JPS6373550A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6373550A
JPS6373550A JP21837686A JP21837686A JPS6373550A JP S6373550 A JPS6373550 A JP S6373550A JP 21837686 A JP21837686 A JP 21837686A JP 21837686 A JP21837686 A JP 21837686A JP S6373550 A JPS6373550 A JP S6373550A
Authority
JP
Japan
Prior art keywords
resistor
diffused
polysilicon
resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21837686A
Other languages
Japanese (ja)
Inventor
Kazuo Kunimasa
国政 一男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21837686A priority Critical patent/JPS6373550A/en
Publication of JPS6373550A publication Critical patent/JPS6373550A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0802Resistors only

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To bond a diffused resistor and a polycrystalline semiconductor resistor, and to obtain resistors having small temperature changes by controlling the sheet resistance values of the diffused resistor and the polycrystalline semiconductor resistor so that the polycrystalline semiconductor resistor is brought to specific times as high as the diffused resistor and making the absolute values of temperature coefficients approximately the same. CONSTITUTION:A diffused resistor 5 and a polysilicon resistor 8 are coupled in series by an aluminum wiring 6. The diffused resistor 5 is formed through ion implantation of phosphorus (<31>P<+>), and the polysilicon resistor 8 is grown through LP-CVD, and shaped through ion implantation of phosphorus (<31>P<+>). The diffused resistor 5 is formed onto a P-type silicon substrate 1 and the polysilicon resistor 8 onto a field oxide film 2, and contact regions 4 and 7 with the aluminum wiring 6 of each resistor are shaped in high concentration through the diffusion of phosphorus. The temperature coefficients of the diffused resistor and the polysilicon resistor depend upon sheet resistance rhos, and each temperature coefficient is equalized approximately when rhos of the polysilicon resistor is brought to once or fifty times as high as rhos of the diffused resistor, thus acquiring resistance values depending upon no temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に半導体抵抗を含む半導
体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device including a semiconductor resistor.

〔従来の技術〕[Conventional technology]

従来、この種の抵抗としては拡散抵抗、ポリシリコン抵
抗がある。
Conventionally, this type of resistor includes a diffused resistor and a polysilicon resistor.

第3図は、拡散抵抗を示す縦断面図である。P型シリコ
ン基板1にイオン注入法にてN型不純物を導入し、N型
の拡散抵抗5t−形成し、この抵抗の両端よt)psa
からなる眉間絶縁膜3のコンタクト開口穴にてアルミ配
線6で接続する。
FIG. 3 is a longitudinal cross-sectional view showing the diffused resistance. N-type impurities are introduced into a P-type silicon substrate 1 by ion implantation to form an N-type diffused resistor 5t, and both ends of this resistor are t) psa.
The aluminum wiring 6 is connected to the contact opening hole of the glabella insulating film 3 consisting of the above.

第4図はポリシリコン抵抗を示す縦断面図である。フィ
ールド酸化膜20表面にポリシリコン層が成長され、イ
オン注入法にて所望の抵抗値のポリシリコン抵抗8に作
り込む。この抵抗の両端のコンタクト領域7は低抵抗で
あり、アルミ配線6とオーミック接続をとる。
FIG. 4 is a longitudinal sectional view showing a polysilicon resistor. A polysilicon layer is grown on the surface of the field oxide film 20, and formed into a polysilicon resistor 8 having a desired resistance value by ion implantation. Contact regions 7 at both ends of this resistor have a low resistance and make an ohmic connection with the aluminum wiring 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述し光従来の半導体装置における抵抗素子は温度依存
性があり、拡散抵抗で正の相関、te、ポリシリコン抵
抗では負の相関がある。このため、低温(通常−20℃
)あるいは高温(通常70℃)にお埴て、常温からの抵
抗値変動が大きいという欠点がある。
The resistance element in the conventional optical semiconductor device described above has temperature dependence, with a positive correlation for diffused resistance and a negative correlation for te and polysilicon resistance. For this reason, low temperatures (usually -20℃)
) or at high temperatures (usually 70°C), the resistance value fluctuates greatly from room temperature.

上述した従来の半導体装置に対し、本発明は正の温度係
数を持つ拡散抵抗と負の温度係数を持つ多結晶半導体抵
抗につφてそ詐ぞれの温に係数がシート抵抗に比例する
ことを利用し、拡散抵抗と多結晶半導体抵抗との温度変
化分を相殺することにより、この結合抵抗の温度変化を
少なくせしめる独創的内容を有する。
In contrast to the conventional semiconductor device described above, the present invention has a diffusion resistance with a positive temperature coefficient and a polycrystalline semiconductor resistor with a negative temperature coefficient. It has an original content of reducing the temperature change of the combined resistance by canceling out the temperature change of the diffused resistance and the polycrystalline semiconductor resistance.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置は、半導体基板に第一の不純物を導
入してなる拡散抵抗と、前記半導体基板表面の結縁膜上
に形成さ11、前記拡散抵抗に直列、並列または直並列
に接続され、第二の不純物を導入してなり、シート抵抗
値が前記拡散抵抗のシート抵抗値の1倍と50倍との間
である多結晶半導体抵抗とを有している。
The semiconductor device of the present invention includes a diffused resistor formed by introducing a first impurity into a semiconductor substrate, and a bonding film 11 formed on the surface of the semiconductor substrate, connected in series, in parallel, or in series-parallel to the diffused resistor, A polycrystalline semiconductor resistor is formed by introducing a second impurity and has a sheet resistance value between 1 and 50 times the sheet resistance value of the diffused resistor.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of one embodiment of the present invention.

拡散抵抗5とポリシリコン抵抗8をアルミ配線6で直列
に結合する。拡散抵抗5はリン(31p+)のイオン注
入にて形成し、ポリシリコン抵抗8はLP−CVD  
にて成長し、リン(P)のイオン注入にて形成する。拡
散抵抗5はP型シリーン基板1上に、また、ポリシリコ
ン抵抗8tiフイールド酸化WXz上に形放し、各抵抗
のアルミ配線6とのコンタクト領域4および7はリン拡
散にて高a[に形成する。
A diffused resistor 5 and a polysilicon resistor 8 are coupled in series with an aluminum wiring 6. The diffused resistor 5 is formed by ion implantation of phosphorus (31p+), and the polysilicon resistor 8 is formed by LP-CVD.
It is grown by ion implantation of phosphorus (P). The diffused resistor 5 is formed on the P-type silicon substrate 1 and on the polysilicon resistor 8ti field oxide WXz, and the contact regions 4 and 7 with the aluminum wiring 6 of each resistor are formed to a high a[ by phosphorus diffusion. .

抵抗体の温度T (’0 )における抵抗値1kR1[
Ω]、温!25℃における抵抗値をR・ 〔Ω〕とし、
温度係数をα(1/”O)とすると%”1は一般に次式
で表わさ詐る。
Resistance value 1kR1[ at temperature T ('0) of resistor
Ω], Warm! The resistance value at 25℃ is R・[Ω],
When the temperature coefficient is α(1/”O), %”1 is generally expressed by the following equation.

R1==R,÷α(T−25)R・ ここで、ポリシリコン抵抗の温度係数と拡散抵抗の温度
係数とt−絶対値で同じ値にし、また、25℃における
そ牡ぞれの抵抗値も同じR′にすると、これら拡散抵抗
とポリシリコン抵抗との直列抵抗値B11 R:2R’ とな)、温度に依存しない抵抗値が得られる。拡散抵抗
およびポリシリコン抵抗の温度係数は、第5図および第
6図にそれぞれ示す如くシート抵抗ρ3に依存し、ポリ
シリコン抵抗のpsが拡散抵抗のρ3の1倍から50倍
でそれぞれの温度係数がほぼ等しくなる。
R1==R, ÷α(T-25)R・Here, the temperature coefficient of the polysilicon resistance and the temperature coefficient of the diffused resistance are set to the same value in terms of t-absolute value, and the respective resistances at 25°C are If the value R' is also set to be the same, a series resistance value B11 R:2R' of these diffused resistors and the polysilicon resistor can be obtained, which is a resistance value that does not depend on temperature. The temperature coefficients of the diffused resistance and polysilicon resistance depend on the sheet resistance ρ3, as shown in FIGS. are almost equal.

第2図は、M1図に示す実施例における直列抵抗の温度
依存性を示すグラフでアク、拡散抵抗5とポリシリコン
抵抗8とのそれぞれの温度係数の絶対値が等しく、かつ
抵抗値が等しい場合の直列抵抗の温度依存性(曲線11
)、および拡散抵抗5のρ3が500Ω/口、ポリシリ
コン抵抗8のρ3が500Ω/口であり、それぞれの抵
抗値が等し一場合の直列抵抗の温度依存性(曲線12)
ftそれぞれ示すものである。拡散抵抗5およびポリシ
リコン抵抗8単体の温度係数がそれぞれ1000〜30
00ppm  に対し直列抵抗では11000pI) 
 以内に抑えることができる。
FIG. 2 is a graph showing the temperature dependence of the series resistance in the example shown in FIG. Temperature dependence of the series resistance of (curve 11
), and the temperature dependence of the series resistance when the ρ3 of the diffused resistor 5 is 500 Ω/unit, the ρ3 of the polysilicon resistor 8 is 500 Ω/unit, and the respective resistance values are equal (curve 12)
ft is shown respectively. The temperature coefficient of diffused resistor 5 and polysilicon resistor 8 alone is 1000 to 30, respectively.
00ppm vs. 11000pI for series resistance)
It can be kept within.

なお、拡散抵抗と多結晶半導体抵抗とを並列に接続した
り、拡散抵抗または多結晶半導体抵抗を2個以上用いて
これら3個以上の抵抗を直並列に接続することもでき、
これらの接続によ勺温度変化による抵抗直質動の少ない
抵抗を得ることができ、また所望の温度係数を有する抵
抗を得ることもできる。
Note that a diffused resistor and a polycrystalline semiconductor resistor can be connected in parallel, or two or more diffused resistors or polycrystalline semiconductor resistors can be used and three or more resistors can be connected in series and parallel.
Through these connections, it is possible to obtain a resistance with little direct resistance variation due to temperature changes, and it is also possible to obtain a resistance having a desired temperature coefficient.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、拡散抵抗と多結係数の拡
散抵抗と負の温度係数の多結晶半導体抵抗との温度係数
の絶対fitはぼ同じにすることにより、これを結合し
て温度変化の少ない抵抗を提供することができ、また、
抵抗を用いる回路の設計全行なう場合、温度変化による
抵抗値変動が少ないため、余裕のある設計ができるとい
う効果がある。
As explained above, in the present invention, the absolute fit of the temperature coefficients of the diffused resistance, the diffused resistance with a multi-coupling coefficient, and the polycrystalline semiconductor resistor with a negative temperature coefficient are made to be approximately the same, so that they are combined and the temperature changes. can provide less resistance and also
When designing a circuit that uses resistors, there is little variation in resistance value due to temperature changes, so there is an effect that the design can be designed with a margin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の縦断面圀、第2図は第1図
に示す実施例における直列抵抗の温度依4性を示すグラ
フ、第3図は拡散抵抗の縦断面図、第4図はポリシリコ
ン抵抗の縦断面図、第5図は拡散抵抗の温度依存性を示
すグラフ、第6図はポリシリコン抵抗の温度依存性を示
すグラブである。 1・・・・・・P型シリコン基板、2・山・・フィール
ド酸化膜、3・・・・・・層間絶縁膜、4・・・・・・
コンタクト領域、5・・・・・・拡散抵抗、6・・・・
・・アルミ配線、7・・・・・・コンタクト領域、8・
・・・・・ポリシリコン抵抗。 オ /l1ff 憂 2WJ 芹 3vJ 7:コンタフト4没(す’        B’−F・
1>ツブシxゴη−茅4凹 $ 5 男 増 一2o     θ     25         
7゜急度〔τ〕 募   乙   凹
FIG. 1 is a longitudinal cross-sectional view of an embodiment of the present invention, FIG. 2 is a graph showing the temperature dependence of series resistance in the embodiment shown in FIG. 1, and FIG. 3 is a longitudinal cross-sectional view of a diffused resistance. FIG. 4 is a longitudinal cross-sectional view of a polysilicon resistor, FIG. 5 is a graph showing the temperature dependence of the diffused resistance, and FIG. 6 is a graph showing the temperature dependence of the polysilicon resistance. 1... P-type silicon substrate, 2... Mountain... field oxide film, 3... Interlayer insulating film, 4......
Contact region, 5...Diffused resistance, 6...
...Aluminum wiring, 7...Contact area, 8.
...Polysilicon resistor. O /l1ff Ui 2WJ Seri 3vJ 7: Contaft 4 death (Su'B'-F・
1> Tsubushi
7゜Steepness〔τ〕 Raised Otsu Concave

Claims (1)

【特許請求の範囲】 半導体基板に第一の不純物を導入してなる拡散抵抗と、 前記半導体基板表面の絶縁膜上に形成され、前記拡散抵
抗に直列、並列または直並列に接続され、第二の不純物
を導入してなり、シート抵抗値が前記拡散抵抗のシート
抵抗値の1倍と50倍との間である多結晶半導体抵抗と を有することを特徴とする半導体装置。
[Scope of Claims] A diffused resistor formed by introducing a first impurity into a semiconductor substrate; 1. A semiconductor device comprising: a polycrystalline semiconductor resistor having a sheet resistance value between 1 and 50 times the sheet resistance value of the diffused resistor.
JP21837686A 1986-09-16 1986-09-16 Semiconductor device Pending JPS6373550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21837686A JPS6373550A (en) 1986-09-16 1986-09-16 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21837686A JPS6373550A (en) 1986-09-16 1986-09-16 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6373550A true JPS6373550A (en) 1988-04-04

Family

ID=16718925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21837686A Pending JPS6373550A (en) 1986-09-16 1986-09-16 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6373550A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448103A (en) * 1992-05-19 1995-09-05 Texas Instruments Incorporated Temperature independent resistor
JP2006203209A (en) * 2005-01-22 2006-08-03 Samsung Electronics Co Ltd Resistance element having uniform resistance value, and semiconductor element using the same
JP2018037528A (en) * 2016-08-31 2018-03-08 キヤノン株式会社 Semiconductor device, substrate for liquid discharge head, liquid discharge head, and liquid discharge device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5448103A (en) * 1992-05-19 1995-09-05 Texas Instruments Incorporated Temperature independent resistor
JP2006203209A (en) * 2005-01-22 2006-08-03 Samsung Electronics Co Ltd Resistance element having uniform resistance value, and semiconductor element using the same
JP2018037528A (en) * 2016-08-31 2018-03-08 キヤノン株式会社 Semiconductor device, substrate for liquid discharge head, liquid discharge head, and liquid discharge device
CN107799154A (en) * 2016-08-31 2018-03-13 佳能株式会社 Semiconductor device, liquid-discharge-head substrate, liquid discharging head and device
CN107799154B (en) * 2016-08-31 2021-12-10 佳能株式会社 Semiconductor device, liquid discharge head substrate, liquid discharge head, and device

Similar Documents

Publication Publication Date Title
JPS6373550A (en) Semiconductor device
JPS60128651A (en) Semiconductor device
JPS61216356A (en) Semiconductor resistor
JPH0360068A (en) Semiconductor memory device
JPS6292360A (en) Complementary type semiconductor device
JPS61256756A (en) Semiconductor device
JPH04145657A (en) Semiconductor device
JPS63229744A (en) Semiconductor device
JPH04130658A (en) Polycrystalline silicon resistor for semiconductor device
JPS6352468A (en) Resistance element
JPS59121864A (en) Semiconductor device
JPS60244058A (en) Semiconductor integrated circuit device
JPH0456280A (en) Semiconductor device and manufacture thereof
JPS60134458A (en) Semiconductor device
JPH0385758A (en) Semiconductor resistor
JPS6352467A (en) Resistance element
JPH05211294A (en) Semiconductor device
JPS59214251A (en) Semiconductor element
JPS61191061A (en) Semiconductor resistor device
JPS6298772A (en) Semiconductor device
JPS5870568A (en) Semiconductor ic device
JPS5623753A (en) Mos filed effect integrated circuit
JPS62165352A (en) Semiconductor device
JPS63291461A (en) Memory device
JPS60242660A (en) Semiconductor integrated circuit