JP2899080B2 - Method for producing anhydrous silica - Google Patents

Method for producing anhydrous silica

Info

Publication number
JP2899080B2
JP2899080B2 JP2194256A JP19425690A JP2899080B2 JP 2899080 B2 JP2899080 B2 JP 2899080B2 JP 2194256 A JP2194256 A JP 2194256A JP 19425690 A JP19425690 A JP 19425690A JP 2899080 B2 JP2899080 B2 JP 2899080B2
Authority
JP
Japan
Prior art keywords
silica
ppm
silanol group
gas
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2194256A
Other languages
Japanese (ja)
Other versions
JPH0483711A (en
Inventor
邦彦 中村
洋次郎 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2194256A priority Critical patent/JP2899080B2/en
Publication of JPH0483711A publication Critical patent/JPH0483711A/en
Application granted granted Critical
Publication of JP2899080B2 publication Critical patent/JP2899080B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はゾル−ゲル法等によって製造された合成シリ
カ中に含まれるシラノール基を除去し、水分含有量が極
めて少なく、耐熱性に優れた無水シリカを製造するのに
好適な無水シリカの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention removes silanol groups contained in synthetic silica produced by a sol-gel method or the like, has a very small water content, and has excellent heat resistance. The present invention relates to a method for producing anhydrous silica suitable for producing anhydrous silica.

(従来の技術) 石英ガラスの原料としては、従来より天然の水晶が用
いられてきたが、近年になってこの石英ガラスが電子部
品等の材料として使用されるようになり、より高純度の
石英ガラスを得る必要から、その原料として高純度の合
成シリカの使用が検討されている(特開昭51−77612号
公報、特開昭61−186232号公報)。
(Prior Art) Natural quartz has been used as a raw material for quartz glass. However, in recent years, this quartz glass has been used as a material for electronic parts and the like. Because of the necessity of obtaining glass, the use of high-purity synthetic silica as a raw material has been studied (JP-A-51-77612, JP-A-61-186232).

しかしながら、一般的に合成的に製造されたシリカは
その製造条件により数Åから数十Å程度の細孔を有し、
加熱により脱水が始まり、さらに1100℃から1300℃で数
時間焼成すると封孔し、この封孔するまでの焼成過程で
吸着水や凝縮水が離脱し、また、シラノール基の縮合反
応等により脱水が起こる。しかしながら、シリカ内部に
孤立したシラノール基は、この焼成過程で縮合反応を起
こすことができず、水分として内部に残留したまま封孔
されてしまう。そして、このようにシラノール基が残留
したままのシリカを石英ガラスの原料として使用する
と、優れた耐熱性を有する石英ガラスが得られないとい
う問題が生じる。
However, generally synthetically produced silica has pores of several to several tens of millimeters depending on its production conditions,
Heating causes dehydration, and further firing at 1100 ° C. to 1300 ° C. for several hours results in sealing, and during the firing process up to the sealing, adsorbed water and condensed water are released, and dehydration is caused by a condensation reaction of silanol groups. Occur. However, the silanol groups isolated inside the silica cannot cause a condensation reaction in the firing process, and are sealed while remaining inside as moisture. When silica having the silanol group remaining as such is used as a raw material of quartz glass, there arises a problem that quartz glass having excellent heat resistance cannot be obtained.

そこで、このシラノール基を除去する方法として、シ
リカゲルをハロゲン系の脱OH基剤とキャリヤーガスとの
混合ガス気流中で焼成し、シラノール基をハロゲン原子
に置換する反応を利用して除去する方法が知られている
(特開昭61−186232号公報)が、この方法においてもシ
ラノール基に代わってハロゲン基が残留することにな
り、石英ガラスとしたときに残留ハロゲンに起因する耐
熱性の低下や腐食性等の問題が生じる。
Therefore, as a method of removing the silanol group, a method of firing silica gel in a mixed gas stream of a halogen-based deOH group and a carrier gas and using a reaction of replacing the silanol group with a halogen atom has been proposed. It is known (Japanese Patent Application Laid-Open No. 61-186232) that, even in this method, a halogen group remains in place of the silanol group. Problems such as corrosiveness occur.

(発明が解決しようとする課題) したがって、本発明の目的はシリカ中のシラノール基
を可及的に除去し、石英ガラスの製造原料として好適な
水分含有量の少ない無水シリカを得る方法を提供するこ
とにある。
(Problems to be Solved by the Invention) Therefore, an object of the present invention is to provide a method for removing as much silanol groups in silica as possible to obtain anhydrous silica having a low water content suitable as a raw material for producing quartz glass. It is here.

(課題を解決するための手段) 上記問題点を解決するために本発明者らは鋭意研究を
重ねた結果、シリカを乾燥気流中で焼成することによ
り、シリカ粒子中に残留した水分を除去できることを見
出し、本発明を完成するに到った。
(Means for Solving the Problems) As a result of intensive studies conducted by the present inventors to solve the above problems, it has been found that water remaining in silica particles can be removed by firing silica in a dry airflow. And completed the present invention.

すなわち、本発明は、アルコキシシランを加水分解し
て得られたシラノール基を有するシリカを水分含有量が
30ppm以下、流量がシリカ1Kg当たり3l/hr以上の乾燥ガ
ス雰囲気中で1100℃以上の温度で焼成することを特徴と
する無水シリカの製造方法である。
That is, the present invention relates to a silica having a silanol group obtained by hydrolyzing an alkoxysilane,
This is a method for producing anhydrous silica, characterized by firing at a temperature of 1100 ° C. or more in a dry gas atmosphere of 30 ppm or less and a flow rate of 3 l / hr or more per 1 kg of silica.

なお、本発明においてシリカ中のシラノール基はシリ
カ中に含まれる水分とみなされる。
In the present invention, a silanol group in silica is regarded as water contained in silica.

本発明において、焼成するシリカはシラノール基を有
するものであれば特に限定されないが、特に高純度のシ
リカを得るためには、アルコキシシランを水及び必要に
応じて添加される触媒、溶媒等の混合溶液中で加水分解
することによって製造するのがよい。ここで、このよう
な高純度のシリカを製造するのに使用できるアルコキシ
シラン類としては、特に限定されないが、好ましくは炭
素数1〜4のアルコキシ基を有するものであり、例えば
テトラメトキシシラン、テトラエトキシシラン、テトラ
プロポキシシラン、テトラブトキシシラン等を挙げるこ
とができ、特に加水分解反応速度の大きいテトラメトキ
シシランやテトラエトキシシランが好ましい。
In the present invention, the silica to be calcined is not particularly limited as long as it has a silanol group, but in particular, in order to obtain high-purity silica, the alkoxysilane is mixed with water, a catalyst, a solvent, and the like added as necessary. It is good to produce by hydrolysis in a solution. Here, the alkoxysilanes that can be used to produce such high-purity silica are not particularly limited, but are preferably those having an alkoxy group having 1 to 4 carbon atoms, such as tetramethoxysilane and tetramethoxysilane. Ethoxysilane, tetrapropoxysilane, tetrabutoxysilane and the like can be mentioned, and particularly, tetramethoxysilane and tetraethoxysilane having a high hydrolysis reaction rate are preferable.

また、この方法において使用できる触媒としては、反
応後のシリカからの除去の容易さという観点から、塩
酸、硝酸等の無機酸や酢酸等の有機酸又はアンモニアや
アミン類等の無機塩基を挙げることができる。また、こ
の方法において使用できる溶媒としてはメタノール、エ
タノール等のアルコール類を挙げることができる。
Further, as a catalyst that can be used in this method, from the viewpoint of easy removal from silica after the reaction, an inorganic acid such as hydrochloric acid or nitric acid, an organic acid such as acetic acid, or an inorganic base such as ammonia or amines may be mentioned. Can be. Examples of the solvent that can be used in this method include alcohols such as methanol and ethanol.

本発明において使用できる乾燥ガスは、乾燥空気、純
空気、純水素等の水分含有量が30ppm以下のガスであれ
ば、ガスの種類は特に限定されるものではない。また、
乾操ガスの流量は、焼成するシリカ1Kg当たり3l/hr以上
とすることがよい。乾燥ガスの水分含有量が30ppmを越
えたり、乾燥ガスの流量が焼成するシリカ1Kg当たり3l/
hrより少ないと、比較例に示すようにシラノール基を十
分に減少させることができない。
The type of the dry gas that can be used in the present invention is not particularly limited as long as the gas has a water content of 30 ppm or less, such as dry air, pure air, and pure hydrogen. Also,
The flow rate of the drying gas is preferably 3 l / hr or more per kg of silica to be calcined. If the moisture content of the drying gas exceeds 30 ppm, or the flow rate of the drying gas is 3 l /
If it is less than hr, the silanol groups cannot be sufficiently reduced as shown in Comparative Examples.

本発明においては焼成の前に、シリカ中の水分をある
程度減少させる目的で予備焼成することが好ましい。こ
のときの予備焼成雰囲気、予備焼成温度は特に限定され
るものではないが、一般に大気中で、1000〜1100℃の温
度範囲で行われる。
In the present invention, it is preferable to perform preliminary firing before firing in order to reduce the water content in the silica to some extent. The pre-firing atmosphere and pre-firing temperature at this time are not particularly limited, but generally, the pre-firing is performed in the air at a temperature in the range of 1000 to 1100 ° C.

また、本発明における乾燥ガス中での焼成において、
乾燥ガスとシリカの接触効率を良くするため、乾燥ガス
の導入管をシリカを入れたるつぼの底付近まで挿入して
乾燥ガスを流し、効率よくシリカ粒子と乾燥ガスが接触
するようにする。
In the firing in a dry gas according to the present invention,
In order to improve the contact efficiency between the drying gas and the silica, a drying gas introduction pipe is inserted near the bottom of the crucible containing the silica to flow the drying gas so that the silica particles and the drying gas are efficiently contacted.

(作用) 本発明においては、シリカを乾燥ガス中で焼成するの
で、乾燥ガスがシリカ表面に供給されるため、シリカ表
面では高温下でシラノール基が縮合し、水を放出する方
向に平衡が大きく偏り水分が除去される。また、シリカ
表面のシラノール基が除去された後、シリカの表面と内
部との間にシラノール基の濃度勾配ができるので、高温
下でシリカ内部のシラノール基は表面方向に拡散し、シ
リカ表面において前記と同様の理由により水分が除去さ
れる。
(Action) In the present invention, since silica is calcined in a dry gas, the dry gas is supplied to the silica surface, so that the silanol groups condense on the silica surface at a high temperature and the equilibrium is large in the direction of releasing water. Uneven moisture is removed. Further, after the silanol group on the silica surface is removed, a concentration gradient of the silanol group is formed between the surface and the inside of the silica. Water is removed for the same reason as described above.

この繰り返しによってシリカ全体から水分が除去され
無水シリカとなるものと推定される。
It is presumed that water is removed from the entire silica by this repetition to obtain anhydrous silica.

(実施例) 以下に本発明の実施例を示し、本発明をさらに詳しく
説明する。
(Examples) Examples of the present invention will be shown below, and the present invention will be described in more detail.

実施例1 純水36重量部に重炭酸アンモニウム3.7重量部、アン
モニアガス2.6重量部を溶解させた溶液に、攪拌しなが
らメタノール60重量部で希釈したテトラメチルシラン10
0重量部を3時間かけて滴下し、加水分解反応させ、平
均粒径120μmの沈澱シリカゲルを得た。このシリカゲ
ルを乾燥後、大気中で1000℃で予備焼成することにより
脱水を行いシリカ粉を得た。
Example 1 A solution of 3.7 parts by weight of ammonium bicarbonate and 2.6 parts by weight of ammonia gas dissolved in 36 parts by weight of pure water was mixed with 60 parts by weight of methanol while stirring.
0 parts by weight was added dropwise over 3 hours to carry out a hydrolysis reaction to obtain precipitated silica gel having an average particle size of 120 μm. After drying the silica gel, the silica gel was preliminarily calcined at 1000 ° C. in the air to dehydrate, thereby obtaining a silica powder.

このシリカ粉はFT−IR透過法で測定したところ、523p
pmのシラノール基を含有していた。
When this silica powder was measured by the FT-IR transmission method,
It contained a pm silanol group.

次に、得られたシリカ粉を石英ガラスるつぼに入れ、
ふたをしてふたの穴から石英ガラスチューブをシリカ粉
内に挿入し、乾燥ガスの排出口がるつぼの底部近傍とな
るようにし、水分含有量が3ppmの乾燥純空気ガスを石英
ガラスチューブを通してシリカ1kg当たり10l/hrの割合
でシリカ粉中に吹き込みながら昇温し、1150℃の温度で
10時間焼成した。昇温速度は200℃/hrとし、冷却は自然
冷却で行った。
Next, put the obtained silica powder in a quartz glass crucible,
Cover and insert the quartz glass tube into the silica powder through the hole of the lid so that the dry gas outlet is near the bottom of the crucible, and dry pure air gas with a moisture content of 3 ppm is passed through the quartz glass tube. The temperature was raised while blowing into silica powder at a rate of 10 l / hr per kg, and at a temperature of 1150 ° C
Fired for 10 hours. The temperature was raised at a rate of 200 ° C./hr, and cooling was performed by natural cooling.

この様にして焼成したシリカ粉のシラノール基含有量
は59ppmに減少していた。
The silanol group content of the silica powder calcined in this manner was reduced to 59 ppm.

実施例2 焼成温度を1200℃とした以外は、実施例1と同様にし
て行ったところ、シラノール基含有量は38ppmに減少し
ていた。
Example 2 The same procedure as in Example 1 was carried out except that the firing temperature was 1200 ° C., the silanol group content was reduced to 38 ppm.

実施例3 焼成温度を1300℃とし、乾燥ガスとして、水分含有量
10ppmの窒素ガスを用い、乾爆ガス流量をシリカ1kg当た
り5l/hrとした以外は実施例1と同様にして行ったとこ
ろ、シラノール基含有量は42ppmに減少した。
Example 3 The sintering temperature was 1300 ° C., and the moisture content was as a dry gas.
When the same procedure as in Example 1 was carried out except that 10 ppm of nitrogen gas was used and the flow rate of the dry explosion gas was 5 l / hr per 1 kg of silica, the silanol group content was reduced to 42 ppm.

比較例1 焼成温度が1050℃であること以外は実施例1と同様に
行ったところ、焼成温度が低いためシラノール基含有量
は270ppmであった。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the firing temperature was 1050 ° C., and the content of the silanol group was 270 ppm because the firing temperature was low.

比較例2 乾燥ガスを用いずに大気中で焼成を行った以外は実施
例2と同様に行ったところ、シラノール基含有量は320p
pmであった。
Comparative Example 2 The same procedure as in Example 2 was carried out except that calcination was performed in the air without using a dry gas, and the content of the silanol group was 320 p.
pm.

比較例3 乾燥ガスの流量をシリカ1kg当たり2l/hrとした以外は
実施例2と同様にして行ったところ、シラノール基含有
量は110ppmと十分に減少していなかった。
Comparative Example 3 The same procedure as in Example 2 was carried out except that the flow rate of the drying gas was 2 l / hr per 1 kg of silica, and the silanol group content was not sufficiently reduced to 110 ppm.

比較例4 水分含有量が38ppmのガスを用いた以外は実施例1と
同様にして行ったところ、シラノール基含有量は102ppm
と十分に減少していなかった。
Comparative Example 4 The same procedure as in Example 1 was carried out except that the gas having a water content of 38 ppm was used, and the content of the silanol group was 102 ppm.
And did not decrease enough.

比較例5 乾燥ガスを導入する石英ガラスチューブをシリカ粉内
に挿入せず、シリカ粉表面に乾燥ガスを吹きつけるよう
にした以外は実施例2と同様にして行ったところ、シラ
ノール基含有量は126ppmと十分でなかった。
Comparative Example 5 The same procedure as in Example 2 was carried out except that the silica glass tube into which the dry gas was introduced was not inserted into the silica powder, and the dry gas was blown onto the surface of the silica powder. 126 ppm was not enough.

比較例6 予備焼成温度を900℃に抑え、得られたシラノール基
含有量が2120ppmのシリカ粉を用いて焼成した以外は実
施例2と同様にして行ったところ、シラノール基含有量
は137ppmと十分でなかった。
Comparative Example 6 The same procedure as in Example 2 was carried out except that the pre-firing temperature was suppressed to 900 ° C. and the obtained silica powder was fired using silica powder having a silanol group content of 2120 ppm, and the silanol group content was sufficiently 137 ppm. Was not.

(発明の効果) 本発明によれば、シリカ中の水分含有量を低減できる
ので、このシリカを原料として使用することにより、耐
熱性や光学特性に優れた性能を有する石英ガラスを製造
することができる。
(Effects of the Invention) According to the present invention, the water content in silica can be reduced. Therefore, by using this silica as a raw material, it is possible to produce quartz glass having excellent performance in heat resistance and optical properties. it can.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アルコキシシランを加水分解して得られた
シラノール基を有するシリカを水分含有量が30ppm以
下、流量がシリカ1Kg当たり3l/hr以上の乾燥ガス雰囲気
中で1100℃以上の温度で焼成することを特徴とする無水
シリカの製造方法。
1. Silica having silanol groups obtained by hydrolyzing alkoxysilane is calcined at a temperature of 1100 ° C. or more in a dry gas atmosphere having a water content of 30 ppm or less and a flow rate of 3 l / hr or more per 1 kg of silica. A method for producing anhydrous silica.
【請求項2】乾燥ガス雰囲気中で1100℃以上で焼成する
前にシリカを予備焼成し、シリカの水分含有量を1000pp
m以下にしておくことを特徴とする請求項1記載の無水
シリカの製造方法。
2. Before firing at 1100 ° C. or more in a dry gas atmosphere, silica is pre-fired to reduce the water content of the silica to 1000 pp.
2. The method for producing anhydrous silica according to claim 1, wherein the value is not more than m.
JP2194256A 1990-07-23 1990-07-23 Method for producing anhydrous silica Expired - Fee Related JP2899080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2194256A JP2899080B2 (en) 1990-07-23 1990-07-23 Method for producing anhydrous silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194256A JP2899080B2 (en) 1990-07-23 1990-07-23 Method for producing anhydrous silica

Publications (2)

Publication Number Publication Date
JPH0483711A JPH0483711A (en) 1992-03-17
JP2899080B2 true JP2899080B2 (en) 1999-06-02

Family

ID=16321597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194256A Expired - Fee Related JP2899080B2 (en) 1990-07-23 1990-07-23 Method for producing anhydrous silica

Country Status (1)

Country Link
JP (1) JP2899080B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801026B1 (en) * 1994-12-26 2000-08-30 Mitsubishi Chemical Corporation Process for producing synthetic quartz powder
EP1170253A1 (en) * 1996-11-20 2002-01-09 Mitsubishi Chemical Corporation Synthetic quartz powder and silica gel powder
JP4497333B2 (en) * 1999-09-28 2010-07-07 信越石英株式会社 Method for producing synthetic quartz glass powder
JP2002038028A (en) * 2000-07-26 2002-02-06 Toagosei Co Ltd Photocurable resin composition
JP7401943B2 (en) * 2020-02-17 2023-12-20 浙江三時紀新材科技有限公司 Method for preparing spherical silica powder filler, powder filler obtained thereby and its use

Also Published As

Publication number Publication date
JPH0483711A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
US5496527A (en) Process of forming a hydrophobic aerogel
KR101122370B1 (en) Hydrothermally stable alumina
CN102674354B (en) Preparation method of mesoporous silicon carbide material
JPH072513A (en) Production of synthetic quartz glass powder
JP2899080B2 (en) Method for producing anhydrous silica
RU2003102614A (en) ZOL-GEL METHOD FOR PRODUCING DRY GELS OF LARGE SIZES AND MODIFIED GLASSES
JPH02289416A (en) Production of low silanol silica
EP0384284B1 (en) Process for preparing silica having a low silanol content
JP6955700B2 (en) CO2 adsorbent
JP2756366B2 (en) Method for producing hydrophobic airgel
EP0585456A1 (en) Process for producing hydrophobic aerogel
JPH11335115A (en) Production of hydrophobic aerogel
JPH03275527A (en) Porous silica glass powder
JPS604126B2 (en) Purification method of silicon tetrafluoride
KR980700932A (en) PROCESS FOR PRODUCING SYNTHETIC QUARTZ GLASS POWDER
JPH03228817A (en) Production of anhydrous silica
CN113461014B (en) Double-temperature-zone gas-solid synthesis process of silicon disulfide
JP3771599B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
JP3045411B2 (en) Method for producing inorganic microporous body
JPS63156013A (en) Removing method for trace fluorine incorporated in metallic compound
JP4075193B2 (en) Niobium-containing synthetic quartz glass powder, quartz glass molded body, and production method thereof
JPH11310418A (en) Production of synthetic quartz glass powder containing aluminum and molded product of the glass powder
JP2733862B2 (en) Method for producing spherical silica
JP2003165719A (en) Method for producing hydrophobic, lightweight and porous silica gel
JP2628330B2 (en) Production method of silica gel with excellent alkali resistance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees