JPS6373692A - Manufacture of semiconductor laser device - Google Patents

Manufacture of semiconductor laser device

Info

Publication number
JPS6373692A
JPS6373692A JP22056786A JP22056786A JPS6373692A JP S6373692 A JPS6373692 A JP S6373692A JP 22056786 A JP22056786 A JP 22056786A JP 22056786 A JP22056786 A JP 22056786A JP S6373692 A JPS6373692 A JP S6373692A
Authority
JP
Japan
Prior art keywords
layer
type
substrate
grown
ridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22056786A
Other languages
Japanese (ja)
Inventor
Atsuya Yamamoto
敦也 山本
Masanori Hirose
広瀬 正則
Takashi Sugino
隆 杉野
Akio Yoshikawa
昭男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22056786A priority Critical patent/JPS6373692A/en
Publication of JPS6373692A publication Critical patent/JPS6373692A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve the bondability of assembling and efficiently escape the heat generated by flattening a completely grown layer surface by altering the crystal growing conditions of the uppermost layer in the formation of a thin multilayer film having a double hetero structure including the active layer on a substrate having an even part. CONSTITUTION:A photomask 10 is so formed as to form a stripe on an n-type GaAs substrate 2, and a ridge is formed by chemical etching. Then, an n-type GaAs buffer layer 3, an n-type AlyGa1-yAs clad layer 4, a nondoped AlxGa1-xAs active layer 5, a p-type AlyGa1-yAs clad layer 6, and an n-type AlzGa1-zAs buried layer 7 are sequentially grown. Then, the shape of the surface of the layer 7 is formed with an uneven surface by reflecting the shape of the substrate 2. An n-type GaAs cap layer 8 formed thereon is increased at the growing velocity and the molar ratio of the group V element with respect to group III element to flatten the surface of the grown layer. Then, Zn is diffused at 11 to the layer 6 at the top of the ridge at the center, and n-type and p-type electrodes 1, 9 are formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種電子機器、光学機器の光源として、近年急
速に用途が拡大し、需要が高まっている半導体レーザ装
置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method of manufacturing a semiconductor laser device, which has been rapidly used as a light source for various electronic devices and optical devices in recent years and is in increasing demand.

従来の技術 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能の1つに単−横モード発振
があげられる。これを実現するにはレーザ光が伝播する
活性領域付近にレーザ素子中を流れる電流を集中するよ
うにその拡がりを抑制し、かつ光を閉じ込める必要があ
る。このような半導体レーザは通常ストライプ型レーザ
と呼ばれる。最もしきい値を低くでき、単−横モード発
振するレーザとしては埋め込みストライプ型半導体レー
ザがある。
2. Description of the Related Art One of the important performances required of a semiconductor laser as a coherent light source for electronic equipment and optical equipment is single-transverse mode oscillation. To achieve this, it is necessary to suppress the spread of the current flowing through the laser element so as to concentrate it near the active region where the laser light propagates, and to confine the light. Such a semiconductor laser is usually called a stripe type laser. A buried stripe type semiconductor laser is a laser that can achieve the lowest threshold value and oscillates in a single transverse mode.

通常、埋め込み型半導体レーザの作製には2回の結晶成
長が必要とされていた。又、最近、基板に凸状のリッジ
を設け、その上に構成される埋め込み型レーザも示され
ている。
Normally, two crystal growth steps are required to fabricate a buried semiconductor laser. Also, recently, a buried laser has been shown in which a convex ridge is provided on a substrate and is constructed on the ridge.

発明が解決しようとする問題点 しかしながら、基板にリッジを設け、1回の結晶成長で
作製した埋め込み型半導体レーザは、成長した表面が基
板の形状を反映して凸状になり。
Problems to be Solved by the Invention However, in a buried semiconductor laser fabricated by providing a ridge on a substrate and performing one crystal growth, the grown surface becomes convex reflecting the shape of the substrate.

アップサイドダウンにより組立てを行うと、密着性が悪
いばかりかレーザ動作による熱を効率よく逃がせなくな
り、信頼性にまで悪影響を及ぼすといった欠点があった
When assembled upside down, not only the adhesion is poor, but also the heat generated by the laser operation cannot be efficiently dissipated, which has a negative effect on reliability.

本発明は上記欠点に鑑み、1回の結晶成長で作製でき、
かつ成長した表面をより平坦化し、密着性よくボンディ
ング可能で、レーザ動作に伴う発熱も効率よく逃がすこ
とができる半導体レーザ装置の製造方法を提供するもの
である。
In view of the above drawbacks, the present invention can be produced by one crystal growth,
In addition, the present invention provides a method for manufacturing a semiconductor laser device in which the grown surface can be flattened, bonding can be performed with good adhesion, and heat generated by laser operation can be efficiently dissipated.

問題点を解決するだめの手段 上記問題点を解決するために1本発明の半導体レーザ装
置の製造方法は、一導電型基板上にたがいに対向した二
つの凹部を形成して上記二つの凹部間にストライブ状の
凸部を形成し上記基板上にMOCVD法により活性層を
含む二重ヘテロ構造を持つ多層薄膜を形成し、上記凸部
の両側面において少くとも上記活性層直上の薄膜層まで
は、積層方向に同一の頭外で多層薄膜を上記凸部上と独
立に形成し、少なくとも最上層のみ成長速度を上げて形
成して、一部が上記一導電型と逆の導電型を示す領域を
形成することで構成されている。
Means for Solving the Problems In order to solve the above-mentioned problems, a method for manufacturing a semiconductor laser device according to the present invention includes forming two recesses facing each other on a substrate of one conductivity type, and forming a gap between the two recesses. A striped convex portion is formed on the substrate, and a multilayer thin film having a double heterostructure including an active layer is formed on the substrate by MOCVD, and at least up to the thin film layer directly above the active layer on both sides of the convex portion. In this method, a multilayer thin film is formed outside the same head in the stacking direction independently of the above-mentioned convex part, and at least only the top layer is formed at an increased growth rate, so that a part of the film exhibits a conductivity type opposite to the above-mentioned one conductivity type. It consists of forming areas.

作   用 凹凸部を有する基板上にMOCVD法を用いて結晶成長
を行う場合、成長条件により成長層表面の形状が変化す
る。A8H3流量を増やした状態で■族元素に対する■
族元素の比を大きくすると凹凸のある基板上の成長層は
基板上の凹凸を埋めるような成長をする。結晶成長条件
を最適化することで、凹凸部を有する基板上に成長した
層の表面を平坦にすることができる。
Function When crystal growth is performed using the MOCVD method on a substrate having uneven portions, the shape of the surface of the growth layer changes depending on the growth conditions. ■ for group elements with increased A8H3 flow rate
When the ratio of group elements is increased, the layer grown on the uneven substrate grows to fill the unevenness on the substrate. By optimizing crystal growth conditions, it is possible to flatten the surface of a layer grown on a substrate having uneven parts.

このように、基板に凸部を設けて結晶成長をしても表面
を平坦にした半導体レーザを作製できる。
In this way, even if a convex portion is provided on the substrate and crystal growth is performed, a semiconductor laser with a flat surface can be manufactured.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例における半導体レーザ装置の断
面図を示すものである。第1図において1はn側電極、
2はn型GaAs基板、3はn型GaAs7771層、
4はn型AlGaAsクラッド層、6はノンドープAI
 GaAs活性層、6はp型AIG aAtsクラッド
層、7はn型AlGaAs埋め込み層、8!l′in型
GaAs  キャップ層、9はp側電極、11はZn拡
散領域である。
FIG. 1 shows a cross-sectional view of a semiconductor laser device in an embodiment of the present invention. In FIG. 1, 1 is the n-side electrode;
2 is an n-type GaAs substrate, 3 is an n-type GaAs 7771 layer,
4 is an n-type AlGaAs cladding layer, 6 is a non-doped AI
GaAs active layer, 6 p-type AIG aAts cladding layer, 7 n-type AlGaAs buried layer, 8! An l'in type GaAs cap layer, 9 a p-side electrode, and 11 a Zn diffusion region.

次に本発明の具体的な作製方法について説明する。Next, a specific manufacturing method of the present invention will be explained.

まず第2図(−)に示すように、n型GaAs基板2の
(100)面上に8μmの間隔で8μmのストライプを
作るようにフォトマスク10を形成する。
First, as shown in FIG. 2(-), a photomask 10 is formed on the (100) plane of an n-type GaAs substrate 2 so as to form stripes of 8 .mu.m at intervals of 8 .mu.m.

つぎに第2図(b)に示すように化学エツチング(例え
ばH2SO4:H2o2=H2o=1:8二8)により
2.0pmまで堀り、<011)方向に平行にリッジを
設ける。
Next, as shown in FIG. 2(b), etching is performed to a depth of 2.0 pm by chemical etching (for example, H2SO4:H2o2=H2o=1:828) to form a ridge parallel to the <011) direction.

次にMOCVD法によりn型GaAsバッファ層3(厚
さo、 6pm)n型AJyGa1−アAg クラフト
層4(y=o、3厚さ1.0μm)、ノンドープAlx
””1−XA”活性層5(x=0.1.厚さ0.1μm
)、p型Al yG a 1+ 、Atsクラッド層6
(7=0.3、厚さ1.1can)、n型A12Ga、
−、As埋め込み層下(Z=0.3、厚さ1.571m
)を順次成長させる。−例として結晶成長条件は、成長
速度4μm/時、成長温度SOO″C2■族元素に対す
る■族元素のモル比(III/V比)は60である。さ
らに連続してn型GaAsキャブ1層8(厚さ0.5μ
m)を成長する。−例として結晶成長条件は、成長速度
10μm/時、成長温度800″C,I[l/V比は1
ooである。n型GaAs基板2にはりフジが設けであ
るため、リッジ上部とそうでない部分では独立して成長
が起こる。また、リッジ端では(111)面を出しなが
ら成長が起こり、その付近では成長速度が速い。このた
め埋め込み層7ではりフジ上部とそうでない部分がつな
がった成長になる。しかし、埋め込み層7の表面の形状
はn型GaAs基板2の形状を反映して凹凸が生じてい
る。この上に同一結晶成長条件でn型GaAsキャップ
層7を成長しても表面は依然として凹凸が残るが、成長
条件を例えば上記の様に成長速度、vym比を増加する
ことで成長層表面の平坦化ができる。
Next, by the MOCVD method, an n-type GaAs buffer layer 3 (thickness o, 6 pm), an n-type AJyGa1-Ag craft layer 4 (y=o, 3 thickness 1.0 μm), and a non-doped Alx
""1-XA" active layer 5 (x = 0.1. Thickness 0.1 μm
), p-type Al yGa 1+ , Ats cladding layer 6
(7=0.3, thickness 1.1can), n-type A12Ga,
-, under the As buried layer (Z=0.3, thickness 1.571 m
) to grow sequentially. - For example, the crystal growth conditions are a growth rate of 4 μm/hour, a growth temperature of SOO''C2, and a molar ratio of group III elements to group III elements (III/V ratio) of 60. 8 (thickness 0.5μ
m) to grow. - For example, the crystal growth conditions are: growth rate 10 μm/hour, growth temperature 800″C, I [l/V ratio is 1
It is oo. Since the n-type GaAs substrate 2 is provided with a ridge, growth occurs independently on the upper part of the ridge and on the other parts. Furthermore, growth occurs at the ridge edge while exposing the (111) plane, and the growth rate is fast in the vicinity. Therefore, the buried layer 7 grows so that the upper part of the burr and the other part are connected. However, the shape of the surface of the buried layer 7 reflects the shape of the n-type GaAs substrate 2 and has irregularities. Even if the n-type GaAs cap layer 7 is grown on top of this under the same crystal growth conditions, the surface will still remain uneven, but by increasing the growth rate and vym ratio as described above, the surface of the grown layer can be made flat. can be converted into

次に中央のりフジ上部のp型klG aAsクラッド層
6までZn拡散11を行い、最後にn側、p側の電極1
,9を形成する。電流注入を行うと、電流はn型GaA
s基板2上のリッジ部分とZn拡散11により形成され
たp型領域により上下で狭さくされる。その結果30m
Aのしきい電流値で単−横モード発振する半導体レーザ
装置が得られた。また1本発明のように、n型GaAs
基板2上に設けたりフジが、実際のレーザ動作を行う領
域外にも設けであるため、成長表面の形状は単一のりフ
ジ上に成長するよりもより平坦化しやすくなる。上記の
ように成長表面が平坦化されることによりレーザをup
side downで組立てる際には、ボンディング時
の密着性が悪い、熱放散が悪いといった問題がなくなる
Next, Zn diffusion 11 is performed to the p-type klGaAs cladding layer 6 on the upper part of the center glue, and finally the n-side and p-side electrodes 1
,9 are formed. When current is injected, the current is n-type GaA
It is narrowed at the top and bottom by the ridge portion on the s-substrate 2 and the p-type region formed by the Zn diffusion 11. As a result, 30m
A semiconductor laser device that oscillates in a single transverse mode at a threshold current value of A was obtained. In addition, as in the present invention, n-type GaAs
Since the edges provided on the substrate 2 are also provided outside the area where the actual laser operation is performed, the shape of the growth surface can be more easily flattened than when grown on a single edge. As mentioned above, the growth surface is flattened and the laser is turned up.
When assembled side down, problems such as poor adhesion during bonding and poor heat dissipation are eliminated.

なお、本実施例ではGaAs 、AlGaAs系半導体
レーザについて述べたが、InP系や他の多元混晶系を
含む化合物半導体を材料とする半導体レーザについても
同様に本発明を適用することができる。
In this embodiment, GaAs and AlGaAs semiconductor lasers have been described, but the present invention can be similarly applied to semiconductor lasers made of compound semiconductors including InP and other multi-component mixed crystal systems.

また導電性基板にはp型基板を用いてイオン注入により
電流ストライプを形成してもよい。さらに、結晶成長に
は実施例ではMOCVD法を用いたが。
Alternatively, a p-type substrate may be used as the conductive substrate, and current stripes may be formed by ion implantation. Furthermore, MOCVD method was used for crystal growth in the example.

MBE法を用いてもよい。MBE method may also be used.

発明の効果 以上のように、本発明の特徴は基板上に凸部を設け、そ
の両側にも凹部を介して凸部を設け。
Effects of the Invention As described above, the feature of the present invention is that a convex portion is provided on the substrate, and convex portions are provided on both sides of the convex portion via concave portions.

MOCVD法により活性層を含む二重ヘテロ構造を形成
した半導体レーザにおいて、最上層の結晶成長条件を変
えて完全に成長層表面を平坦化したところにある。本発
明の構造とすることで1回の結晶成長で成長層表面が平
坦な埋め込み型レーザが作製でき、アップサイドダウン
で組立てた場合。
In a semiconductor laser in which a double heterostructure including an active layer is formed by the MOCVD method, the crystal growth conditions of the top layer are changed to completely flatten the surface of the grown layer. With the structure of the present invention, a buried laser with a flat growth layer surface can be produced by one crystal growth, and when assembled upside down.

完全に密着性よくポンディングでき、レーザ動作に伴な
う発熱も効率よく逃がすことができる。
It can be bonded with perfect adhesion, and the heat generated by laser operation can be efficiently dissipated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における半導体レーザ装置の断
面図、第2図(a)、Φ)はその製造過程を示す図であ
る。 1・・・・・・n側電極、2・・・・・・n型GaAs
基板、3・・・・・・n型GaAsバッフ1層、4・・
・・・・n型AlGaAsクラッド層、6・・・・・・
ノンドープAlGaAs活性層、6・・・・・・p型A
lGaAsクラッド層、7・・・・・・n型AlGaA
s埋め込み層、8・・・・・・n型GaAsキャップ層
、9・・・・・・p側電極、1o・・・・・・フォトマ
スク、11・・・・・・Zn拡散領域。 /−n副ta 2−−− n!! eaAs↓榎 3 ・−71’l hAs )(−/ 7744−−−
n VAIGaAsケ9フド層5・−Ajt、aAs冶
性漫 b  P 型AIEraASクラy ト、47− n 
WJ!AIEraAs埋め込す層B−711型&ポSキ
?ツブ1 2  77 %’ Cra As 甚、板/θ−フォト
マスク 第2図 ((1] (b)
FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention, and FIG. 2(a), Φ) is a diagram showing the manufacturing process thereof. 1...n-side electrode, 2...n-type GaAs
Substrate, 3... One layer of n-type GaAs buffer, 4...
...N-type AlGaAs cladding layer, 6...
Non-doped AlGaAs active layer, 6... p-type A
lGaAs cladding layer, 7...n-type AlGaA
s-buried layer, 8...n-type GaAs cap layer, 9...p-side electrode, 1o...photomask, 11...Zn diffusion region. /-n vice ta 2--- n! ! eaAs↓Enoki3 ・-71'l hAs ) (-/ 7744---
n VAIGaAske 9 hood layer 5・-Ajt, aAs metallurgy b P type AIEraAS cryt, 47-n
WJ! AIEraAs embedding layer B-711 type & PoSki? Tube 1 2 77%' Cra As 甚, Plate/θ-Photomask Figure 2 ((1) (b)

Claims (1)

【特許請求の範囲】[Claims] 一導電型基板上にたがいに対向した二つの凹部を形成し
て上記2つの凹部間にストライプ状凸部を形成し上記基
板上にMOCVD法により活性層を含む二重ヘテロ構造
を持つ多層薄膜を形成し、上記凸部の両側面において少
なくとも上記活性層直上の薄膜層までは、積層方向に同
一の順序で多層薄膜を上記凸部と独立に形成し、少なく
とも最上層のみ成長速度を上げて形成して一部が上記一
導電型と逆の導電型を示す領域を形成することを特徴と
する半導体レーザ装置の製造方法。
Two recesses facing each other are formed on a substrate of one conductivity type, a striped protrusion is formed between the two recesses, and a multilayer thin film having a double heterostructure including an active layer is formed on the substrate by MOCVD. forming a multilayer thin film on both sides of the convex part, at least up to the thin film layer directly above the active layer, in the same order in the stacking direction and independently from the convex part, and at least the top layer is formed by increasing the growth rate. A method for manufacturing a semiconductor laser device, comprising: forming a region in which a portion thereof exhibits a conductivity type opposite to the one conductivity type.
JP22056786A 1986-09-17 1986-09-17 Manufacture of semiconductor laser device Pending JPS6373692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22056786A JPS6373692A (en) 1986-09-17 1986-09-17 Manufacture of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22056786A JPS6373692A (en) 1986-09-17 1986-09-17 Manufacture of semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6373692A true JPS6373692A (en) 1988-04-04

Family

ID=16753013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22056786A Pending JPS6373692A (en) 1986-09-17 1986-09-17 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6373692A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111382A (en) * 1990-08-30 1992-04-13 Sharp Corp Manufacture of semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04111382A (en) * 1990-08-30 1992-04-13 Sharp Corp Manufacture of semiconductor laser device

Similar Documents

Publication Publication Date Title
JPH0278280A (en) Semiconductor light emitting device
JPH0243351B2 (en)
JPH05218586A (en) Semiconductor laser device and manufacture of the same
JPS6373692A (en) Manufacture of semiconductor laser device
JPS6144485A (en) Semiconductor laser device and manufacture thereof
JPS63122187A (en) Semiconductor laser
JPS6373691A (en) Semiconductor laser device
JP3573976B2 (en) Multi-beam laser diode
JPS59152683A (en) Surface light emitting semiconductor laser
JPH02116187A (en) Semiconductor laser
US5963786A (en) Method of making semiconductor laser with inverted mesa shaped ridge with cervical surface
JP2000294877A (en) High output semiconductor laser and manufacture of the same
JP5122708B2 (en) Multi-beam semiconductor laser device
JPS62144380A (en) Manufacture of semiconductor laser device
JP2001189530A (en) Semiconductor laser element and its manufacturing method
JPS6129183A (en) Semiconductor laser
JPH046113B2 (en)
JPS63302587A (en) Semiconductor laser
JPS6118189A (en) Semiconductor laser array device and manufacture thereof
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPH0247886A (en) Manufacture of surface emission type semiconductor laser
JPS61168982A (en) Semiconductor photoamplifying element
JPH067621B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6265491A (en) Semiconductor laser element
JPS5843590A (en) Semiconductor laser