration under specific conditions, which makes it possible to provide high-purity GeFa gas suitable as a doping agent for amorphous silicon thin films.
(実施例及び比較例)
以下に実施例及び比較例により本発明を具体的に説明す
る。(Examples and Comparative Examples) The present invention will be specifically explained below using Examples and Comparative Examples.
実施例1
市販のゼオライ)4A (細孔径4人、粒径24〜60
メツシーL) 50m1を、N2気流中、常圧下で40
0°Cにて3時間加熱し脱水処理したのち、これを直径
10闘のガラス製カラムに充填した。Example 1 Commercially available zeolite) 4A (pore size 4, particle size 24-60
Metsushi L) 50ml under normal pressure in N2 stream
After dehydrating by heating at 0°C for 3 hours, this was packed into a glass column with a diameter of 10 mm.
ガラス製カラムに充填したゼオライトが常温(20°C
)となった所で、不純物としてco、 800ppmを
含むGeFaガスを2ONml/minの速度で連続的
に1ON1通気させ、ガラス製カラム出口のGeF a
ガスを捕集した。尚この時の通気圧力は常圧であった。The zeolite packed in a glass column is kept at room temperature (20°C).
), GeFa gas containing 800 ppm of Co as an impurity was continuously passed through at a rate of 2 ON ml/min, and the GeFa gas at the outlet of the glass column was
Collected gas. Note that the ventilation pressure at this time was normal pressure.
この捕集ガスを高感度ガスクロマトグラフで分析したと
ころ、CO□含有量はわずか8.3ppmであり、Ge
F aガス中のCO□は良好に除去されていることが確
認された。When this collected gas was analyzed using a high-sensitivity gas chromatograph, the CO□ content was only 8.3 ppm, and the Ge content was only 8.3 ppm.
It was confirmed that CO□ in the Fa gas was successfully removed.
実施例2
市販のゼオライトl0A(細孔径10人、粒径24〜6
0メツシユ) 50m1を用い、実施例1と同一の条件
で加熱による脱水処理を行った後このゼオライトを実施
例1と同一のガラス製カラムに充填した。Example 2 Commercially available zeolite 10A (pore size 10, particle size 24-6
After dehydration treatment by heating was performed under the same conditions as in Example 1 using 50 ml of zeolite (0 mesh), this zeolite was packed into the same glass column as in Example 1.
次にこのガラス製カラムを冷媒液に浸液させ、ガラス製
カラム中のゼオライトが一30°Cとなった所で、この
温度条件下で実施例1と同一条件で、不純物としてC(
h 800ppmを含むGeFaガスを1ON1通気さ
せ、ガラス製カラム出口のGeF aガスを捕集した。Next, this glass column was immersed in a refrigerant liquid, and when the temperature of the zeolite in the glass column reached 130°C, the impurity was C (
GeFa gas containing 800 ppm of h was passed through 1ON1, and the GeFa gas at the outlet of the glass column was collected.
この捕集ガス中のCO□含有量を実施例1と同様な方法
で分析したところ、その含有量はわずかt、2ppaで
あり、GeF aガス中のCO□は良好に除去されてい
ることが分かった。When the CO□ content in this collected gas was analyzed using the same method as in Example 1, the content was only t, 2ppa, indicating that the CO□ in the GeFa gas was successfully removed. Do you get it.
実施例3〜7
実施例1で用いたと同一のゼオライ)4Aを用い、加熱
処理条件及び通気条件を表−1に示す如く変化させて、
実施例1と同様に不純物としてCotを含むGeF a
ガスをゼオライト層に通気した。Examples 3 to 7 Using the same zeolite 4A used in Example 1, the heat treatment conditions and ventilation conditions were changed as shown in Table 1,
GeFa containing Cot as an impurity as in Example 1
Gas was bubbled through the zeolite bed.
通気前後のCO□含有量は表−1に示すとおりであり、
いずれもGeF4ガス中のCO7は良好に除去されてい
た。The CO□ content before and after ventilation is as shown in Table-1.
In both cases, CO7 in the GeF4 gas was successfully removed.
比較例1
粒径が24〜60メツシユの活性炭50m lをN、気
流中常圧下で300°Cにて3時間加熱し脱水処理した
のち、この活性炭を実施例1と同一のガラス製カラムに
充填した。Comparative Example 1 50 ml of activated carbon having a particle size of 24 to 60 mesh was dehydrated by heating at 300°C under normal pressure in a N gas stream for 3 hours, and then this activated carbon was packed into the same glass column as in Example 1. .
以下実施例2と全く同一条件で、このガラス製カラム中
の活性炭層に不純物としてCO□800ppmを含むG
eF aガスを連続的に1ON2通気させ、ガラス製カ
ラム出口のGeF aガスを捕集した。Below, under exactly the same conditions as in Example 2, G containing 800 ppm of CO□ as an impurity was added to the activated carbon layer in this glass column.
eFa gas was continuously passed through 1ON2, and GeFa gas at the outlet of the glass column was collected.
この捕集ガス中のCO□含有量を実施例1と同様な方法
で分析したところ、その値は800ppmと通気前と全
く同じ値であり、この結果により、活性炭はGeFaガ
ス中のCChを吸着しないことが判明した。When the CO□ content in this collected gas was analyzed using the same method as in Example 1, the value was 800 ppm, exactly the same value as before ventilation, and from this result, activated carbon adsorbed CCh in GeFa gas. It turned out not to.
比較例2
粒径が24〜60メンシユのシリカゲル50m1 をN
2気流中常圧下で300°Cにて3時間加熱し脱水処理
した後、このシリカゲルを実施例1と同一のガラス製カ
ラムに充填した。Comparative Example 2 50ml of silica gel with a particle size of 24 to 60 mesh was
After dehydration treatment by heating at 300° C. for 3 hours under normal pressure in 2 gas streams, this silica gel was packed into the same glass column as in Example 1.
以下実施例2と全く同一条件で、このガラス製カラム中
のシリカゲル層に、不純物としてCO!800ppa+
を含むGeF aガスを連続的にION 1通気させ、
ガラス製カラム出口のGeF aガスを捕集した。Below, under exactly the same conditions as in Example 2, CO! was added as an impurity to the silica gel layer in this glass column. 800ppa+
Continuously venting GeF a gas containing ION 1,
GeFa gas at the outlet of the glass column was collected.
この捕集ガス中のCOt含育量を実施例1と同様な方法
で分析したところ、その値は230ppmであった。こ
の結果により、シリカゲルはGeF、ガス中のCotを
ある程度吸着除去する効果は認められるものの、その除
去効果はゼオライトとは比較とならない低いものであっ
た。When the COt content in this collected gas was analyzed in the same manner as in Example 1, the value was 230 ppm. The results show that although silica gel is effective in adsorbing and removing GeF and Cot in gas to some extent, its removal effect is incomparably lower than that of zeolite.
比較例3〜4
実施例1で用いたと同一のゼオライト4Aを用い、加熱
処理条件及び通気条件を表−2に示す如く変化させて、
実施例1と同様に不純物としてCO2を含むGeFaガ
スをゼオライト層に通気した。Comparative Examples 3 to 4 Using the same zeolite 4A used in Example 1, the heat treatment conditions and ventilation conditions were changed as shown in Table 2,
As in Example 1, GeFa gas containing CO2 as an impurity was bubbled through the zeolite layer.
通気前後のC(h含有量は表−2に、示す通りであり、
比較例3のようにゼオライトの加熱処理温度があまり低
いと、GeFaガス中のCotが充分に除去出来ないだ
けでな(,1,R分析を行うとGeF、以外のピークが
数多く見られ、他の不純物が生成していることが判明し
た。The C(h content before and after ventilation is shown in Table 2,
If the heat treatment temperature of the zeolite is too low as in Comparative Example 3, not only will Cot in the GeFa gas not be removed sufficiently (1, when R analysis is performed, many peaks other than GeF are observed, and other It was found that impurities were generated.
一方、比較例4のようにゼオライトの加熱処理温度があ
まり高すぎても、GeF aガスのCO□を充分除去出
来ないことが確LWされた。On the other hand, it was confirmed that even if the heat treatment temperature of zeolite was too high as in Comparative Example 4, CO□ of GeFa gas could not be sufficiently removed.
表−2
(産業上の利用可能性)
以上のごと(本発明の方法に従えば、四フッ化ゲルマニ
ウムガスを極めて効果的に精製して、高純度の四フフ化
ゲルマニウムガスを容易に製造する方法が提供されるも
のであり、斯くして得られた高純度四フッ化ゲルマニウ
ムガスは、所謂半導体用ガスとして、半導体をキーテク
ノロジーとするエレクトロニクス産業分野、すなわち、
IC1太陽電池、電子感光体等を含む広範囲な電子産業
分野に好適に使用可能であり、その産業上の利用可能性
は極めて大きいと云わなければならない。Table 2 (Industrial Applicability) As stated above (according to the method of the present invention, germanium tetrafluoride gas can be purified extremely effectively and high-purity germanium tetrafluoride gas can be easily produced) The high-purity germanium tetrafluoride gas thus obtained is used as a so-called semiconductor gas in the electronics industry where semiconductors are the key technology, i.e.
It can be suitably used in a wide range of electronic industry fields including IC1 solar cells, electronic photoreceptors, etc., and it must be said that its industrial applicability is extremely large.
Claims (3)
7℃〜常温の範囲において、少なくとも不純物として二
酸化炭素を含有する四弗化ゲルマニウムガスを通気させ
ることを特徴とする四弗化ゲルマニウムの精製方法。(1) A zeolite layer that has been dehydrated in advance is heated to -3
A method for purifying germanium tetrafluoride, which comprises passing germanium tetrafluoride gas containing at least carbon dioxide as an impurity in a temperature range of 7° C. to room temperature.
項に記載の方法。(2) Claim 1: Dehydration treatment by heat treatment
The method described in section.
許請求の範囲第1項若しくは第2項に記載の方法。(3) The method according to claim 1 or 2, wherein the heat treatment temperature is in the range of 200 to 600°C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29499386A JPH075309B2 (en) | 1986-12-12 | 1986-12-12 | Method for purifying germanium tetrafluoride |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29499386A JPH075309B2 (en) | 1986-12-12 | 1986-12-12 | Method for purifying germanium tetrafluoride |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63147825A true JPS63147825A (en) | 1988-06-20 |
JPH075309B2 JPH075309B2 (en) | 1995-01-25 |
Family
ID=17814957
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29499386A Expired - Lifetime JPH075309B2 (en) | 1986-12-12 | 1986-12-12 | Method for purifying germanium tetrafluoride |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH075309B2 (en) |
-
1986
- 1986-12-12 JP JP29499386A patent/JPH075309B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH075309B2 (en) | 1995-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2971607A (en) | Method for purifying silance | |
US5051117A (en) | Process for removing gaseous contaminating compounds from carrier gases containing halosilane compounds | |
EA002045B1 (en) | Decarbonating gas streamsusing zeolite adsorbents | |
RU2206499C1 (en) | Gaseous nitrogen trifluoride purification method | |
KR20070116258A (en) | Purification of nitrogen trifluoride | |
JP2018203617A (en) | System of recovering hydrogen gas, and method of recovering hydrogen gas | |
US4282196A (en) | Method of preparing optical fibers of silica | |
JPS63147825A (en) | Refining method for germanium tetrafluoride | |
JPH02188414A (en) | Method for purifying gaseous nitrogen trifluoride | |
JPH0353017B2 (en) | ||
JPS63151608A (en) | Purification of nitrogen trifluoride gas | |
JPS59162122A (en) | Purification of silicon tetrafluoride | |
JP3516716B2 (en) | Purification method of trifluoromethane | |
US3522007A (en) | Purification of chlorine | |
JPS635324B2 (en) | ||
JPS62143812A (en) | Purification of silicon tetrafluoride | |
JPH01282115A (en) | Method of purifying silicon tetrafluoride gas | |
JPH01103901A (en) | Method of purifying hydrogen | |
JPS641405B2 (en) | ||
JPH01261209A (en) | Method for purifying nitrogen trifluoride gas | |
JPH0242766B2 (en) | ||
JPS63201007A (en) | Purification of nitrogen trifluoride | |
JPH0329726B2 (en) | ||
KR102074832B1 (en) | Method for refining of high purity tetrafluoromethane | |
JPH07330316A (en) | Purification of nitrogen trifluoride gas |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |