JPS604126B2 - Purification method of silicon tetrafluoride - Google Patents

Purification method of silicon tetrafluoride

Info

Publication number
JPS604126B2
JPS604126B2 JP3782481A JP3782481A JPS604126B2 JP S604126 B2 JPS604126 B2 JP S604126B2 JP 3782481 A JP3782481 A JP 3782481A JP 3782481 A JP3782481 A JP 3782481A JP S604126 B2 JPS604126 B2 JP S604126B2
Authority
JP
Japan
Prior art keywords
silicon tetrafluoride
gas
silicon
sif3
activated carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3782481A
Other languages
Japanese (ja)
Other versions
JPS57156317A (en
Inventor
豊三 大塚
直道 木次
輝雄 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP3782481A priority Critical patent/JPS604126B2/en
Publication of JPS57156317A publication Critical patent/JPS57156317A/en
Publication of JPS604126B2 publication Critical patent/JPS604126B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は電子材料、太陽電池素子などのアモルファスシ
リコン半導体の製造に適する高純度四発化珪素の製造に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of high purity silicon tetrahydride suitable for the production of amorphous silicon semiconductors such as electronic materials and solar cell elements.

さらに詳しくは、本発明はSiOF2、(SiF3)2
0、(SiF3)2SjF202等の含酸素珪素弗化物
および場合によってはS02、S03、日2S等の硫黄
化合物を含む四弗化珪素の精製法に関する。一般にアモ
ルファスシリコン半導体膜製造原料としてはシランガス
が用いられているが、弗素を含んだアモルファスシリコ
ンの特性が近年注目されるようになり、その原料として
高純度の四弗化珪素ガスが用いられる。
More specifically, the present invention provides SiOF2, (SiF3)2
The present invention relates to a method for purifying silicon tetrafluoride containing oxygen-containing silicon fluorides such as 0, (SiF3)2SjF202, and optionally sulfur compounds such as S02, S03, and 2S. Generally, silane gas is used as a raw material for manufacturing amorphous silicon semiconductor films, but in recent years, the properties of amorphous silicon containing fluorine have attracted attention, and high-purity silicon tetrafluoride gas is used as its raw material.

このガスは製造法により不純物の態様に相違があるが、
現在市販されている四弗化珪素には幾多の不純物が含ま
れており、これから得られるアモルファスシリコン半導
体の物性は必ずしも満足できるものではない。本発明者
らがこれらの不純物について種々検討を行なった結果、
一般の四弗化珪素ガスには含酸素珪素弗化物、として主
に(SiF3)20が少ないものでも数100脚程度、
硫黄化合物として主にS02、S03、H2Sが数10
側程度含まれていることが判明した。
The type of impurities in this gas differs depending on the manufacturing method, but
Silicon tetrafluoride currently on the market contains many impurities, and the physical properties of amorphous silicon semiconductors obtained from it are not necessarily satisfactory. As a result of various studies conducted by the present inventors regarding these impurities,
General silicon tetrafluoride gas contains oxygen-containing silicon fluoride, mainly (SiF3) containing only a few hundred units of 20.
S02, S03, and H2S are mainly found in dozens of sulfur compounds.
It turned out that the side degree was included.

このような不純物は四弗化珪素のグロー放電分解による
アモルファスシリコン膜の製造の過程でSi骨格中にS
や○原子を導入する因となり、半導体物性に悪影響をも
たらすものである。従来から一般にガス中に存在する徴
量の不純物を除去するための一手段として吸着剤を使用
する方法が知られているが、四弗化珪素ガス中の不純物
除去に吸着剤を用いた例は未だ知られていない。
These impurities are added to the Si skeleton during the process of manufacturing an amorphous silicon film by glow discharge decomposition of silicon tetrafluoride.
This causes the introduction of and ○ atoms, which has an adverse effect on the physical properties of the semiconductor. The use of adsorbents as a means of removing impurities present in gases has long been known, but there are no examples of using adsorbents to remove impurities from silicon tetrafluoride gas. Not yet known.

本発明者らは(SiF3)20等の含酸素達素弗化物お
よびS02、S03、日ぶ等の硫黄化合物を除去するた
め各種吸着剤について研究した結果、活性炭のみが特異
的な効果を示すことを見出し本発明を完成するに到った
The present inventors researched various adsorbents to remove oxygen-containing fluorides such as (SiF3)20 and sulfur compounds such as S02, S03, and Hibu, and found that only activated carbon showed a specific effect. This discovery led to the completion of the present invention.

すなわち、本発明は含酸素珪素弗化物および場合によっ
て硫黄化合物を不純物として含む四弗化珪素を活性炭と
接触させることからなる四弗化珪素の精製法である。一
般に吸着剤としては「ゼオラィト、活性アルミナ、シリ
カゲル、活性炭等が知られており精製、乾燥等の用途に
汎く用いられている。これら吸着剤のうち、ゼオラィト
系の吸着剤、例えばモレキュラーシーブ類は適当な細孔
蓬条件を選択することによりS02、S03、Hぶ等の
硫黄化合物を除去し得ることは周知である。しかるに、
四弗化珪素中のこれら不純物の除去にはゼオライト系の
吸着剤は好ましくないことが判明した。その理由は四弗
化珪素がゼオラィト中の成分と反応して含酸素珪素発化
物又はそれらのポリマー或は珪素酸化物等が多量に生成
し、むしろ四弗化珪素の汚染をもたらすためであり、こ
のことは活性アルミナ或はシリカゲルにおいても同様で
ある。これに対し、本発明者らは四弗化珪素中の(Si
F3)20等の含酸素珪素弗化物およびS02、S03
、日2S等の硫黄化合物の除去に活性炭が特異的に優れ
ていることを見出したものであり、含酸素珪素弗化物は
極めて良好に除去することができ、また硫黄化合物が共
存していてもこれはほゞ完全に除去しうろことを確認し
た。
That is, the present invention is a method for purifying silicon tetrafluoride, which comprises bringing silicon tetrafluoride containing an oxygen-containing silicon fluoride and optionally a sulfur compound as impurities into contact with activated carbon. Zeolite, activated alumina, silica gel, activated carbon, etc. are generally known adsorbents and are widely used for purposes such as purification and drying. Among these adsorbents, zeolite-based adsorbents, such as molecular sieves, etc. It is well known that sulfur compounds such as S02, S03, and Hb can be removed by selecting appropriate pore conditions.
It has been found that zeolite-based adsorbents are not suitable for removing these impurities from silicon tetrafluoride. The reason for this is that silicon tetrafluoride reacts with the components in the zeolite, producing a large amount of oxygen-containing silicon oxides, their polymers, silicon oxides, etc., and rather contaminating the silicon tetrafluoride. This also applies to activated alumina or silica gel. In contrast, the present inventors found that (Si in silicon tetrafluoride)
F3) Oxygenated silicon fluoride such as 20 and S02, S03
It was discovered that activated carbon is uniquely superior in removing sulfur compounds such as Ni2S, and it can remove oxygen-containing silicon fluoride extremely well, even when sulfur compounds are present. It was confirmed that this was almost completely removed.

本発明には任意の工程からの四弗化珪素が適用され、例
えば酸化珪素と弗化水素を硫酸を媒体として接触反応さ
せて得られた四弗化珪素が用いられる。
Silicon tetrafluoride from any process is applicable to the present invention, and for example, silicon tetrafluoride obtained by contacting silicon oxide and hydrogen fluoride with sulfuric acid as a medium is used.

この場合、硫酸濃度が高い程、例えば80%以上のとき
は(SiF3)20が著るしく低減するが(本発明者ら
が別途提案)、このような工程からの四弗化珪素を本発
明に適用するときは一層高純度の四弗化珪素を得ること
ができる。また、更に(SiF3)20を除去する必要
がある場合は、活性炭中の水分量を可及的に減少させる
ことにより、極めて良好に行ない得ることを見出した。
In this case, the higher the sulfuric acid concentration is, for example, 80% or more, the more significantly (SiF3)20 is reduced (separately proposed by the present inventors); When applied to silicon tetrafluoride, even higher purity silicon tetrafluoride can be obtained. Furthermore, it has been found that if it is necessary to further remove (SiF3)20, this can be done extremely well by reducing the amount of water in the activated carbon as much as possible.

一般に活性炭は関係温度40%以下では水の平衡吸着量
は乾量基準で2〜3%以下であり、特に必要がない限り
、そのま)使用する場合が多く、また使用前既に吸着さ
れている水分等を脱着させるために乾燥して用いる場合
といえどもこの乾燥は通常120〜180oo程度まで
行なわれる。しかしこの程度の乾燥処理では活性炭中に
は尚乾量基準で0.7%以上の水分が依然として残留し
ているのが普通であり、この活性炭に残留る極微量の水
分により、m式の反応で(SiF3)20が生成するた
め、.※あiF4十日20一(SiF3)20十がF【
1}(Sip3)20を完全に除去することは困難であ
り、更に精製する要のある場合は活性炭中に存在する水
分量が少なくとも乾量基準で0.7%以下である様な活
性炭を用いることが必要である。
In general, activated carbon has an equilibrium adsorption amount of water of less than 2-3% on a dry basis at a temperature of 40% or less, and is often used as is unless there is a particular need, or if it has already been adsorbed before use. Even when used after drying to remove moisture etc., this drying is usually carried out to about 120 to 180 oo. However, with this level of drying treatment, it is normal for the activated carbon to still contain more than 0.7% moisture on a dry basis, and this very small amount of moisture remaining in the activated carbon causes the m-type reaction. Since (SiF3)20 is generated in . *AiF4 10th 201st (SiF3) 20th is F [
1} (Sip3) It is difficult to completely remove 20, and if further purification is necessary, use activated carbon whose moisture content is at least 0.7% or less on a dry weight basis. It is necessary.

この様な水分量とするためには前述の様な通常の乾燥で
は困難であり、特定の活性化条件が必要となる。この条
件としては例えば活性炭の燃焼及び雰囲気中の水分の影
響を防ぐため、窒素ガス等の不活性ガス中で加圧又は減
圧下、あるいはlton以下の真空中で180〜500
oo、好ましくは200〜350ooの範囲で加熱する
方法がある。加熱時間は装置、温度等により異なるが、
例えば内径3仇妙0、層高20仇吻の吸着層の場合、3
0000で約4時間程度の加熱が必要である。加熱終了
後は、そのま)放冷するか又は強制的に冷却し、この間
特に水分に触れることの無い様に注意する必要がある。
例えば空気に接する場合は空気中の湿分を充分、完全に
除去する必要がある。本発明に用いられる活性炭の種類
はャシ殻炭、獣骨炭、石炭系いづれにおいても、又形状
の如何を問わず、前述のような条件で活性化した場合、
含酸素珪素弗化物は極めて良く吸着され、高純度の四弗
化珪素が得られるものである。
In order to obtain such a moisture content, it is difficult to achieve such a moisture content by ordinary drying as described above, and specific activation conditions are required. The conditions include, for example, in order to prevent the combustion of activated carbon and the influence of moisture in the atmosphere, in an inert gas such as nitrogen gas under increased pressure or reduced pressure, or in a vacuum of 180 to 500 ton.
There is a method of heating at a temperature of 200 to 350 degrees. Heating time varies depending on equipment, temperature, etc.
For example, in the case of an adsorption layer with an inner diameter of 3 mm and a layer height of 20 mm,
0000 and requires heating for about 4 hours. After heating, it is necessary to either leave it to cool or forcibly cool it, and be especially careful not to let it come into contact with moisture during this time.
For example, when coming into contact with air, it is necessary to sufficiently and completely remove moisture from the air. Regardless of the type of activated carbon used in the present invention, such as chassis shell carbon, animal bone carbon, or coal-based carbon, and regardless of its shape, when activated under the conditions described above,
Oxygen-containing silicon fluoride is adsorbed extremely well, and highly pure silicon tetrafluoride can be obtained.

四弗化珪素中の含酸素珪素弗化物、特に(SiF3)2
0の精製度の目安としては、四弗化珪素ガスの赤外吸収
スペクトルをKB巧窓板を付した10比吻長の気体セル
を用いて測定し、2057肌‐1のSiF4のSi一F
伸縮振動に由来する吸収と(SiF3)20のSiF3
の伸縮振動に由来する83秋か‐1の吸収の比を(2)
式により求めこの吸収比を原料ガスおよび精製ガス両者
の間で比較することにより相対的に求めることが出来る
。吸収比=−log(・−者)839伽−・/−log
(・−者)2o57伽−1‘21本発明を更に詳細に述
べるため、以下実施例を示す。実施例 1〜7 S022Q岬、S034の血及び含酸素珪素弗化物とし
て(SiF3)20を含み、この赤外吸収スペクトルの
2057弧‐1と磯軌か‐1の吸収比が1.5である四
弗化珪素ガスを表−1に示した活性化条件、活性炭中水
分量「層高、SiF4流量等の条件にて精製を行なった
Oxygenated silicon fluoride in silicon tetrafluoride, especially (SiF3)2
As a guideline for the degree of purification of 0, the infrared absorption spectrum of silicon tetrafluoride gas is measured using a gas cell with a length of 10 relative length equipped with a KB window plate.
Absorption derived from stretching vibration and SiF3 of (SiF3)20
The absorption ratio of 83-1 due to the stretching vibration is (2)
It can be determined relatively by calculating the absorption ratio using the formula and comparing the absorption ratio between both the raw material gas and the purified gas. Absorption ratio=-log(・-person)839ス-・/-log
(・-person) 2o57佽-1'21 In order to describe the present invention in more detail, Examples will be shown below. Examples 1 to 7 The blood of S022Q Misaki and S034 contains (SiF3)20 as an oxygen-containing silicon fluoride, and the absorption ratio of the 2057 arc-1 and Isokika-1 of this infrared absorption spectrum is 1.5 Silicon tetrafluoride gas was purified under the activation conditions shown in Table 1, water content in activated carbon, layer height, SiF4 flow rate, etc.

精製されたガス中のS02、S03の分析及び赤外吸収
スペクトルを観察した結果、いづれもS020.1〜0
.2四「S031〜3脚であり良好に除去されることを
示しており、(SiF3)20の存在を示す赤外吸収ス
ペクトルの吸収比についても0.15以下であり原料四
弗化珪素の場合の吸収比1.5に比べ著しく減少してい
る。特に実施例4〜7については吸収比0.03以下で
あり極めて純度の高い四発化珪素ガスが得られた。又活
性炭中の水分量は真空中で500℃に加熱しほ)、恒量
になるまでの重量減少量をもって水分量と見なした。比
較例 1〜4実施例1〜7で用いたと同じ四弗化珪素ガ
スを用い、表1に示した条件でゼオラィト系の吸着剤と
してモレキュラーシーブ(5A)(比較例1)モレキュ
ラーシープ(1磯)(比較例2)を、また活性アルミナ
(比較例3)、シリカゲル(比較例4)を用いて精製を
おこなった。
As a result of analyzing S02 and S03 in the purified gas and observing the infrared absorption spectrum, both S020.1 to 0.
.. 24 "S031~3 legs, indicating that it is removed well, and the absorption ratio of the infrared absorption spectrum indicating the presence of (SiF3)20 is also 0.15 or less, and in the case of raw material silicon tetrafluoride. The absorption ratio is significantly reduced compared to the absorption ratio of 1.5.Especially in Examples 4 to 7, the absorption ratio was 0.03 or less, and extremely pure silicon tetracide gas was obtained.Also, the amount of water in the activated carbon was heated to 500°C in vacuum), and the amount of weight loss until it reached a constant weight was regarded as the moisture content.Comparative Examples 1 to 4 Using the same silicon tetrafluoride gas used in Examples 1 to 7, Under the conditions shown in 1, molecular sieve (5A) (comparative example 1), molecular sieve (1iso) (comparative example 2), activated alumina (comparative example 3), and silica gel (comparative example 4) were used as zeolite-based adsorbents. Purification was performed using

この結果は表1に示す如く、一部S02、S03につい
て、吸着効果は認めるものの、いずれも(SjF3)2
0が、かえって増加したり、白色粉末の生成を見、四発
化珪素の精製には到底用いることが出来ないものであっ
た。・ 船 ト !汽 襖 墓 賢 S 登 り 員※ の畔 処増 g蝉 KQ ◎岬 善迄 肇漁 登に ※※ 実施例 8 S02■風、S0310風、日2S■血及び(SiF3
)20を含み、赤外吸収スペクトルの2057仇‐1と
839弧‐1の吸収比が1.8である四弗化珪素を、乾
量基準で水分量0.05%の経青炭系活性炭(破砕炭)
200の‘を充填した内径25の/仇、長さ300w/
仇の吸着層に連結し150の【/minの流速で通過さ
せ、精製を行なった。
As shown in Table 1, the results show that although some adsorption effects are observed for S02 and S03, both (SjF3)2
0 on the contrary, and white powder was produced, making it impossible to use it for refining tetrasilicone.・ Funato! Steam Fusuma Tomb Ken S Climber * Climber KQ ◎Misakizen to Hajime Gyoto** Example 8 S02 ■ Wind, S0310 Wind, Sun 2 S ■ Blood and (SiF3
) 20, and the absorption ratio of 2057-1 to 839-1 in the infrared absorption spectrum is 1.8. (crushed coal)
Inner diameter 25mm filled with 200mm, length 300w/
Purification was carried out by connecting the adsorbent to an adsorption layer and passing it through at a flow rate of 150/min.

この精製ガスを−17000の耐圧冷却トラップ中に貯
えた後全量ガス化させた。このガスの分析結果は、S0
20.2脚、S031脚、日ぶ0.0柳であり、またこ
のガスをKBr窓板を付して100助長のガスセル中に
当該ガス圧1気圧の状態でサンプルを採取し、赤外吸収
スペクトルを測定した結果、(SiF3)20の存在を
示す聡秋地‐1の赤外吸収ピークが殆んど認められない
高純度の四弗化珪素ガスを得た。なお、本実施例での活
性炭の活性化は次のようにおこなった。窒素気流中で2
90℃十10℃で4時間加熱した後、硫酸及びKOHで
脱水、脱炭酸した空気を真空ポンプにて吸引流通させる
ことにより強制的に室温に冷却した。実施例 9 120qoで4時間乾燥した造粒ャシ殻活性炭を充填し
た内径35肌、高さ250肋のカラムにS0220肌、
S083の風を含み、かつ(SiF3)20の赤外吸収
スペクトル839伽‐1とSiF4の2057弧‐1の
吸収比が0.078である四弗化珪素ガスを毎分100
の‘の流速で通過させ、S020.1柳、S031.8
胸、(SiF3)20のSiF4に対する赤外吸収比が
0.15である四弗化珪素ガスが得られた。
This purified gas was stored in a -17000 pressure-resistant cooling trap and then completely gasified. The analysis result of this gas is S0
20.2 legs, S031 legs, Hibu 0.0 Yanagi, and a sample of this gas was collected at a gas pressure of 1 atm in a 100mm gas cell with a KBr window plate, and the infrared absorption As a result of measuring the spectrum, a highly purified silicon tetrafluoride gas was obtained in which almost no infrared absorption peak of Satoshikiji-1, which indicates the presence of (SiF3)20, was observed. The activated carbon in this example was activated as follows. 2 in nitrogen stream
After heating at 90°C to 110°C for 4 hours, the mixture was forcibly cooled to room temperature by sucking and circulating air dehydrated and decarboxylated with sulfuric acid and KOH using a vacuum pump. Example 9 S0220 skin,
Silicon tetrafluoride gas containing S083 wind and having an absorption ratio of 839 arc-1 of (SiF3) 20 and 2057 arc-1 of SiF4 of 0.078 is heated at a rate of 100 per minute.
Passed at a flow rate of 'S020.1 willow, S031.8
A silicon tetrafluoride gas having an infrared absorption ratio of (SiF3)20 to SiF4 of 0.15 was obtained.

このガスを更に別の真空中で300004時間加熱処理
し吸着水分量0.10%(乾量基準)とした造粒ャシ殻
活性炭を充填した内径35柵、高さ25仇舷のカラム中
に100の【/minの流速で通過させ精製を行なった
。この精製ガスを−170℃の耐圧冷却トラツブ中に約
200夕貯えた後、全量ガス化させ、このガス中のS0
2、S03分析の結果はSQO.O脚、S031.の風
であり、またKBr窓板を付した100肋気体セル中に
当該ガスを圧力、1まゞ1気圧になる様に採取して赤外
吸収スペクトルを測定した結果、SiF4と(SiF3
)20の吸収比は0.013であった。実施例 10 Na2SiF6よりNa3NFsを製造する過程で創生
する微粉末状非晶質珪酸を85%精製日ぶ04に懸濁分
散させ、縄拝しながら、無水弗化水素ガスを該懸濁系中
に吹き込むことにより、不純物組成がS021.5脚、
S03■側であり、(SiF3)20が赤外吸収スペク
トルの測定から若干存在し、その吸収比は0.15であ
る四弗化珪素ガスを得た。
This gas was further heat-treated in another vacuum for 300,004 hours to obtain an adsorbed moisture content of 0.10% (dry weight basis) in a column with an inner diameter of 35 mm and a height of 25 mm filled with granulated chassis shell activated carbon. Purification was carried out by passing at a flow rate of 100 min/min. After storing this purified gas in a pressure-resistant cooling tube at -170°C for about 200 days, the entire amount is gasified, and the SO0 in this gas is
2. The result of S03 analysis is SQO. Bow legs, S031. The gas was collected in a 100-cell gas cell equipped with a KBr window plate at a pressure of 1 or 1 atm, and the infrared absorption spectrum was measured.
)20 absorption ratio was 0.013. Example 10 Finely powdered amorphous silicic acid created in the process of producing Na3NFs from Na2SiF6 was suspended and dispersed in 85% purified Hibu 04, and anhydrous hydrogen fluoride gas was poured into the suspended system while stirring. By injecting the impurity composition into S021.5 legs,
A silicon tetrafluoride gas was obtained which was on the S03■ side, contained a small amount of (SiF3)20 as determined by infrared absorption spectrum measurement, and had an absorption ratio of 0.15.

Claims (1)

【特許請求の範囲】[Claims] 1 含酸素珪素弗化物を含む四弗化珪素を活性炭と接触
させることを特徴とする四弗化珪素の精製法。
1. A method for purifying silicon tetrafluoride, which comprises bringing silicon tetrafluoride containing oxygen-containing silicon fluoride into contact with activated carbon.
JP3782481A 1981-03-18 1981-03-18 Purification method of silicon tetrafluoride Expired JPS604126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3782481A JPS604126B2 (en) 1981-03-18 1981-03-18 Purification method of silicon tetrafluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3782481A JPS604126B2 (en) 1981-03-18 1981-03-18 Purification method of silicon tetrafluoride

Publications (2)

Publication Number Publication Date
JPS57156317A JPS57156317A (en) 1982-09-27
JPS604126B2 true JPS604126B2 (en) 1985-02-01

Family

ID=12508265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3782481A Expired JPS604126B2 (en) 1981-03-18 1981-03-18 Purification method of silicon tetrafluoride

Country Status (1)

Country Link
JP (1) JPS604126B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135729U (en) * 1986-02-20 1987-08-26

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59162122A (en) * 1983-03-08 1984-09-13 Mitsui Toatsu Chem Inc Purification of silicon tetrafluoride
JPS6090810A (en) * 1983-10-20 1985-05-22 Mitsui Toatsu Chem Inc Manufacture of gaseous fluorosilane
IT1196983B (en) * 1986-07-23 1988-11-25 Enichem Agricoltura Spa PROCEDURE FOR THE PRODUCTION OF SILICON TETRAFLUORIDE
US5232602A (en) * 1992-07-01 1993-08-03 Hemlock Semiconductor Corporation Phosphorous removal from tetrachlorosilane
US7666379B2 (en) 2001-07-16 2010-02-23 Voltaix, Inc. Process and apparatus for removing Bronsted acid impurities in binary halides
CN102398906B (en) * 2011-07-22 2014-12-17 多氟多化工股份有限公司 Method for producing SiF4 from Na2SiF6 through pyrolysis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135729U (en) * 1986-02-20 1987-08-26

Also Published As

Publication number Publication date
JPS57156317A (en) 1982-09-27

Similar Documents

Publication Publication Date Title
US4382071A (en) Process of preparing silicon tetrafluoride by using hydrogen fluoride gas
JP2003095636A (en) Manufacturing method for tetrafluorosilane and its use
US7608134B1 (en) Decarbonating gas streams using zeolite adsorbents
JPS604126B2 (en) Purification method of silicon tetrafluoride
US4457901A (en) Method of refining silicon tetrafluoride gas
JPWO2006109427A1 (en) Method for purifying disilicon hexachloride and high purity disilicon hexachloride
JP2012504089A (en) Carbohydrate pyrolysis method
GB2399775A (en) Preparation of a zeolite molecular sieve.
JPH0379288B2 (en)
JPS635324B2 (en)
WO2003033135A1 (en) Activated carbon fiber for the removal of organochlorine compounds
JP2899080B2 (en) Method for producing anhydrous silica
JPS6319443B2 (en)
JP2901212B2 (en) Activated carbon for removing organic halogen compounds
JP2001510395A (en) Recovery of perfluorinated compounds and hydrofluorocarbon gas using molecular sieve membrane
JP2651611B2 (en) Hydride gas purification method
JP3297095B2 (en) Dry gas production method
JPH01282115A (en) Method of purifying silicon tetrafluoride gas
JP2000034115A (en) Production of high-purity carbon monoxide
KR102074832B1 (en) Method for refining of high purity tetrafluoromethane
JP2931660B2 (en) Purification method of silicon tetrafluoride gas
JPH07330316A (en) Purification of nitrogen trifluoride gas
JP4173824B2 (en) Method for purifying fluorooxy compounds
RU2160706C1 (en) Method of production of monosilane and disilane
JP4034091B2 (en) SiF4 purification method and high purity SiF4 gas