JPH075305B2 - Method for producing low oxygen rare earth halide - Google Patents

Method for producing low oxygen rare earth halide

Info

Publication number
JPH075305B2
JPH075305B2 JP62178669A JP17866987A JPH075305B2 JP H075305 B2 JPH075305 B2 JP H075305B2 JP 62178669 A JP62178669 A JP 62178669A JP 17866987 A JP17866987 A JP 17866987A JP H075305 B2 JPH075305 B2 JP H075305B2
Authority
JP
Japan
Prior art keywords
rare earth
inert gas
oxygen
halogenated
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62178669A
Other languages
Japanese (ja)
Other versions
JPS6424015A (en
Inventor
泰一郎 三輪
信三 大島
茂 床平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP62178669A priority Critical patent/JPH075305B2/en
Publication of JPS6424015A publication Critical patent/JPS6424015A/en
Publication of JPH075305B2 publication Critical patent/JPH075305B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は低酸素ハロゲン化希土の製造法に関するもので
ある。詳しくは低酸素の希土類金属の製造用として好適
な酸素含有量が少ないハロゲン化希土を製造する方法に
関するものである。
The present invention relates to a method for producing a low-oxygen halogenated rare earth. More particularly, it relates to a method for producing a halogenated rare earth having a low oxygen content, which is suitable for producing a low oxygen rare earth metal.

〔従来技術とその問題点〕[Prior art and its problems]

希土類金属は光磁気ディスクの記憶膜として近年利用さ
れはじめたが、希土類金属中の酸素濃度が記憶膜として
の性能に大きく影響を及ぼすため、酸素濃度が低いこと
が強く望まれている。
Although rare earth metals have recently begun to be used as a storage film for magneto-optical disks, the oxygen concentration in the rare earth metal has a great influence on the performance as a storage film, and therefore a low oxygen concentration is strongly desired.

希土類金属は、ハロゲン化希土をカルシウムのような還
元剤を用いて熱還元することによって製造されるが、こ
のハロゲン化希土の製造法としては、(1)希土類の水
溶液にハロゲン化水素を作用させる方法(2)希土類酸
化物と酸性ハロゲン化水素アンモニウムを混合して加熱
する方法(3)希土類酸化物をハロゲン化水素気流中で
焼成する方法などが知られている。これらの中では
(2)の方法が得られるフッ化希土類中の酸素濃度が最
も低いが、それでも通常1000ppm以上であって、本発明
者らによれば、次の還元過程においては原料ハロゲン化
希土および生成希土類金属中の酸素を減少させることは
出来ず、低酸素希土類金属を得るためには、原料として
低酸素ハロゲン化希土を使用する必要があることが見出
された。
The rare earth metal is produced by thermally reducing the rare earth halide with a reducing agent such as calcium. As the method for producing the rare earth metal, (1) hydrogen halide is added to an aqueous solution of the rare earth. A method of acting (2) a method of mixing and heating a rare earth oxide and an acidic ammonium hydrogen halide is known (3) a method of firing the rare earth oxide in a hydrogen halide stream. Among these, the oxygen concentration in the rare earth fluoride obtained by the method (2) is the lowest, but it is still usually 1000 ppm or more. According to the present inventors, in the subsequent reduction process, the starting halogenated rare earth is rare. It has been found that it is not possible to reduce the oxygen in the soil and the produced rare earth metals, and to obtain low oxygen rare earth metals it is necessary to use low oxygen halogenated rare earths as a raw material.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは低酸素ハロゲン化希土を得るべく鋭意研究
を重ねた結果、ハロゲン化希土を特定の手段で処理する
ときは、その酸素含有量を大幅に低減させることが出来
ることを見出し本発明も完成した。
As a result of intensive studies to obtain a low-oxygen halogenated rare earth, the present inventors have found that when the halogenated rare earth is treated by a specific means, its oxygen content can be significantly reduced. The present invention has also been completed.

すなわち本発明は、工業的価値の大きい低酸素ハロゲン
化希土を製造することを目的とするものであり、その目
的は、ハロゲン化希土を、真空中または不活性ガス雰囲
気下溶融することによって達成される。
That is, the present invention is intended to produce a low oxygen halogenated rare earth of great industrial value, the object is to melt the halogenated rare earth in a vacuum or in an inert gas atmosphere. To be achieved.

本発明において希土とはイットリウムおよび原子番号57
〜71の元素からなる群を示す。
In the present invention, rare earth is yttrium and atomic number 57.
Shows a group consisting of ~ 71 elements.

使用するハロゲン化希土としては、フッ化希土、塩化希
土等いずれも使用出来るが、塩化希土は、潮解性が高い
ため空気中の水分を吸収して酸素含有量が増加する等の
不都合があるので、フッ化希土を用いるのが好ましい。
また、その製法も制限はないが、酸素含有量が少ないハ
ロゲン化希土が得られる方法が好ましく、先に例示した
方法のうちの(2)の希土酸化物と酸性ハロゲン化アン
モニウムを混合して加熱する方法等が好ましい。
As the rare earth halide to be used, rare earth fluoride, rare earth chloride or the like can be used. However, since rare earth chloride has a high deliquescent property, it absorbs moisture in the air to increase the oxygen content. It is preferable to use rare earth fluoride because it is inconvenient.
The method for producing the same is not limited, but a method in which a halogenated rare earth having a low oxygen content is obtained is preferable, and the rare earth oxide (2) of the method exemplified above is mixed with an ammonium acid halide. A method of heating by heating is preferable.

本発明においては、ハロゲン化希土をより好ましくは真
空中または不活性ガス雰囲気中で処理する。
In the present invention, the rare earth halide is more preferably treated in vacuum or in an inert gas atmosphere.

この処理の雰囲気は酸素が少ない程好ましいので、真空
中処理の場合その真空度は低いほどよいが、装置、操作
の面から考慮すると、一般に10-2〜10-8Torr、好ましく
は10-3〜10-6Torrの間から選択される。
Since the atmosphere of this treatment is preferably as low as oxygen, it is better that the degree of vacuum is lower in the case of treatment in a vacuum, but in view of equipment and operation, it is generally 10 -2 to 10 -8 Torr, preferably 10 -3. Selected from ~ 10 -6 Torr.

不活性ガス雰囲気中で処理の場合は、系内を一旦上記真
空度に下げ、次いで不活性ガスを導入するのが望まし
い。高真空にすることなく、雰囲気を不活性ガスで置換
することも不可能ではないが、酸素濃度を希望する値ま
で下げる事が出来ないか、あるいは極めて長時間を要し
得策ではない。
In the case of processing in an inert gas atmosphere, it is desirable that the inside of the system is once reduced to the above vacuum degree and then the inert gas is introduced. It is not impossible to replace the atmosphere with an inert gas without creating a high vacuum, but it is not possible to reduce the oxygen concentration to a desired value, or it takes an extremely long time and is not a good idea.

不活性ガス雰囲気中で処理の場合の圧力は、上記高真空
から常圧を超える圧力までの広い範囲で実施可能で有る
が、通常、常圧〜数mmHg、好ましくは常圧〜数十mmHgの
範囲で選択される。
The pressure in the case of treatment in an inert gas atmosphere can be carried out in a wide range from the high vacuum to a pressure exceeding normal pressure, but is usually normal pressure to several mmHg, preferably normal pressure to several tens mmHg. Selected by range.

不活性ガスとしては、窒素、アルゴン、ヘリウム等があ
げられるが、窒素はタンタル等と窒化物を形成すること
からルツボの材質が限定されることがあり、ヘリウムは
高価であるので、アルゴンを用いるのが最も好ましい。
Examples of the inert gas include nitrogen, argon, and helium. However, since nitrogen forms a nitride with tantalum and the like, the material of the crucible may be limited, and helium is expensive, so argon is used. Is most preferred.

処理の温度は、ハロゲン化希土の融点以上、好ましくは
融点より20℃高い温度以上であり、上限は特にないけれ
ども、装置の材質、操作、熱源費等の点からあまり高い
のは得策でなく、融点より200℃高い温度、好ましくは1
50℃高い温度までとするのが好適である。
The temperature of the treatment is not less than the melting point of the rare earth halide, preferably not less than 20 ° C higher than the melting point, and there is no upper limit, but it is not a good idea that it is too high in terms of equipment material, operation, heat source cost, etc. , 200 ° C above melting point, preferably 1
A temperature up to 50 ° C. is preferable.

加熱は、種々の常法を採用して良く、例えばタンタル、
モリブデン、グラファイト等のルツボを用い、電熱加
熱、誘導加熱等で行われ、又、加熱時間は、特に制限は
ないが昇温後数十分以下でよく、通常2〜30分、好まし
くは3〜20分の範囲から選べは十分である。
For heating, various conventional methods may be adopted, for example, tantalum,
Using a crucible such as molybdenum or graphite, it is carried out by electric heating, induction heating or the like, and the heating time is not particularly limited, but may be several tens of minutes or less after heating, usually 2 to 30 minutes, preferably 3 to It is sufficient to choose from the range of 20 minutes.

かくして処理を行ったあとは、そのままの雰囲気下任意
の速度で冷却すればよい。冷却後取り出したハロゲン化
希土は、不活性ガス雰囲気中で取り扱うことが好ましい
が、短時間であれば空気に触れても酸素含有量に大きい
影響は認められない。
After the treatment in this way, it may be cooled at an arbitrary rate in the same atmosphere. The rare earth halide taken out after cooling is preferably handled in an inert gas atmosphere, but even if it is exposed to air for a short time, the oxygen content is not significantly affected.

〔実施例〕〔Example〕

以下、本発明を実施例によって具体的に説明するが、本
発明はその要旨を超えない限り以下の実施例に限定され
るものではない。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to the following examples unless it exceeds the gist.

実施例1 酸素含有量1500ppmのフッ化テルビウム(融点1172℃)2
kgをタンタルルツボに充填し、高周波真空熱炉に入れて
内圧を2×10-4Torrに保ちながら1200℃に昇温溶解し
た、五分間保持した後そのままの雰囲気で冷却した。得
られたフッ化テルビウムの酸素含有量は30ppmであっ
た。
Example 1 Terbium fluoride with an oxygen content of 1500 ppm (melting point 1172 ° C.) 2
The tantalum crucible was filled with kg, placed in a high-frequency vacuum heating furnace, heated to 1200 ° C. while maintaining the internal pressure at 2 × 10 −4 Torr, melted, held for 5 minutes and then cooled in the same atmosphere. The oxygen content of the obtained terbium fluoride was 30 ppm.

実施例2 酸素含有量1200ppmのフッ化ガドリニウム(融点1231
℃)3kgをグラファイトルツボに充填し、高周波真空熱
炉に入れて内圧を8×10-5Torrに真空引きした後アルゴ
ンで710mmHg迄復圧した。この雰囲気下で1300℃に昇温
溶解した、15分保持した後そのままの雰囲気で冷却し
た。得られたフッ化ガドリニウムの酸素含有量は60ppm
であった。
Example 2 Gadolinium fluoride having an oxygen content of 1200 ppm (melting point 1231
3 kg) was filled in a graphite crucible, placed in a high-frequency vacuum furnace, the internal pressure was evacuated to 8 × 10 -5 Torr, and the pressure was restored to 710 mmHg with argon. Under this atmosphere, the temperature was increased to 1300 ° C., melting was performed, and the mixture was held for 15 minutes and then cooled in the same atmosphere. The obtained gadolinium fluoride has an oxygen content of 60 ppm.
Met.

〔発明の効果〕〔The invention's effect〕

本発明によるときは、容易な操作により酸素含有量の極
めて少ないハロゲン化希土を得ることが出来るので、工
業的価値は大きい。
According to the present invention, a halogenated rare earth having an extremely low oxygen content can be obtained by an easy operation, so that the industrial value is great.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】ハロゲン化希土を、真空中または不活性ガ
ス雰囲気下溶融することを特徴とする低酸素ハロゲン化
希土の製造法。
1. A method for producing a low-oxygen halogenated rare earth, which comprises melting the halogenated rare earth in a vacuum or in an inert gas atmosphere.
【請求項2】真空中の真空度が10-2〜10-8Torrである特
許請求の範囲第(1)項記載の低酸素ハロゲン化希土の
製造法。
2. The method for producing a low oxygen halogenated rare earth according to claim 1, wherein the degree of vacuum in the vacuum is 10 -2 to 10 -8 Torr.
【請求項3】不活性ガス雰囲気が10-2〜10-8Torrの真空
にした後に不活性ガスを導入して調整した不活性ガス雰
囲気である特許請求の範囲第(1)項記載の低酸素ハロ
ゲン化希土の製造法。
3. The low-temperature atmosphere according to claim 1, wherein the inert gas atmosphere is an inert gas atmosphere prepared by introducing an inert gas after applying a vacuum of 10 -2 to 10 -8 Torr. Oxygen halide rare earth manufacturing method.
【請求項4】溶融温度がハロゲン化希土の融点ないし融
点より200℃高い温度である特許請求の範囲第(1)〜
(3)項のいずれかの1項の低酸素ハロゲン化希土の製
造法。
4. The melting temperature of the halogenated rare earth or a temperature 200 ° C. higher than the melting point of the rare earth halide.
The method for producing a low-oxygen halogenated rare earth according to any one of (3).
【請求項5】不活性ガスがアルゴン、ヘリウムまたは窒
素である特許請求の範囲第(1)、(3)又は(4)項
のいずれかの1項の低酸素ハロゲン化希土の製造法。
5. The method for producing a low oxygen halogenated rare earth according to any one of claims (1), (3) and (4), wherein the inert gas is argon, helium or nitrogen.
JP62178669A 1987-07-17 1987-07-17 Method for producing low oxygen rare earth halide Expired - Lifetime JPH075305B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62178669A JPH075305B2 (en) 1987-07-17 1987-07-17 Method for producing low oxygen rare earth halide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62178669A JPH075305B2 (en) 1987-07-17 1987-07-17 Method for producing low oxygen rare earth halide

Publications (2)

Publication Number Publication Date
JPS6424015A JPS6424015A (en) 1989-01-26
JPH075305B2 true JPH075305B2 (en) 1995-01-25

Family

ID=16052496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62178669A Expired - Lifetime JPH075305B2 (en) 1987-07-17 1987-07-17 Method for producing low oxygen rare earth halide

Country Status (1)

Country Link
JP (1) JPH075305B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2648802B1 (en) * 1989-06-22 1991-09-20 Rhone Poulenc Chimie DEHYDRATE MIXTURES OF RARE EARTH HALIDE AND ALKALINE EARTH OR ALKALINE
JPH03215634A (en) * 1990-01-18 1991-09-20 Shin Etsu Chem Co Ltd Method for lowering oxygen content of rare earth metal
JP2702649B2 (en) * 1992-09-17 1998-01-21 信越化学工業株式会社 Manufacturing method of high purity rare earth metal

Also Published As

Publication number Publication date
JPS6424015A (en) 1989-01-26

Similar Documents

Publication Publication Date Title
JPS6117495A (en) Formation of silicon single crystal
JPH0259467A (en) Stable superconductive substance and its production
JPH075305B2 (en) Method for producing low oxygen rare earth halide
JPH01116038A (en) Manufacture of high purity rare earth metal
JP2702649B2 (en) Manufacturing method of high purity rare earth metal
JPS60155614A (en) Additive for metallurgical liquid, manufacture and device
EP0634359A1 (en) Preparation of high alpha-type silicon nitride powder
JP2803108B2 (en) Heat treatment method for steel
JPH01148799A (en) Heat treatment of cd-hg-te crystal
JPS60210591A (en) Production of semiinsulating gaas single crystal
DK0866508T3 (en) Process for producing superconductors of rare-earth barium cuprates
JPS6374910A (en) Production of high-purity silicon tetrafluoride
JPS62146227A (en) Production of metallic rhenium
CA2048144A1 (en) Process for producing molded bodies from precursors of oxidic high-temperature superconductors
JP2725042B2 (en) Manufacturing method of carbon / graphite member
JPH0585627B2 (en)
JPH06124816A (en) Rare earth sintered magnet, its manufacture, and alloy powder for it
CN111270056A (en) Method for heat treatment of alloy containing volatile element in saturated steam environment of the element
JPH04190959A (en) Manufacture of hydrogen occluding alloy
JPH02225312A (en) Purification of carbon-graphite material
JPS63107806A (en) Purification of aluminum nitride powder
JPH01100007A (en) Production of aluminum nitride with cubic system
JPH06172884A (en) Desoxidization method of rare-earth metal
JPH10218613A (en) High purification of silicon nitride powder
JPH03170627A (en) Method for deoxidizing from rare earth metal