JPS6373691A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS6373691A
JPS6373691A JP22056686A JP22056686A JPS6373691A JP S6373691 A JPS6373691 A JP S6373691A JP 22056686 A JP22056686 A JP 22056686A JP 22056686 A JP22056686 A JP 22056686A JP S6373691 A JPS6373691 A JP S6373691A
Authority
JP
Japan
Prior art keywords
type
layer
ridge
substrate
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22056686A
Other languages
Japanese (ja)
Inventor
Atsuya Yamamoto
敦也 山本
Masanori Hirose
広瀬 正則
Takashi Sugino
隆 杉野
Akio Yoshikawa
昭男 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP22056686A priority Critical patent/JPS6373691A/en
Publication of JPS6373691A publication Critical patent/JPS6373691A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/227Buried mesa structure ; Striped active layer

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To be able to manufacture a semiconductor laser by once crystal growth, to flatten the surface, to improve the bondability, and to efficiently escape the heat generated upon laser operation by forming a ridge also at a substrate except the region of the ridge for actually laser-operating to form a multilayer thin film having a double hetero structure including an active layer. CONSTITUTION:A photomask 10 is so formed as to form a stripe on an n-type GaAs substrate 2, and a ridge is formed by chemical etching. Then, an n-type GaAs buffer layer 3, an n-type AlyGa1-yAs clad layer 4, a nondoped AlxGa1-xAs active layer 5, a p-type AlyGa1-yAs clad layer 6, an n-type AlzGa1-zAs buried layer 7, and an n-type GaAs cap layer 8 are sequentially grown. Then, Zn is diffused at 11 to the layer 6 at the top of the ridge at the center, and n-type and p-type electrodes 1, 9 are formed. When a current is injected, the current is narrowed by the upper and lower parts by the ridge on the substrate 2 and the p-type region formed by diffusing Zn 11, thereby obtaining a semiconductor laser which oscillates in a single lateral mode.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種電子機器、光学機器の光源として、近年急
速に用途が拡大し、需要が高まっている半導体レーザ装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device, which has been rapidly used as a light source for various electronic devices and optical devices in recent years and is in increasing demand.

従来の技術 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能の1つに単−横モード発振
があげられる。これを実現するにはレーザ光が伝播する
活性領域付近にレーザ素子中を流れる電流を集中するよ
うにその拡がりを抑制し、かつ光を閉じ込める必要があ
る。このような半導体レーザは通常ストライプ型レーザ
と呼ばれる。最もしきい値を低くでき、単−横モード発
振するレーザとしては埋め込みストライプ型半導体レー
ザがある。通常、埋め込み型半導体レーザの作製には2
回の結晶成長が必要とされていた。
2. Description of the Related Art One of the important performances required of a semiconductor laser as a coherent light source for electronic equipment and optical equipment is single-transverse mode oscillation. To achieve this, it is necessary to suppress the spread of the current flowing through the laser element so as to concentrate it near the active region where the laser light propagates, and to confine the light. Such a semiconductor laser is usually called a stripe type laser. A buried stripe type semiconductor laser is a laser that can achieve the lowest threshold value and oscillates in a single transverse mode. Usually, two steps are required to fabricate an embedded semiconductor laser.
crystal growth was required.

又、最近、基板に凸状のリッジを設け、その上に構成さ
れる埋め込み型レーザも示されている。
Also, recently, a buried laser has been shown in which a convex ridge is provided on a substrate and is constructed on the ridge.

発明が解決しようとする問題点 しかしながら、基板にリッジを設け、1回の結晶成長で
作製した埋め込み型半導体レーザは、成長した表面が基
板の形状を反映して凸状になり、アップサイドダウンに
より組立てを行うと、密着性が悪いばかりかレーザ動作
の際の放熱特性が悪く信頼性にまで悪影響を及ぼすとい
った欠点があった。
Problems to be Solved by the Invention However, in a buried semiconductor laser fabricated by providing a ridge on a substrate and performing one crystal growth, the grown surface becomes convex to reflect the shape of the substrate, and due to upside-down When assembled, there were drawbacks such as not only poor adhesion but also poor heat dissipation characteristics during laser operation, which adversely affected reliability.

本発明は上記欠点に鑑み、1回の結晶成長で作製でき、
かつ成長した表面をより平坦化し、密着性よくボンディ
ング可能で、レーザ動作に伴う発熱も効率よく逃がすこ
とができる半導体レーザ装置を提供するものである。
In view of the above drawbacks, the present invention can be produced by one crystal growth,
Furthermore, the present invention provides a semiconductor laser device in which the grown surface can be flattened, bonding can be performed with good adhesion, and heat generated by laser operation can be efficiently dissipated.

問題点を解決するための手段 上記問題点を解決するために、本発明の半導体レーザ装
置は、一導電型基板上にストライプ状凸部を形成し、上
記凸部の両側にも凹部を介して凸部を設けた基板上に、
活性層を含む二重ヘテロ構造を持つ多層薄膜からなり、
上記凸部の両側面においても少なくとも上記活性層直上
の薄膜層までは積層方向に同一の順序で多層薄膜が凸部
及び凹部独立に構成され、上記多層薄膜直上に、その一
部が上記基板と逆の導電型を示す薄膜とすることで構成
されている。
Means for Solving the Problems In order to solve the above-mentioned problems, the semiconductor laser device of the present invention has a stripe-like convex portion formed on a substrate of one conductivity type, and a concave portion formed on both sides of the convex portion. On the substrate with convex parts,
Consists of a multilayer thin film with a double heterostructure including an active layer,
On both sides of the convex part, multilayer thin films are formed independently in the convex part and the concave part in the same order in the stacking direction up to at least the thin film layer immediately above the active layer, and directly above the multilayer thin film, a part of the thin film is formed with the substrate. It is constructed by using thin films that exhibit opposite conductivity types.

作  用 凸部を設けた基板上にMOCVD法などにより結晶成長
を行うと、最初は凸部上とそうでない部分は独立に成長
を始める。さらに層厚を増すと、最初独立であった成長
層がつながる。しかし成長表面は基板形状の影響を受け
て凸状となる。基板に設けた凸部の両側に凹部を介して
凸部を設けておけば、凸部上の成長は同様な成長が起こ
り部分的に表面が凸状にならずに平坦化される。
Function When crystal growth is performed by MOCVD or the like on a substrate provided with convex portions, growth begins independently on the portions above the convex portions and those not on the convex portions. When the layer thickness is further increased, the initially independent growth layers become connected. However, the growth surface becomes convex due to the influence of the substrate shape. If convex portions are provided on both sides of a convex portion provided on the substrate via concave portions, growth on the convex portions will occur in the same way, and the surface will be partially flattened without becoming convex.

このように基板に凸部を設けて結晶成長しても表面が平
坦化した半導体レーザを作製できる。
In this manner, even if a convex portion is provided on the substrate and crystal growth is performed, a semiconductor laser having a flat surface can be manufactured.

実施例 以下、本発明の一実施例について図面を参照しながら説
明する。
EXAMPLE Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例における半導体レーザ装置の断
面図を示すものである。第1図において1はn側電極、
2はn型G a A s基板、3はn型G a A s
バフフッ層、4はn型A I G a A sクラッド
層、6はノンドープA73 G a A s活性層、6
はp型A I G a A sクラッド層、7はn型A
 I G a A s埋め込み層8はn型Q aA s
  キャップ層、9はp側電極、11はZn拡散領域で
ある。
FIG. 1 shows a cross-sectional view of a semiconductor laser device in an embodiment of the present invention. In FIG. 1, 1 is the n-side electrode;
2 is an n-type GaAs substrate, 3 is an n-type GaAs substrate
Buff layer, 4 is n-type AI Ga As cladding layer, 6 is non-doped A73 Ga As active layer, 6
is p-type A I G a As cladding layer, 7 is n-type A
The IGaAs buried layer 8 is an n-type QaAs
A cap layer, 9 a p-side electrode, and 11 a Zn diffusion region.

次に本発明の具体的な作表方法について説明する。まず
第2図に示すように、n型G a A s基板2の(1
00)面上に8μmの間隔で8μmのストライプを作る
ようにフォトマスク1oを形成しく6図)、化学エツチ
ング(例えばH2SO4:H2O2:H20=1:8:
8)により2.0 μ!Inまで掘り、(011)方向
に平行にリッジを設ける(b図)。
Next, a specific tabulation method of the present invention will be explained. First, as shown in FIG. 2, (1
00) Form a photomask 1o to create 8 μm stripes at 8 μm intervals on the surface (Figure 6), chemical etching (for example, H2SO4:H2O2:H20=1:8:
8) 2.0 μ! Dig down to In and provide a ridge parallel to the (011) direction (Figure b).

次にMOCVD法によりn mG a A sバッファ
層3(厚さ05μm)n型Al y G a 1.A 
sクラッド層4(y=o、3厚さ1.0μm)、ノンド
ープA l x G a 1x A s活性層6(x=
o、1厚さ0.1μm)、p型A l y G a 1
−y A sクラッド層6(y=0.3 厚さ1.1 
μm )、n型A6Ga1−2As埋め込み層7(z=
α3厚さ1.5 μm )、n型GaAsキ+7プ層8
(厚さO,Sμm)を順次成長させる。この時、n型G
 a A s基板2にはリッジが設けであるため、リッ
ジ上部とそうでない部分では独立して成長が起こる。ま
た、リッジ端では(111)面を出しながら成長が起こ
り、その付近では成長速度が速い1 との奇め伸め二λ
ム層7プI汁11、弓1■レージ6でない部分がつなが
った成長になる。次に中央のりフジ上部のp型クラッド
層6までZn拡散11を行い、最後にn側、p側の電極
1.9を形成する。電流注入を行うと電流はn型G a
 A s基板2上のリッジ部分とZn拡散11により形
成されたp型領域により上下で狭さくされる。その結果
、30mAのしきい電流値で単−横モード発振する半導
体レーザ装置が得られた。また、本発明のように、n型
GaAs基板上に設けたりフジが、実際のレーザ動作を
行う領域外にも設けであるため、成長表面の形状は単一
のりフジ上に成長するよりもかなり平坦化され、組立歩
留も向上し熱放散もよくなった。
Next, an n mGa As buffer layer 3 (thickness 05 μm) of n-type Al y Ga 1. A
s cladding layer 4 (y=o, 3 thickness 1.0 μm), non-doped Al x Ga 1x A s active layer 6 (x=
o, 1 thickness 0.1 μm), p-type A ly G a 1
-y As cladding layer 6 (y=0.3 thickness 1.1
μm), n-type A6Ga1-2As buried layer 7 (z=
α3 thickness 1.5 μm), n-type GaAs skip layer 8
(thickness O, S μm) is grown sequentially. At this time, n-type G
Since the aAs substrate 2 is provided with a ridge, growth occurs independently on the upper part of the ridge and on the other parts. In addition, growth occurs at the edge of the ridge while exposing the (111) plane, and in the vicinity, the growth rate is fast due to the odd elongation of 1 and 2λ.
The parts that are not in the mu layer 7 pu I juice 11, the bow 1 ■ rate 6 are connected and grow. Next, Zn diffusion 11 is performed up to the p-type cladding layer 6 above the center edge, and finally the n-side and p-side electrodes 1.9 are formed. When current is injected, the current is n-type Ga
It is narrowed at the top and bottom by the ridge portion on the As substrate 2 and the p-type region formed by the Zn diffusion 11. As a result, a semiconductor laser device that oscillated in a single transverse mode at a threshold current value of 30 mA was obtained. In addition, as in the present invention, the shape of the growth surface is considerably larger than that of growing on a single layer because the wafer is provided on the n-type GaAs substrate and is also provided outside the area where the actual laser operation is performed. It has been flattened, improving assembly yield and improving heat dissipation.

なお、本実施例ではGaAs、AlGaAs系半導体レ
ーザについて述べたが、InP 系や他の多元混晶系を
含む化合物半導体を材料とする半導体レーザについても
同様に本発明を適用することかでする。また導電性基板
にはp型基板を用いてイオン注入により電流ストライプ
を形成してもよい。さらに、結晶成長には実施例ではM
OCVD法を用いたが、MBE法を用いてもよい。
In this embodiment, GaAs and AlGaAs semiconductor lasers have been described, but the present invention can be similarly applied to semiconductor lasers made of compound semiconductors including InP and other multi-component mixed crystal systems. Alternatively, a p-type substrate may be used as the conductive substrate, and current stripes may be formed by ion implantation. Furthermore, for crystal growth, M
Although the OCVD method was used, the MBE method may also be used.

発明の効果 以上のように、本発明の特徴はりフジを設けた基板上に
活性層を含むダブルヘテロ構造を形成した半導体レーザ
において、実際のレーザ動作を行う領域外においても基
板にリッジを設けたところにある。本発明の構造とする
ことで、成長表面が従来の単一のりフジ上の成長に比べ
てより平坦化され、その結果アップサイドダウンで組立
てを行った場合、密着性よくボンディングされ、・レー
ザ動作に伴う発熱も効率よく逃がすことができる。
Effects of the Invention As described above, the feature of the present invention is that in a semiconductor laser in which a double heterostructure including an active layer is formed on a substrate provided with a ridge, a ridge is provided on the substrate even outside the area where the actual laser operation is performed. There it is. By adopting the structure of the present invention, the growth surface is more flattened than the conventional growth on a single glued edge, and as a result, when assembled upside down, bonding is achieved with good adhesion, and laser operation The accompanying heat can also be efficiently dissipated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例における半導体レーザ装置の断
面図、第2図a、bはその製造過程を示す図である。 1・・・・・・n側電極、2・・・・・・n型G a 
A s基板、3・・・・・・n型G a A sバッフ
ァ層、4・・・・・・n型AI G a A sクラッ
ド層、6・・・・・・ノンドープA I G a A 
s活性層、6・・・・・・p型A I G a A s
クラッド層、7・・・・・・n型A73 G a A 
s埋め込み層、8・・・・・・n型G a A s キ
ャップ層、9・・・・・・p側電極、1o・・・・・・
フォトマスク、11・・・・・・Zn拡散領域。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
n側電極 、?−n !!traAs&jf1 3−=nダーんバッフ1層 4−n *AIeaAs )) ラ? FJ6=AJl
yaAs冶性層 6−Pg!Al出Asグラフト層 第 1 図              7−、ytダ
Al[有]As埋め込み謹θ−719! (nAsキマ
ツデ層 P−P側電極 / 1−7!41(々員jfA 2−= n ’l Ga As某級 lθ−フォトマスク 第2図 C(1) (b)
FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention, and FIGS. 2a and 2b are diagrams showing the manufacturing process thereof. 1...n-side electrode, 2...n-type Ga
A s substrate, 3... n-type Ga As buffer layer, 4... n-type AI Ga As cladding layer, 6... non-doped AI Ga As
s active layer, 6...p-type AI Ga As
Cladding layer, 7...n-type A73 G a A
s buried layer, 8...n type Ga As cap layer, 9...p side electrode, 1o...
Photomask, 11...Zn diffusion region. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
N-side electrode? -n! ! traAs&jf1 3-=n Darn buffer 1 layer 4-n *AIeaAs)) La? FJ6=AJl
yaAs thermal layer 6-Pg! Al extraction As graft layer 1st Figure 7-, yt da Al[with] As embedded θ-719! (nAs solid layer P-P side electrode/1-7!41 (members jfA 2-= n'l Ga As certain grade lθ-photomask Fig. 2 C (1) (b)

Claims (1)

【特許請求の範囲】[Claims] 一導電型基板上にたがいに対向した二つの凹部が形成さ
れることによって、上記二つの凹部間にストライプ状の
凸部が形成され、上記凸部上に活性層を含む二重ヘテロ
構造を持つ多層薄膜が形成され、上記凸部の両側面にお
いても少なくとも上記活性層直上の薄膜層までは、積層
方向に上記凸部上と同一の順序で多層薄膜が上記凸部上
と独立に形成され、上記多層薄膜直上に、一部が上記一
導電型と逆の導電型を有する薄膜が形成されていること
を特徴とする半導体レーザ装置。
By forming two recesses facing each other on a substrate of one conductivity type, a striped protrusion is formed between the two recesses, and a double heterostructure including an active layer is formed on the protrusion. A multilayer thin film is formed, and on both sides of the convex part, at least up to the thin film layer directly above the active layer, the multilayer thin film is formed in the same order as on the convex part in the stacking direction, independently of the top of the convex part, A semiconductor laser device characterized in that a thin film partially having a conductivity type opposite to the one conductivity type is formed directly above the multilayer thin film.
JP22056686A 1986-09-17 1986-09-17 Semiconductor laser device Pending JPS6373691A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22056686A JPS6373691A (en) 1986-09-17 1986-09-17 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22056686A JPS6373691A (en) 1986-09-17 1986-09-17 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS6373691A true JPS6373691A (en) 1988-04-04

Family

ID=16752997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22056686A Pending JPS6373691A (en) 1986-09-17 1986-09-17 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS6373691A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345092A (en) * 1991-01-18 1994-09-06 Kabushiki Kaisha Toshiba Light emitting diode including active layer having first and second active regions
JP2002237654A (en) * 2001-02-08 2002-08-23 Sony Corp Semiconductor laser and its manufacturing method
JP5367263B2 (en) * 2005-03-30 2013-12-11 オプトエナジー株式会社 Semiconductor laser element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345092A (en) * 1991-01-18 1994-09-06 Kabushiki Kaisha Toshiba Light emitting diode including active layer having first and second active regions
JP2002237654A (en) * 2001-02-08 2002-08-23 Sony Corp Semiconductor laser and its manufacturing method
JP5367263B2 (en) * 2005-03-30 2013-12-11 オプトエナジー株式会社 Semiconductor laser element

Similar Documents

Publication Publication Date Title
JPH0278280A (en) Semiconductor light emitting device
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JPH0243351B2 (en)
JPH08307003A (en) Semiconductor laser device
JPS6373691A (en) Semiconductor laser device
JP2546150B2 (en) Three-dimensional cavity surface emitting laser
JPS6119186A (en) Manufacture of two-wavelength monolithic semiconductor laser array
JPS60223186A (en) Buried type semiconductor device
JPS6373692A (en) Manufacture of semiconductor laser device
JP2000294877A (en) High output semiconductor laser and manufacture of the same
JPS58118184A (en) Buried hetero structural semiconductor laser
JPH0410705Y2 (en)
JPS62144380A (en) Manufacture of semiconductor laser device
JPS6045083A (en) Planar type semiconductor laser integrated circuit device
JP2550711B2 (en) Semiconductor laser
JPS6344790A (en) Semiconductor laser
JPH01166592A (en) Semiconductor laser element
JPH0828553B2 (en) Semiconductor laser
JPS6129183A (en) Semiconductor laser
JPS61168982A (en) Semiconductor photoamplifying element
JPS5914691A (en) Semiconductor laser
JPH04268782A (en) Multi-beam semiconductor laser device
JPH01259589A (en) Semiconductor laser element
JPH01202883A (en) Manufacture of semiconductor laser
JPH05102606A (en) Semiconductor light emitting element and its manufacturing method